
RC24169 (W0702-003) February 2, 2007
Computer Science

IBM Research Report

Trustworthy Personalized Computing on Public Kiosks

Scott Garriss1, Ramón Cáceres2, Stefan Berger2, Reiner Sailer2,
Leendert van Doorn3, Xiaolan Zhang2

1Carnegie Mellon University
Pittsburgh, PA

2IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

3AMD
Austin, TX

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Trustworthy Personalized Computing on Public Kiosks

Scott Garriss1∗ Ramón Cáceres2 Stefan Berger2

Reiner Sailer2 Leendert van Doorn3 Xiaolan Zhang2

Carnegie Mellon University1 IBM T.J. Watson Research Center2 AMD 3

Pittsburgh, PA, USA Hawthorne, NY, USA Austin, TX, USA

Abstract

We present a system in which a user leverages a personal mobile device to establish trust in a public
computing device, orkiosk, prior to revealing personal information to that kiosk. We have designed and
implemented a protocol by which the mobile device determines the identity and integrity of the software
loaded on the kiosk. A similar protocol allows a kiosk owner to verify that the kiosk has loaded only
approved software. Our system combines a number of emergingsecurity technologies, including the
Trusted Platform Module, the Integrity Measurement Architecture, and new support in x86 processors
for establishing a dynamic root of trust. We focus on allowing the user to personalize the computing
environment on the kiosk by running his own virtual machine.

1 Introduction

Public computingkiosks, such as a rental computer at an Internet café, have become commonplace and their
numbers are likely to increase as computing finds its way intomore people’s lives. Kiosks are attractive
because they free people from the need to carry a fully featured computing device such as a laptop computer.
A particularly compelling service that a kiosk could provide is to allow a user to resume a personalized
computing environment that includes her choice of softwareand data. However, a problem with current
kiosks is that the user must assume that a kiosk is performingonly its intended function, or more specifically,
that it has not been compromised by an attacker. A compromised kiosk could harm the user in many ways,
for example, by stealing private data. Similarly, the ownerof a kiosk wants to ensure that the kiosk is not
used to perform malicious acts for which he may be liable.

This paper presents a system in which a user leverages a lightweight personal mobile device, such as a
smartphone, to gain a degree of trust in a kiosk prior to usingit. In the context of computer systems, trust is
the expectation that a system will faithfully perform its intended purpose. We refer to a kiosk as trustworthy
if we can verify the identity and integrity of the software loaded on that kiosk. Our system aims to prevent
software attacks on the kiosk; detecting hardware modifications is an open problem. Software attacks such
as keystroke logging are far more common and an important threat in their own right. We assume that the
personal device is a priori trustworthy. Securing mobile devices is itself an important research area, but we
do not address it in this work except to point out that some of the trust establishment procedures we apply
to kiosks may also apply to mobile devices.

In this context we have designed a protocol by which the mobile device establishes that the kiosk has
loaded only trustworthy software. Only after this protocolhas successfully completed will the user reveal

∗This work was done during a graduate student internship at IBM T.J. Watson Research Center.

1

personal information, such as credit-card data, to the kiosk. Our system also uses a similar protocol by
which a supervisor machine, acting on behalf of the kiosk owner, verifies that the kiosk has loaded only
approved software. If unapproved software is found, the owner can take action to disable the kiosk by, for
example, removing it from the network.

Our system brings together a number of emerging security technologies. We utilize new x86 processor
support for establishing a dynamic root of trust on commodity computing platforms that incorporate AMD’s
Secure Virtual Machine Technology [10] or Intel’s Trusted Execution Technology [15]. In addition, we use
the Trusted Platform Module (TPM) [14] together with the Integrity Measurement Architecture (IMA) [24]
to provide both user and owner with proof that only trustworthy software has been loaded on the kiosk.

We focus on using virtual machine technology to allow the user to run personal software on the kiosk.
Running her own virtual machine on a kiosk provides the user with a complete and personalized computing
environment, much as if she was using her own physical machine. SoulPad [9] and Internet Suspend/Resume
(ISR) [18] are two mobility solutions based on running users’ virtual machines on stationary host comput-
ers such as kiosks. The work presented here resolves important trust issues left open by those previous
approaches. Namely, our use of integrity attestation eliminates blind trust in any software component on
the host PC, including the BIOS. Our use of a hardware root of trust also prevents the otherwise difficult
to detect attack where a rogue virtual machine monitor runs below an unsuspecting operating system [17].
Additionally, the virtual machine monitor provides the kiosk owner with a means to detect and isolate user
virtual machines that are performing illicit activity.

We have implemented our trust establishment procedures along with the overall system to demonstrate
the viability of our solution. Our prototype, depicted in Figure 1, uses a commercially-available smartphone
as the personal device, a commodity PC as the kiosk, and a Bluetooth wireless link to communicate between
them. We use a second PC as the supervisor machine connected to the kiosk via the wired Internet.

Internet

User Kiosk

Kiosk Supervisor

Mobile
Device

Figure 1: Kiosk computing scenario

The main contribution of this work is the experimental
demonstration of a system for trustworthy kiosk computing
that combines the security and virtual machine technologies
mentioned above. In an earlier position paper [11], we pre-
sented a preliminary design and implementation, and identi-
fied a number of open issues. This paper improves on that
earlier work on several fronts. One, we prevent a kiosk-in-the-
middle attack by cryptographically binding the message that
attests software integrity to the particular kiosk in frontof the
user. Two, we create a secure channel between the device and
the kiosk by exchanging an encryption key generated for this
session. Three, we add the ability to securely resume a user-
specified virtual machine on the kiosk by having the device
provide the kiosk the location and decryption key of the virtual machine image.

The rest of this paper is organized as follows. Section 2 gives an overview of the experience of using
our trustworthy kiosk computing system. Section 3 providessome technological foundations necessary
to understand the rest of the paper. Sections 4 and 5 present the design and implementation of our trust
establishment procedures. Section 6 discusses open issuesand future work. Finally, Section 7 summarizes
related work.

2

Collect Kiosk
Identity

Establish Trust
in Kiosk

Submit VM
to Kiosk

Work
with Kiosk

VMVM

Choose Kiosk
Configuration

Time

Clean Up
Kiosk

Figure 2: Timeline for secure kiosk use

2 User Experience

To provide context for the rest of this paper, we begin with anoverview of how a user interacts with our
trustworthy kiosk computing system. We believe this interaction is simple enough that it does not put an
undue burden on the user while providing important securityfunctionality. Later sections of this paper will
detail what the system does behind the scenes during this interaction.

Figure 2 shows a timeline of the steps a user follows after stepping up to a kiosk that she intends to
use. First, she makes the identity of the kiosk known to her mobile phone. We propose for kiosk owners to
display a numerical identifier on the outside of the kiosk in barcode form. The user captures the contents of
the barcode using the digital camera available on modern phones [19].

Second, the phone presents the user with a list of software configurations available on the kiosk. Fig-
ure 3(a) is an example of a mobile phone screen that presents these choices to the user. In this example,
there are two choices, a personalized computing environment to be provided by the user, or a standard set
of applications provided by the kiosk owner. The user selects the configuration she wants to use, and the
phone forwards the choice to the kiosk.

Third, the user simply waits while the phone and kiosk carry out the rest of our trust establishment
protocol, which we will describe in detail in Section 4. At the completion of this protocol, the phone
announces to the user that the kiosk is either untrustworthyor trustworthy. Figures 3(b) and 3(c) show
examples of these two cases. If the kiosk is declared untrustworthy, the user can walk away before divulging
any personal information to the kiosk. If the kiosk is declared trustworthy, the user can proceed to use the
kiosk.

Fourth, Figure 2 depicts what we consider to be a particularly compelling example of kiosk computing,
namely when the user runs a personal virtual machine on the kiosk. Virtual machines enable users to run
complete and highly customized computing environments on awide range of hardware machines, including
public kiosks. However, a virtual machine can contain a great deal of personal information, and therefore
the user should only run virtual machines on trustworthy kiosks. Figure 3(d) shows a mobile phone screen
that gives the user a choice of virtual machines to run on the kiosk. This step is unnecessary if the user
earlier chose to use standard software provided by the kioskinstead of a personalized environment.

Fifth, the user proceeds to work on the kiosk. Finally, the user disconnects from the kiosk, which triggers
cleanup operations to make the kiosk ready for the next user.

3

(a) (b) (c) (d)

Figure 3: Mobile device screens seen by a user when interacting with a kiosk

3 Background

Trusted Platform Module (TPM): The TPM [14] is a hardware component that is increasingly available
in personal computers and servers. It provides a variety of security functions, including cryptographic
primitives such as signatures and secure storage for small amounts of data such as cryptographic keys. The
TPM is resistant to software attacks because it is implemented in hardware and presents a carefully designed
interface.

Especially notable is the TPM’s ability to store cryptographic hashes, ormeasurements, of loaded soft-
ware components in a set of Platform Configuration Registers(PCRs). PCRs are initialized at boot time
and may not be otherwise reset, with one important exceptiondescribed below. They may only be modified
via theextendoperation, which takes an input value, appends it to the existing value of the PCR, and stores
the SHA1 hash of the result back in the PCR. The cryptographicproperties of this operation state that it is
infeasible to reach the same PCR state through different sequences of inputs. A single PCR can thus store an
aggregate representation of an arbitrary sequence of software components. This technique allows the TPM
to guarantee the load-time integrity of running software. This is sufficient to detect the execution of mali-
cious software (e.g., spyware or a keyboard logger), but theTPM cannot detect compromises, such as buffer
overflow attacks, that occur after software is loaded. Providing strong run-time guarantees is challenging,
and is an area of active research (cf. [27]).

Each TPM has a variety of associated keys; we limit our discussion to the asymmetric Attestation Iden-
tity Key (AIK). The TPM generates this keypair, and stores the private key in internal protected storage.
The private AIK is used to sign quotes that attest to the current state of the TPM’s PCRs. The public AIK
is included in an AIK certificate that is signed by a certification authority. An AIK certificate thus provides
a binding between a public key and a certified-legitimate TPM. For privacy reasons, a TPM may have mul-
tiple AIKs, but one is sufficient for the kiosk in this paper. The reliance on a certification authority is a
commonly perceived weakness of current TPM implementations. Direct Anonymous Attestation (DAA) [8]
obviates this reliance and has been adopted by the relevant standards body, but is not available in current
TPM implementations. Our system may incorporate DAA as it becomes available.

Integrity Measurement Architecture (IMA): The TPM may be used to achievetrusted boot, where mea-
surements stored in PCRs are used to verify that the loaded software stack meets expectations. IMA [24]
extends trusted boot by additionally measuring applications and configuration files. IMA maintains in soft-
ware ameasurement listcontaining a text description and the corresponding hash value of each software

4

component that has been measured into the TPM.
IMA further provides anattestation protocolthat allows a remote IMAchallenger(also called averifier)

to challenge the integrity of an IMA platform. The challenger first sends an attestation request to the IMA
attestation server, which then replies with the current measurement list, along with a quotecontaining an
aggregate of the current PCR values, signed by the TPM. The verifier then uses the measurement list to
replay the sequence of PCR extend operations and verify thatthe resulting aggregate PCR value agrees
with the signed quote. Finally, the verifier compares the measurement list to ameasurement databaseof
known software, thus verifying the identity and integrity of software on the challenged system. The IMA
attestation protocol is described in Section 4.3.5 within the context of our trust establishment protocol. The
measurement database used by the verifier must be maintainedand distributed by a trusted third party, such
as a software vendor, who verifies the trustworthiness of thesoftware identified in the database. In our
scenario, the database need only include software found in specific kiosk configurations.

Dynamic Root of Trust for Measurement (DRTM): As mentioned, general PCRs are initialized at boot
time and cannot be reset. Trusted boot uses these PCRs to establish astaticroot of trust, which must include
all software loaded since boot, starting with the BIOS. Recent extensions to the x86 architecture support the
establishment of adynamicroot of trust by allowing a special PCR (PCR 17) to be reset at any time by a
special CPU instruction,skinit in AMD processors andsenter in Intel processors. This instruction takes as
input a 64KB section of code known as thesecure loader, and places the processor in an init state (which
disables interrupts and guarantees atomicity). The instruction then resets PCR 17, measures the secure
loader, extends PCR 17 with this measurement, and transferscontrol of the processor to the secure loader.

4 System Design

Each of the above technologies offer distinct benefits in a kiosk computing scenario and are available on
commodity hardware. The TPM provides a root of trust that is implemented in hardware and is thus resilient
to many common software attacks. IMA allows the kiosk to use the functionality of the TPM to prove to
the user’s phone that the kiosk has loaded a particular software stack. A difficulty in using IMA is that the
verifier (the phone in our scenario) must have a database against which it can reference all software loaded
by the kiosk—our decision to establish a dynamic root of trust is motivated by this problem.

In the general case, this database would need to include the BIOS, the operating system or hypervisor,
and any applications that the computer may run. Constructing a database a priori that would be sufficient
for establishing trust in any given general purpose computer would clearly be a daunting task. However, an
application-specific kiosk (such as an airline check-in terminal) will have dramatically fewer applications
and only a few operating system versions. If the user provides a personalized computing environment, the
database need not include any applications at all. Thus, we believe it is reasonable to expect that the database
contain any software the kiosk will load modulo the BIOS. Despite being a small and relatively stable, the
BIOS poses a unique challenge in that it varies widely between machines. Rather than include the BIOS of
each potential kiosk in our measurement database, we removethe BIOS from the trusted computing base by
establishing a dynamic root of trust after the BIOS is loaded. BIOS measurements may therefore be omitted
from the database entirely.

The phone will likely delegate the creation of the database to a trusted third party, who will sign the
database and any updates to guarantee their integrity. The phone could periodically contact the trusted third
party to obtain updates. Alternatively, the kiosk could present the phone with a database signed by the

5

trusted third party that includes the software installed onthe kiosk. This would allow the phone to obtain
measurements as needed, but without requiring the trusted third party to be online.

4.1 System Components

As shown in Figure 1, our system consists of a user carrying a mobile device, a kiosk, and a kiosk supervisor.
The mobile device runs an application that aids the user in ascertaining the trustworthiness of the kiosk. This
application incorporates an IMA verifier. The kiosk is a PC equipped with a DRTM-enabled processor and
a TPM. If the kiosk supports personalized computing environments, it will run a hypervisor, otherwise a
standard operating system will suffice. The kiosk will additionally run an IMA attestation server and a thin
kiosk front-end for talking to the mobile device. The kiosk supervisor may be any platform capable of
running an IMA verifier.

4.2 Goals, Assumptions, and Threat Model

Goals We aim to address the concerns of two parties: the user and thekiosk owner. The user’s goal is
to protect the confidentiality of her data. This includes ensuring that the data is transmitted to the kiosk in
secrecy, that the kiosk software will not reveal the data, and that the data cannot be extracted from the kiosk
after the user has left. The goal of the kiosk owner is to detect any misuse of the kiosk (e.g., launching a
denial of service attack) so that appropriate action may be taken.

Assumptions Our trusted computing base includes the hardware and software on the mobile device as
well as the hardware on the kiosk. Verifying the hardware integrity of a platform is an open problem, and as
a result, we must assume that the hardware on the kiosk has notbeen subjected to physical tampering.

This condition implies that we also assume that the barcode affixed to the kiosk has not been modified
and properly encodes the certificate corresponding to the AIK in use by the TPM of the kiosk. Capturing
a barcode is an attractive method of obtaining the identity of the kiosk because of the simplicity of the
user’s action, but it is secure only if the integrity of the barcode is guaranteed. Tamper-evident barcodes
(e.g., barcodes etched in glass) will mitigate the severityof this problem, but users must remain diligent.
Alternative approaches to obtaining the public AIK of the kiosk’s TPM are discussed in Section 6.1.

Furthermore, we also assume that the phone is in possession of the public key of a trusted third party.
This third party may then certify the public keys used to signany measurement databases and AIK creden-
tials that the phone receives.

Threat Model Our system aims to protect the confidentiality of the user’s data in an environment where an
attacker is located in close physical proximity to the kiosk, and may evesdrop on or inject messages into any
wireless communication between the mobile device and the kiosk. The attacker may have unfettered access
to the kiosk before the user arrives and after the user leaves(including knowledge of the root password), and
has computational and communication resources roughly equivalent to that of a desktop PC (i.e., insufficient
to break any underlying cryptographic primitives). The attacker may not modify the hardware of the kiosk
in any way. We note that this definition considers the kiosk owner an attacker as well.

The kiosk owner is concerned with attackers who have physical access to the kiosk, may run arbitrary
programs on the kiosk, and may boot the kiosk from a portable storage device.

6

Mobile Device Kiosk

0 hash(AIK Certificate) via camera
�

1 Hello
-

2 AIK Certificate
�

3 Compute hash(AIK Certificate)
Check that hashes match
Verify AIK Certificate

4 Authentication protocol (optional)
-�

5 User is authorized

6 Supported configurations
�

7 Selected configuration
-

8 Reboot sequence
Generate keypairK, K−1

Create self-signed certificateC
MeasureC into TPM

9 Done,C
�

10 IMA attestation request, nonce
-

11 Generate IMA quote:
h←hash(PCR0|| . . . ||PCRN)
q ← sig{h||nonce}AIKpriv

12 IMA measurement list, TPM signed quoteq
�

13 Verify quote with AIK from (2)
Verify C in measurement list

14 Kiosk is trusted

15 Personal data encrypted underK
-

16 User works with kiosk...
User is done
Cleanup
Reboot sequence

Figure 4: Trust-establishment protocol between mobile device and kiosk

4.3 Trust Establishment Protocol

Figure 4 presents our protocol for establishing trust in a kiosk. The protocol roughly consists of six phases.
In the first phase (Steps 0–3), the phone obtains the public key that can be used to verify attestations from
the kiosk’s TPM. In the second phase (Steps 4–5), the phone demonstrates to the kiosk that it is authorized
to use the kiosk. In the third phase (Steps 6–7), the phone andkiosk decide which software configuration
the kiosk should boot. In the fourth phase (Step 8), the kioskreboots, establishes a dynamic root of trust,
and loads the desired software. In the fifth phase (Steps 9–14), the phone utilizes the IMA protocol to verify
the integrity of the kiosk’s software using the public key obtained in the first phase. If this succeeds, the
phone will deem the kiosk trustworthy, and continue to the final phase, in which the user interacts with the
kiosk (Steps 15–16).

4.3.1 Obtain the public key of the kiosk

Establishing secure communication between two wireless devices is challenging because the user has little
evidence indicatingwhich device is on the other end of the connection. The solution we adopt is that of

7

McCune et al. [19] in which the visual channel provided by thephone’s camera is used to securely obtain
the public key of the kiosk. First, the user photographs a barcode affixed to the kiosk (Step 0). This barcode
encodes the hash of the Attestation Identity Key (AIK) certificate of the kiosk. The AIK certificate includes
the public AIK, which is the key that the kiosk’s TPM will use to sign integrity measurements later in the
protocol.

After capturing the barcode, the phone will initiate the protocol with the kiosk (Step 1). The kiosk then
transmits its AIK certificate over the wireless channel to the phone, who compares the hash of the certificate
against the one obtained from the barcode.

Having checked that the AIK certificate matches the barcode,the phone will then verify the certificate’s
signature. If the certification authority that signed the certificate is unknown to the phone, the phone must
first gain trust in the certification authority’s public key through some form of public-key infrastructure. This
step is intrinsic to any application based on current TPM implementations. Verifying the AIK certificate
allows the phone to conclude that the AIK was generated by a certified-legitimate TPM. At the conclusion
of this phase, the phone knows the kiosk’s TPM is legitimate.It also knows the public AIK that the kiosk’s
TPM will use to sign integrity measurements.

4.3.2 Demonstrate authority to use the kiosk

In scenarios where kiosk use is restricted to certain individuals (e.g., paying customers), Step 4 allows the
user to demonstrate authority to use the kiosk. Since the kiosk is not yet trusted, this scheme should not
reveal private information about the user. Anonymous proofof payment [6] is one possibility. Free public
kiosks may omit Steps 4 and 5. At the conclusion of this phase,the kiosk has determined that the user is
allowed to use the kiosk.

4.3.3 Select desired configuration

In Step 6, the kiosk informs the phone of the valid configurations that it may boot. The objective is for the
phone to select a configuration that allows the user to perform her intended action and consists of software
that the phone knows to be trusted. If these configurations encompass different use cases (e.g., the kiosk
may boot a hypervisor or a standard set of public applications), the phone must query the user to determine
the desired use case. Other configuration differences, e.g., particular Linux kernel versions, may be selected
by the phone without user interaction.

If the phone’s database of trusted software does not containmeasurements for all of the software included
in the selected kiosk configuration, the phone may attempt toobtain an updated database signed by a trusted
third party via the cellular network or directly from the kiosk itself. After Step 7, the phone and the kiosk
have agreed on a configuration that, if booted correctly, thephone will trust.

4.3.4 Reboot

Figure 5 shows the boot sequence for our kiosk, which differsfrom a standard boot sequence by the addition
of Steps 2 and 3. Step 2 executes theskinit instruction to establish a dynamic root of trust and extend a
designated PCR with the digest of the secure loader. Controlof the processor is then transferred to the
secure loader (Step 3), which extends a PCR with the digest ofthe relevant hypervisor and/or OS kernel
files. The secure loader then starts the hypervisor and/or IMA-enabled kernel, which continues the boot
process by measuring each successive component before loading it.

8

0 Reboot
1 Run BIOS and Boot Loader
2 Establish DRTM
3 Run Secure Loader
4 Run Hypervisor/OS

Figure 5: Reboot sequence

The BIOS and boot loader are removed from the trusted computing
base by establishing a dynamic root of trust after they are loaded. Care
must be taken to ensure that the loaded BIOS and boot loader code are not
referenced again—Section 5 explains how this was accomplished. The
boot loader is used merely to read the relevant kernel files into mem-
ory; including file system and storage device support in the secure loader
would significantly increase the size of this security-critical component.

After the kiosk boots, it generates a new keypair that will allow the phone to encrypt secrets destined for
the kiosk. The kiosk includes the public key in a self signed certificate, and extends a PCR with the digest
of this certificate. If the phone eventually determines thatthe kiosk is trusted, this will imply that the kiosk
software will not divulge the private key. As the keypair is generated for this session only, the private key
need not be written to stable storage.

For some applications, the delay incurred by rebooting the kiosk may be unacceptable. This delay can
be avoided by mandating a particular configuration and booting the kiosk before the user arrives. Section 6
discusses the security implications of this approach.

At the conclusion of this phase, the kiosk claims to have booted the configuration agreed upon in the
previous phase and generated a new keypair for this session,but the phone has not yet validated this claim.

4.3.5 Verify the integrity of kiosk software

When the reboot is complete, the kiosk will alert the phone and include the self-signed certificate of the
newly-generated public key (Step 9) . The phone verifies the integrity of the software loaded in the boot
process using the IMA protocol [24] (Steps 10–12). Briefly, the phone challenges the kiosk to produce a
quote signed by the TPM in Step 10. Step 11 depicts the creation of this quote. All relevant PCRs are hashed
together and signed along with the nonce from Step 10 by the TPM using the private AIK. The inclusion
of the nonce prevents the replay of a quote from a previous session, and the cryptographic properties of the
hash function prevent an alternative boot sequence from producing the same value forh in Step 11. The
kiosk provides the phone with the signed quote and a measurement list describing the boot sequence that
produced the final PCR values represented in the quote (Step 12).

To verify that the quote is legitimate, the phone first verifies the signature on the quote using the public
portion of the AIK obtained in Step 2. The phone then replays the series of PCR extensions described in the
measurement list and computesh′ ←hash(PCR0|| . . . ||PCRN). Bothh′ and the nonce supplied in Step 10
must match the contents of the signed quote. Finally, the phone verifies that each software component in the
measurement list is trusted by referencing a database of known trusted software. The only measurement that
will not be in the database is the credentialC containing the public key for this session. The phone must,
however, ensure thatC is actually included in the measurement list.

The barcode captured in Step 0 binds the public portion of theAIK to the TPM in the machine physically
in front of the user. The signature on the quote and the cryptographic properties of the hash function bind
the observed measurement sequence to the TPM holding the AIKdescribed above. The nonce in the quote
binds the quote to this session. From this, the phone can conclude that the kiosk physically in front of the
user did in fact boot the reported software stack while the user was physically present. By referencing all
loaded software against a database of trusted software, thephone can conclude that the kiosk is trustworthy
(Step 14). At the end of this phase, the phone trusts the kioskand is in possession of a public encryption key
K generated by the kiosk.

9

4.3.6 Use kiosk and cleanup

At this point, the phone encrypts any necessary secret information and sends it to the kiosk. This information
may be application-specific, e.g., payment methods, or it may include instructions for resuming a user’s
suspended virtual machine. The latter case is discussed further in Section 4.4. After using the kiosk for
some amount of time, the user will indicate that she is finished (Step 16).

At this point, we want to ensure that no personal data may be retrieved from the kiosk after the user
walks away. This personal data may reside in memory or on the kiosk’s disk. As it is difficult to ensure that
all state has been purged from memory, we require the kiosk toreboot. The kiosk’s operating system must
be configured to zero memory as part of its shutdown process. The user may use visual indicators to gain
assurance that the kiosk rebooted, but in scenarios with strict security requirements, the user could wait for
the reboot to complete and verify this with IMA.

In the case where the user uses a personalized computing environment, this environment can operate
out of an encrypted file system [9]. Since we trust the software on the kiosk, we trust that it will properly
maintain the key, i.e., it will not disclose it to a third party or write the key to disk. When the kiosk reboots,
the decryption key will be lost and along with it the contentsof the encrypted file system. If the user elects
not to use a personalized environment, and instead uses software provided by the kiosk, then cleanup is
more complicated. We believe that a similar solution can be employed where all writeable partitions are
configured to use a file system that is encrypted with a key generated for this session. We have not, however,
fully investigated this solution in the context of using kiosk-provided software.

At the end of this phase, the user can conclude that the kiosk no longer possesses her personal data.

4.4 Personalized Computing Environments

We use virtual machine (VM) technology to support the important case where the user wishes to run a
personalized computing environment on the kiosk. InternetSuspend/Resume (ISR) [18] and SoulPad [9]
have shown how VMs can be used to run complete personal computing environments on kiosks. This
computing model is appealing because the user maintains control over the choice of operating system,
applications, settings, and data inside her personal VM.

However, both the ISR and SoulPad efforts left unresolved the trust issues that are the focus of this work.
With ISR, the user submits her personal virtual machine to run in a complete hypervisor environment that
is already running in the kiosk. The Trusted Computing Base (TCB) in the ISR prototype thus includes
the BIOS, the boot loader, the Linux host OS, and the VMware Workstation virtual machine monitor. With
SoulPad the host boots directly from the SoulPad device, andtherefore the TCB is limited to the BIOS.
However, a malicious hypervisor running on the kiosk could fool the user into thinking she is booting her
SoulPad environment on raw hardware when in fact it is booting inside a virtual machine vulnerable to
snooping from the hypervisor.

The trust establishment procedure presented earlier addresses all these problems by using trusted com-
puting hardware to remove the BIOS and boot loader from the TCB, and to present the user proof of the
identity and integrity of all other software loaded on the kiosk. We thus use the protocol described in the
previous section to verify that a kiosk is running a trustworthy hypervisor environment before a user allows
a personal VM to run on the kiosk. In this case, the personal data revealed to the kiosk takes the form of a
suspended virtual machine image. Figure 6 shows the specificprotocol steps we use to securely resume a
user-specified virtual machine on the kiosk. These steps take the place of Step 15 in Figure 4.

In Step 1 of Figure 6, the mobile device sends to the kiosk a URLwhere the encrypted VM image can
be accessed. The image may reside on a network server as in theISR model, or be carried on the device

10

Mobile Device Kiosk

1 URL for encrypted VM image
-

2 Fetches VM from URL

3 Enc{Decryption keyKV M for VM image}K
-

4 a. Decrypt VM image usingKV M

b. Load and resume VM

Figure 6: Protocol for resuming a user-specified virtual machine on a kiosk

itself as in the SoulPad model. In Step 2, the kiosk fetches that image. In Step 3, the device sends the kiosk
the key with which to decrypt the image. This decryption key is itself sent encrypted to protect it from
eavesdroppers on the wireless channel between the device and the kiosk. The channel encryption key is the
same one generated in Step 8 of the main trust establishment protocol shown in Figure 4. Finally, in Step 4
of Figure 6, the kiosk decrypts, loads, and resumes the VM image.

4.5 Kiosk Supervisor

As stated previously, the goal of the kiosk owner is to detectwhen a kiosk is being used inappropriately.
In addition to any standard external monitoring mechanisms(e.g., intrusion detection systems), the kiosk
supervisor machine may also request quotes from the kiosk’sTPM to monitor which software has been
loaded on the kiosk. In the scenario where the user uses only kiosk-provided software, the kiosk supervisor
can reference all loaded software against a database containing measurementes of known-trusted software.
In the scenario where the user runs a personalized VM, that VMis unlikely to respond to attestation chal-
lenges from the kiosk supervisor for privacy reasons, and therefore the supervisor can only ensure that a
trustworthy hypervisor environment is running on the kiosk. This hypervisor environment can, however,
be configured to monitor the external behavior of the VM and suspend it should it misbehave. From the
standpoint of the kiosk owner, this approach is superior to one in which the user supplies the entire software
stack (e.g., Soulpad) because the hypervisor can be configured to limit or prevent certain types of activities
that the owner deems inappropriate.

All monitoring activity must, however, be performed without the kiosk owner interactively logging on
to the kiosk. Allowing the kiosk owner to login as root while the kiosk is in use would enable the owner
to obtain the confidential data of the user by, e.g., reading directly from physical memory. The kiosk boot
sequence should therefore be configured to disable remote interactive login. As configuration files are
measured by IMA, the user’s phone can ensure that such loginsare indeed disabled as part of the trust
establishment protocol. When the user leaves, the kiosk canboot an alternative “idle” boot sequence that
allows the kiosk owner to log in and perform routine maintenance. If the kiosk fails to revert to that idle
configuration, the owner can gain physical access to the the kiosk and reboot it manually.

5 Prototype Implementation

Our prototype comprises three parties shown in Figure 1: a mobile device, a kiosk, and a kiosk supervisor.
Our mobile device is a Nokia N70 smartphone with GSM/GPRS andBluetooth wireless connectivity. The
smartphone is a Symbian Series 60 platform, which supports Java 2 Micro Edition (J2ME). Our kiosk is a
desktop PC equipped with an AMD Secure Virtual Machine-capable processor, an Infineon TPM 1.2, and
an Iogear USB Bluetooth adapter. The kiosk runs the Xen hypervisor managed by a virtual machine running

11

Linux. We note that Xen currently does not zero memory prior to a reboot as is required in Section 4.3.6.
Such functionality is present in Knoppix distributions of Linux, so it should be feasible to extend Xen in this
manner. Our kiosk supervisor is a generic Linux PC.

The rest of this section describes the software we added to the mobile device and kiosk to carry out
the trust establishment protocol shown in Figure 4. The kiosk supervisor simply runs an existing IMA
verifier [24] to periodically request an integrity attestation from the kiosk.

5.1 Mobile Device Software

For the phone we wrote a J2ME application that interacts withthe user and talks to the kiosk over Blue-
tooth. This application includes an IMA verifier written forthe J2ME environment. We used the Bouncy
Castle [22] library for all cryptographic operations carried out by the IMA verifier, such as replaying PCR
extend operations and verifying TPM signatures. Finally, we pre-loaded measurements of all the software
expected to run on our prototype kiosk, including Xen, Linux, and the additional components described
below. Stored as ascii text, this database is approximately1.3MB. The N70 has 32MB of built-in storage
and a socket for adding additional flash memory. Since the phone must only store measurements for a hand-
ful of kiosk configurations, we do not anticipate that the phone’s storage capacity will hinder our ability to
maintain a measurement database.

Currently, there is no open-source J2ME implementation forcapturing a barcode using the phone’s
camera, so our prototype does not include this functionality. However, the viability of this approach on the
Symbian Series 60 platform has been demonstrated in both C++[19, 26] and Java [5].

A common difficulty with implementing applications that useBluetooth is that Bluetooth device dis-
covery is exceedingly slow and does not provide any means to link the device that was discovered with the
device the user intends to connect to. Scott et al. [26] address this problem by encoding the Bluetooth ad-
dress of a device in a barcode that may be captured by the phone’s camera, thus obviating the need for device
discovery. Current C++ implementations of the barcode recognizer have sufficient resolution to encode a
Bluetooth address in addition to the hash of the AIK certificate previously described in Section 4.3.1.

5.2 Kiosk Software

We added three software components to the kiosk platform: a new kiosk front-end application, an existing
IMA attestation server [24], and a modified version of the OSLO secure loader [16].

Kiosk front-end: The front-end interacts with the phone over Bluetooth to establish the desired software
configuration, reboots the machine into this configuration,and provides a conduit for the mobile phone
to retrieve measurements from the IMA attestation server. The front-end application is written in Java 2
Standard Edition (J2SE), with some help from Perl scripts tomanipulate the configuration of the GRUB
boot loader.

IMA attestation server: We employ an unmodified open-source IMA attestation server [1], which listens
for requests via TCP. To avoid the additional difficulty of layering TCP on Bluetooth, the phone transmits
IMA requests to the kiosk front-end, which in turn communicates with the IMA attestation server via loop-
back TCP.

12

Secure loader: Figure 5 outlines the kiosk boot sequence. After rebooting,the BIOS runs the GRUB
boot loader, which in turn launches the OSLO secure loader. OSLO establishes a dynamic root of trust for
measurement (DRTM) by invokingskinit, then measures and runs the Xen hypervisor and the Linux kernel.
As described in Section 3,skinit atomically measures the secure loader itself, stores the result in the TPM,
and transfers execution to that loader.

We extended OSLO to record the measurements of itself, the hypervisor, and the kernel in the Advanced
Configuration and Power Interface (ACPI) table maintained in system memory by the BIOS. Standard OSLO
does not keep a list of the measurements made byskinit and by OSLO itself. As described in Section 3,
such a list is needed by the IMA verifier to replay the measurement sequence. We used the ACPI table to
communicate these measurements to IMA because there is no higher-level communication facility (e.g., a
file system) available from within OSLO. Our extensions involved calling a BIOS interrupt routine from
16-bit real-mode x86 assembly code. This routine records measurements in the ACPI table and is available
on all BIOSes that support the TPM. While the ACPI table is maintained by the BIOS, they may be read
directly from system memory by the OS.

There is an important subtlety in the use of a DRTM: software that runs after the DRTM is established
must never invoke code that has not already been measured into the TPM. In the case of our prototype,
nothing must invoke the BIOS or boot loader after OSLO executesskinit because OSLO does not measure
the BIOS or boot loader. Our kiosk satisfies this requirementbecause neither Xen or the paravirtualized
version of Linux used in Xen virtual machines ever call back into the BIOS or boot loader. We also had
to be careful to update the ACPI tableprior to executingskinit because updating the ACPI table involved
calling the BIOS, as described above. As a result, we had to calculate the SHA1 hash of multiboot modules
twice, once to store in the ACPI table from outside the secureloader, and once to extend PCRs from inside
the secure loader.

5.3 Personalized Computing Environments

Our prototype supports personalized computing environments through the use of migrateable Xen virtual
machines (VMs). The base software environment on our kiosk consists of the Xen hypervisor plus a manage-
ment VM running Linux. The mobile phone first determines if this environment is trustworthy by carrying
out the protocol in Figure 4 through Step 14. The phone then specifies to the management VM a user VM
to run, as per the protocol in Figure 6.

Our sample user VM runs the Fedora Core 6 Linux distribution.The VM’s suspended state consists of
three files: a configuration file that is used to start or resumeit, a file containing its main disk image, and
a file containing its swap disk image. The configuration file specifies that the two disk image files be used
in place of raw disk partitions. Having the user VM mount file systems and swap space directly from these
image files allows the VM to be easily migrated between Xen systems. For added portability, the three files
are encapsulated in an encrypted compressed archive. The size of this archive is 104MB for our sample user
VM that uses 1GB of uncompressed disk space.

Upon receiving from the phone the URL and decryption key for the archive containing a suspended VM,
the management VM fetches the archive, decrypts it, and uncompresses it. Finally, the management VM
resumes the user VM, thus making available to the user a complete personal computing environment, in-
cluding an operating system, applications, settings, and data. Many performance improvements are possible
on this basic proof of concept. The emphasis of this work has been on resolving the trust issues surrounding
the use of personal virtual machines on public hardware.

13

6 Discussion

6.1 Kiosk-in-the-Middle Attack

The kiosk in front of the user, or local kiosk, could run malicious software that relays data between the
mobile device and a second, remote kiosk. The remote kiosk could run and attest to the intended software
stack, thus fooling the device into trusting the local kiosk. The local kiosk could then snoop on and misuse
personal data. This problem is similar to the chess grandmaster problem [2]. To prevent this attack we need
to ensure that the TPM quote was signed by the AIK of the TPM inside the local kiosk.

As described in Section 4.3.1, our solution to this problem is to capture a barcode that encodes the SHA1
hash of the AIK using the camera of the mobile device [19]. Thedisadvantage of this approach is that it
may not be difficult to fool the user into capturing a falsifiedbarcode. Here we explore alternate solutions.

A user could carry a portable TPM with a known AIK. Before initiating the trust-establishment protocol,
the user could attach the TPM to the kiosk via a physical connection (e.g., USB). When loading software,
the kiosk would extend the same measurement into both TPMs. This would allow both the mobile device
and kiosk supervisor to obtain a quote from a TPM with a known AIK. This approach would require both
driver and hardware support. Molina et al. [20] also proposethe use of a mobile TPM. In their architecture,
the core root of trust of the mobile TPM is measured in the permanent TPM. We envision that the two TPMs
act independently and in parallel.

Alternatively, we could bind a secure channel (e.g., SSL or IPSec) to the signing key of the TPM pur-
porting to be in the local kiosk [12]. After receiving a signed attestation from that TPM, we know that the
software stack running on the other end of the secure tunnel is trustworthy. At this point, the phone can gen-
erate a secret, display it on the phone’s display, and transmit the secret over the secure tunnel. The software
on the other end of the tunnel may also display the secret. Theuser must then compare the secret shown on
the display of her phone to that displayed on the kiosk. If they match, we can assume that the TPM that is
bound to the secure tunnel is located within the local kiosk.Since the phone verifies the trustworthiness of
the kiosk software prior to transmitting the secret, we can assume that the kiosk will not willingly give away
the secret.

6.2 Reboot-between-Attestations Attack

A kiosk could reboot and run malicious software after attesting to its software integrity but before the user
reveals personal data. The malicious software could then misuse the personal data. Even if the user or
owner repeats the attestation request, a time window would remain during which the kiosk could reboot into
and out of malicious software without being detected. The problem is not to be confused with the problem
where, between reboots the system could be in a malicious state and violate the integrity or confidentiality
of the VM data. This is countered by using encrypted file systems (see Section 4.3.6). The problem is that
the user sitting in front of the kiosk would inadvertently enter potentially confidential data into a malicious
system or accept counterfeit output from a malicious systemduring such a phase. To solve this problem we
need to ensure that the kiosk has not rebooted between the time of attestation and the time of use by the user.

We have submitted to the Trusted Computing Group several extensions to current TPM standards that
would enable remote parties to detect reboots between attestations [13]. One possibility is to incorporate
a monotonically increasing reboot counter in the TPM quote structure that is signed inside the TPM. This
way, if the reboot counter value in the quote of two succeeding attestations is the same, we are sure that the
difference in the measurements describes all new software that was loaded between those attestations. Any
reboot would lead to an increase in the counter value, detectable during the verification of the quote in the

14

second attestation.
Finding a good balance between the overhead of frequent attestation (computing the quote signature

inside the hardware TPM takes a comparably long time) and thetime during which a system could be com-
promised unnoticedly is difficult. This problem is not specific to the kiosk scenario, and must be resolved to
enable the safe use of remote attestation in general.

6.3 Boot Prior to User’s Arrival

In Section 4.3.4, we require that the kiosk reboot as part of the trust-establishment process. As the TPM
provides only load-time guarantees of integrity, this approach offers the greatest degree of security by min-
imizing the time between measurement and use. However, thisstep is extremely time-consuming, and will
likely be unacceptable when the kiosk is used for short transactions.

In such situations, it may be acceptable to boot the kiosk into the most likely configuration prior to the
user’s arrival. If this configuration meets the needs of the user, the phone could skip Steps 7–9 of Figure 4.
Steps 10–14 would still verify the integrity of all loaded software, but the guarantee provided by these steps
would be weaker because the software has been running for longer. Currently, the TPM does not provide
a means of securely determining when kiosk booted—this functionality would allow the phone to place a
bound on the uptime that it considers to be secure.

The reboot in Step 16 must still occur to ensure that any sensitive data stored unencrypted in volatile
memory is erased. The time consumed by this reboot is less critical because it does not occur while the user
is waiting.

7 Related Work

Surie et al. [30] propose Trust-Sniffer as a means of establishing trust in transient hardware (which we refer
to as a kiosk). Trust-Sniffer consists of a small software root of trust that the user provides via a USB flash
drive. The kiosk boots from the flash drive, and the software root of trust validates the operating system
present on the kiosk before booting it. Trust-Sniffer uses IMA to measure software before it is loaded, and
will only allow the load to continue if the software is present in the measurement database found on the flash
drive. Trust-Sniffer emphasizes the security gains possible from a simple low-cost flash drive. In contrast,
the user in our system is equipped with a much more powerful smartphone, which allows us to achieve
stronger security guarantees. Specifically, Trust-Sniffer must trust the BIOS and is susceptible to the attack
in which the entire Trust-Sniffer environment is booted within a rogue virtual machine monitor. Our system
establishes a dynamic root of trust to exclude the BIOS from the trusted computing base and uses the TPM
to detect the rogue virtual machine monitor attack. Additionally, our system emphasizes the ability to load
a personalized computing environment on the kiosk in a way that provides security guarantees to both the
user and kiosk owner.

Sinclair and Smith [28] introduce PorKI, which allows the user to perform private key operations on
machines of varying trustworthiness. The user’s mobile device maintains the user’s private key, and uses
it to temporarily delegate authority to a short-lived keypair known to the machine in question. The trust-
worthiness of this machine is explicitly encoded in a credential signed by the system administrator, which is
factored into the decision of a remote party to trust operations that use the temporary private key. In contrast,
our system verifies the load-time integrity of the software running on the machine, which we feel provides a
stronger security guarantee. Furthermore, our system considers the confidentiality of general user data (e.g.,
a VM) in addition to private keys.

15

Asokan et al. [4] investigated the problem of authenticating public terminals with trusted servers, i.e.,
those of credit-card companies. They propose authentication schemes for establishing a secure channel
between a kiosk and a server to prevent information leakage through the network. Our work extends theirs
by verifying the software loaded on the kiosk. Our goal is to avoid revealing private information to possibly
corrupted software.

Arbaugh et al. [3] propose an architecture forsecure boot, in which each layer in the software stack
is measured and compared to an expected value before it is loaded. If the software is not as expected, the
architecture attempts to recover by obtaining the correct version of the software from either local backup or
a trusted third party. Thus a machine will not boot using compromised software. In contrast, we adopt the
trusted bootapproach, in which the boot process merely measures each software component as it is loaded.
Compromised software will be detected when the machine usesthe TPM to attest to its software stack.

Brands et al. [7] proposedistance-bounding procotolswhere the time delay between two communication
parties is used to bound the physical distance of the two parties. The approach is not accurate enough to
distinguish the cheating party from the honest party when they are physically close to each other, as in the
kiosk scenario.

We utilize the work of McCune et al. [19] to securely obtain the public key of a wireless device (a kiosk
in our case). Saxena et al. [25] suggest optimizations that reduce the bandwidth necessary of the visual
channel to the point where a blinking LED may be used in lieu ofa barcode. Controlling this LED through
software, however, enables potential software-based attacks not possible with a fixed barcode. Stajano and
Anderson [29] accomplish similar objectives through the use of physical contacts. While less susceptible to
physical tampering, their approach requires hardware thatis not commonly available on commodity mobile
devices.

For devices that communicate exclusively over a wireless medium, probabilistic channel hopping [2]
greatly increases the number of channels that must be relayed to perform a man-in-the-middle attack. How-
ever, this solution does not work as well in systems where oneparty (e.g., a kiosk) has vastly greater re-
sources than another (e.g., a mobile phone).

Naor and Pinkas [21] prove that data may be securely transmitted to a human equipped with nothing
more than a secret, pre-printed transparency. We are also concerned with protecting the secrecy of any data
that the user provides to the kiosk.

In this paper, we assume that the user’s personal device is trustworthy. Pfitzmann et al. [23] explore the
many challenges of using a mobile device in a security-sensitive setting. Some of the issues they disscuss
are relevant to the security of the mobile device in our kioskscenario.

8 Conclusion

We present the design of a system in which a user’s mobile device serves as a vehicle for establishing trust
in a public computing kiosk by verifying the integrity of allsoftware loaded on that kiosk. This process
leverages several emerging technologies, namely the Trusted Platform Module, Integrity Measurement Ar-
chitecture, and new x86 support for establishing a dynamic root of trust. Our system balances the desire of
the user to maintain data confidentiality against the desireof the kiosk owner to prevent misuse of the kiosk.
We demonstrate the viability of our approach through implementation, and show how our system supports
the resumption of a user’s personal virtual machine on the kiosk.

16

References

[1] Integrity Measurement Architecture Implementation. http://sourceforge.net/projects/linux-ima.
[2] A. Alkassar, A.-R. Sadeghi, and C. Stüble. Secure object identification - or: Solving the chess grandmaster

problem. InProc. of New Security Paradigm Workshow (NSPW), 2003.
[3] W. Arbaugh, D. Farber, and J. Smith. A Secure and ReliableBootstrap Architecture. InProc. of IEEE Symposium

on Security and Privacy, 1997.
[4] N. Asokan, H. Debar, M. Steiner, and M. Waidner. Authenticating Public Terminals.CompNet, 31(8), 1999.
[5] L. Bauer, S. Garriss, J. M. McCune, M. K. Reiter, J. Rouse,and P. Rutenbar. Device-enabled authorization in the

Grey system. InInformation Security: 8th International Conference, ISC 2005, volume 3650 ofLecture Notes
in Computer Science, pages 431–445, September 2005. An extended version of thispaper appears as CMU
Computer Science Department Tech Report 05-111.

[6] S. Brands. Untraceable off-line cash in wallet with observers (extended abstract). InAdvances in Cryptology –
CRYPTO ’93, Lecture Notes in Computer Science, 1993.

[7] S. Brands and D. Chaum. Distance-bounding protocols (extended abstract). InTheory and Application of
Cryptographic Techniques, pages 344–359, 1993.

[8] E. Brickell, J. Camenisch, and L. Chen. Direct AnonymousAttestation. InProc. of ACM Conference on Com-
puter and Communications Security, 2004.

[9] R. Cáceres, C. Carter, C. Narayanaswami, and M. T. Raghunath. Reincarnating PCs with Portable SoulPads. In
Proc. of ACM/USENIX Conference on Mobile Computing Systems, Applications, and Services, 2005.

[10] Advanced Micro Devices. Secure Virtual Machine Technology. http://www.amd.com/.
[11] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and X. Zhang. Towards Trustworthy Kiosk Computing.

In Proc. of 8th IEEE Workshop on Mobile Computing Systems and Applications (HotMobile), 2007.
[12] K. Goldman, R. Perez, and R. Sailer. Linking Remote Attestation to Secure Tunnel Endpoints. InProc. of 1st

ACM Workshop on Scalable Trusted Computing, 2006.
[13] K. Goldman and R. Sailer. Making reboot between TPM attestations visible. TCG standards discussions, 2006.
[14] Trusted Computing Group. Trusted Platform Module. https://www.trustedcomputinggroup.org/.
[15] Intel. Trusted Execution Technology. http://www.intel.com/technology/security/.
[16] B. Kauer. OSLO - The Open Secure LOader. http://os.inf.tu-dresden.de/ kauer/oslo/.
[17] S. T. King, P. M. Chen, Y. M. Wang, C. Verbowski, H. J. Wang, and J. R. Lorch. SubVirt: Implementing Malware

with Virtual Machines. InProc. of 2006 IEEE Symposium on Security and Privacy, 2006.
[18] M. Kozuch and M. Satyanarayanan. Internet Suspend/Resume. InProc. of IEEE Workshop on Mobile Computing

Systems and Applications, 2002.
[19] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing is Believing: Using Camera Phones for Human-Verifiable

Authentication. InProc. of IEEE Symposium on Security and Privacy, 2005.
[20] J. Molina, H. Lee, S. Lee, and Z. Song. A Mobile Trusted Platform Module (mTPM) Architecture. InProc. of

2nd Workshop on Advances in Trusted Computing (WATC06), 2006.
[21] M. Naor and B. Pinkas. Visual authentication and identification. Lecture Notes in Computer Science, 1294,

1997.
[22] Legion of the Bouncy Castle. Bouncy Castle LightweightCryptography API. http://www.bouncycastle.org/.
[23] A. Pfitzmann, B. Pfitzmann, M. Schunter, and M. Waidner. Trusting mobile user devices and security modules.

IEEE Computer, 30(2):61–68, February 1997.
[24] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a TCG-based integrity measure-

ment architecture. InProc. of USENIX Security Symposium, 2004.
[25] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure Device Pairing Based on a Visual Channel

(Extended Abstract). InProc. of IEEE Symposium on Security and Privacy, 2006.
[26] D. Scott, R. Sharp, A. Madhavapeddy, and E. Upton. Usingvisual tags to bypass Bluetooth device discovery.

Mobile Comp. and Comm. Review, 1(2), January 2005.
[27] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying Integrity and Guaran-

teeing Execution of Code on Legacy Platforms. InProc. of ACM Symposium on Operating Systems Principles,
2005.

17

[28] S. Sinclair and S. Smith. PorKI: Making User PKI Safe on Machines of Heterogeneous Trustworthiness. 2005.
[29] F. Stajano and R. Anderson. The Resurrecting Duckling:Security Issues for Ad-hoc Wireless Networks. In

Security Protocols Workshop, 1999.
[30] A. Surie, A. Perrig, M. Satyanarayanan, and D. Farber. Rapid Trust Establishment for Transient Use of Unman-

aged Hardware. InTechnical Report CMU-CS-06-176, 2006.

18

