RC24169 (W0702-003) February 2, 2007
Computer Science

|BM Resear ch Report

Trustworthy Personalized Computing on Public Kiosks

Scott Garrisst, Ramon Cacer es?, Stefan Berger?, Reiner Sailer?,
L eendert van Door n3, Xiaolan Zhang?

'Carnegie Méellon University
Pittsburgh, PA

’IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Y orktown Heights, NY 10598

SAMD
Austin, TX

—=—=—=—=2= Research Division
£ S= 555 Almaden- Austin - Beijing - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

Trustworthy Personalized Computing on Public Kiosks

Scott Garris§' Ramon Cacerés Stefan Berger
Reiner Sailet Leendert van Doorh Xiaolan Zhang
Carnegie Mellon University IBM T.J. Watson Research Center AMD?
Pittsburgh, PA, USA Hawthorne, NY, USA Austin, TX, USA
Abstract

We present a system in which a user leverages a personalentlaviice to establish trust in a public
computing device, okiosk prior to revealing personal information to that kiosk. Wevé designed and
implemented a protocol by which the mobile device determthe identity and integrity of the software
loaded on the kiosk. A similar protocol allows a kiosk owrnewerify that the kiosk has loaded only
approved software. Our system combines a number of emesgicigrity technologies, including the
Trusted Platform Module, the Integrity Measurement Aretiitire, and new support in x86 processors
for establishing a dynamic root of trust. We focus on allaggvthe user to personalize the computing
environment on the kiosk by running his own virtual machine.

1 Introduction

Public computingiosks such as a rental computer at an Internet café, have beconmaa@nplace and their
numbers are likely to increase as computing finds its way nméoe people’s lives. Kiosks are attractive
because they free people from the need to carry a fully fedtcomputing device such as a laptop computer.
A particularly compelling service that a kiosk could prawit to allow a user to resume a personalized
computing environment that includes her choice of softwaaré data. However, a problem with current
kiosks is that the user must assume that a kiosk is perforomhgits intended function, or more specifically,
that it has not been compromised by an attacker. A comprahkigsk could harm the user in many ways,
for example, by stealing private data. Similarly, the owoka kiosk wants to ensure that the kiosk is not
used to perform malicious acts for which he may be liable.

This paper presents a system in which a user leverages wadigjfit personal mobile device, such as a
smartphone, to gain a degree of trust in a kiosk prior to ugirlg the context of computer systems, trust is
the expectation that a system will faithfully perform itédnded purpose. We refer to a kiosk as trustworthy
if we can verify the identity and integrity of the softwareatbed on that kiosk. Our system aims to prevent
software attacks on the kiosk; detecting hardware modificatis an open problem. Software attacks such
as keystroke logging are far more common and an importaeathn their own right. We assume that the
personal device is a priori trustworthy. Securing mobileicks is itself an important research area, but we
do not address it in this work except to point out that somdnefttust establishment procedures we apply
to kiosks may also apply to mobile devices.

In this context we have designed a protocol by which the neatiélvice establishes that the kiosk has
loaded only trustworthy software. Only after this protobak successfully completed will the user reveal

*This work was done during a graduate student internshiptTB). Watson Research Center.

personal information, such as credit-card data, to thekki@3ur system also uses a similar protocol by
which a supervisor machine, acting on behalf of the kiosk @wwerifies that the kiosk has loaded only
approved software. If unapproved software is found, theesvean take action to disable the kiosk by, for
example, removing it from the network.

Our system brings together a number of emerging securityntdogies. We utilize new x86 processor
support for establishing a dynamic root of trust on commpocitmputing platforms that incorporate AMD’s
Secure Virtual Machine Technology [10] or Intel’s TrustexeEution Technology [15]. In addition, we use
the Trusted Platform Module (TPM) [14] together with thedigutity Measurement Architecture (IMA) [24]
to provide both user and owner with proof that only trustiwgrsoftware has been loaded on the kiosk.

We focus on using virtual machine technology to allow ther tiseun personal software on the kiosk.
Running her own virtual machine on a kiosk provides the ustr ascomplete and personalized computing
environment, much as if she was using her own physical macoulPad [9] and Internet Suspend/Resume
(ISR) [18] are two mobility solutions based on running useisual machines on stationary host comput-
ers such as kiosks. The work presented here resolves impantest issues left open by those previous
approaches. Namely, our use of integrity attestation abuteis blind trust in any software component on
the host PC, including the BIOS. Our use of a hardware rootust &also prevents the otherwise difficult
to detect attack where a rogue virtual machine monitor r@hewan unsuspecting operating system [17].
Additionally, the virtual machine monitor provides the &koowner with a means to detect and isolate user
virtual machines that are performing illicit activity.

We have implemented our trust establishment proceduresg alith the overall system to demonstrate
the viability of our solution. Our prototype, depicted irgkre 1, uses a commercially-available smartphone
as the personal device, a commadity PC as the kiosk, and toBthewvireless link to communicate between
them. We use a second PC as the supervisor machine connetiedkiosk via the wired Internet.

The main contribution of this work is the experimental
demonstration of a system for trustworthy kiosk computing User Kiosk
that combines the security and virtual machine technosogie i

>
Mobile
Device %

mentioned above. In an earlier position paper [11], we pre-
sented a preliminary design and implementation, and identi

fied a number of open issues. This paper improves on that
earlier work on several fronts. One, we prevent a kioskag-t

middle attack by cryptographically binding the messagé tha E
attests software integrity to the particular kiosk in frofthe ﬁ =
user. Two, we create a secure channel between the device and

the kiosk by exchanging an encryption key generated for thisKiosk Supervisor Internet
session. Three, we add the ability to securely resume a USerFigure 1: Kiosk computing scenario
specified virtual machine on the kiosk by having the device

provide the kiosk the location and decryption key of theudltmachine image.

The rest of this paper is organized as follows. Section 2sgareoverview of the experience of using
our trustworthy kiosk computing system. Section 3 provideme technological foundations necessary
to understand the rest of the paper. Sections 4 and 5 présedesign and implementation of our trust
establishment procedures. Section 6 discusses open @msdidsture work. Finally, Section 7 summarizes
related work.

nnnnnnnn

£y

Collect Kiosk Choose Kiosk Establish Trust Submit VM Work Clean Up
Identity Configuration in Kiosk to Kiosk with Kiosk Kiosk
[>
Time

Figure 2: Timeline for secure kiosk use

2 User Experience

To provide context for the rest of this paper, we begin withogarview of how a user interacts with our
trustworthy kiosk computing system. We believe this int&oa is simple enough that it does not put an
undue burden on the user while providing important sectuitigtionality. Later sections of this paper will
detail what the system does behind the scenes during teigation.

Figure 2 shows a timeline of the steps a user follows aftgrpétg up to a kiosk that she intends to
use. First, she makes the identity of the kiosk known to hesilaghone. We propose for kiosk owners to
display a numerical identifier on the outside of the kioskandode form. The user captures the contents of
the barcode using the digital camera available on moderngshi9].

Second, the phone presents the user with a list of softwarkgcmations available on the kiosk. Fig-
ure 3(a) is an example of a mobile phone screen that predeags thoices to the user. In this example,
there are two choices, a personalized computing envirohtodse provided by the user, or a standard set
of applications provided by the kiosk owner. The user seldoe configuration she wants to use, and the
phone forwards the choice to the kiosk.

Third, the user simply waits while the phone and kiosk camy the rest of our trust establishment
protocol, which we will describe in detail in Section 4. Atetltompletion of this protocol, the phone
announces to the user that the kiosk is either untrustwasthiyustworthy. Figures 3(b) and 3(c) show
examples of these two cases. If the kiosk is declared umtantty, the user can walk away before divulging
any personal information to the kiosk. If the kiosk is deethtrustworthy, the user can proceed to use the
kiosk.

Fourth, Figure 2 depicts what we consider to be a partigutasinpelling example of kiosk computing,
namely when the user runs a personal virtual machine on trekkiVirtual machines enable users to run
complete and highly customized computing environments wita range of hardware machines, including
public kiosks. However, a virtual machine can contain atgdeal of personal information, and therefore
the user should only run virtual machines on trustworthyskso Figure 3(d) shows a mobile phone screen
that gives the user a choice of virtual machines to run on tbgkk This step is unnecessary if the user
earlier chose to use standard software provided by the kiss&ad of a personalized environment.

Fifth, the user proceeds to work on the kiosk. Finally, theraisconnects from the kiosk, which triggers
cleanup operations to make the kiosk ready for the next user.

Choose kiosk ® g &= . * Choose m)
X =3 configuration: x4 Kiosk Tool x4 Kiosk Tool g Envirunmgnt:
[b [b
My environment |i"iy environment My environment Home
Public apps Public apps Public apps Work
I
Kiosk is NOT ’ﬁ Kiosk is -i
trustworthy! L trustworthy! b
Select oK oK Select

(@) (b) (©) (d)

Figure 3: Mobile device screens seen by a user when integaaiith a kiosk

3 Background

Trusted Platform Module (TPM): The TPM [14] is a hardware component that is increasinglylaivie

in personal computers and servers. It provides a varietyeofirity functions, including cryptographic
primitives such as signatures and secure storage for smalliats of data such as cryptographic keys. The
TPM is resistant to software attacks because it is impleetkinthardware and presents a carefully designed
interface.

Especially notable is the TPM'’s ability to store cryptodraphashes, omeasurement®f loaded soft-
ware components in a set of Platform Configuration Regige@Rs). PCRs are initialized at boot time
and may not be otherwise reset, with one important excepiésaribed below. They may only be modified
via theextendoperation, which takes an input value, appends it to thdiegisalue of the PCR, and stores
the SHA1 hash of the result back in the PCR. The cryptograptuperties of this operation state that it is
infeasible to reach the same PCR state through differentes®gs of inputs. A single PCR can thus store an
aggregate representation of an arbitrary sequence ofa@twomponents. This technique allows the TPM
to guarantee the load-time integrity of running softwardisTis sufficient to detect the execution of mali-
cious software (e.g., spyware or a keyboard logger), but Bid cannot detect compromises, such as buffer
overflow attacks, that occur after software is loaded. Rliogi strong run-time guarantees is challenging,
and is an area of active research (cf. [27]).

Each TPM has a variety of associated keys; we limit our disionsto the asymmetric Attestation Iden-
tity Key (AIK). The TPM generates this keypair, and stores finivate key in internal protected storage.
The private AIK is used to sign quotes that attest to the otistate of the TPM's PCRs. The public AIK
is included in an AIK certificate that is signed by a certificatauthority. An AIK certificate thus provides
a binding between a public key and a certified-legitimate TPdft privacy reasons, a TPM may have mul-
tiple AIKs, but one is sufficient for the kiosk in this paperhdéreliance on a certification authority is a
commonly perceived weakness of current TPM implementati®irect Anonymous Attestation (DAA) [8]
obviates this reliance and has been adopted by the reletzanitasds body, but is not available in current
TPM implementations. Our system may incorporate DAA ascbloges available.

Integrity Measurement Architecture (IMA): The TPM may be used to achietrasted bootwhere mea-
surements stored in PCRs are used to verify that the loadedase stack meets expectations. IMA [24]
extends trusted boot by additionally measuring applicatiand configuration files. IMA maintains in soft-
ware ameasurement listontaining a text description and the corresponding hakrevaf each software

4

component that has been measured into the TPM.

IMA further provides arattestation protocothat allows a remote IMAhallenger(also called aerifier)
to challenge the integrity of an IMA platform. The challendiest sends an attestation request to the IMA
attestation serverwhich then replies with the current measurement list, @laith a quotecontaining an
aggregate of the current PCR values, signed by the TPM. Thigevéhen uses the measurement list to
replay the sequence of PCR extend operations and verifythlatesulting aggregate PCR value agrees
with the signed quote. Finally, the verifier compares the susament list to aneasurement databasé
known software, thus verifying the identity and integritiysoftware on the challenged system. The IMA
attestation protocol is described in Section 4.3.5 withmd¢ontext of our trust establishment protocol. The
measurement database used by the verifier must be maintidetistributed by a trusted third party, such
as a software vendor, who verifies the trustworthiness ofstfewvare identified in the database. In our
scenario, the database need only include software fourerifec kiosk configurations.

Dynamic Root of Trust for Measurement (DRTM): As mentioned, general PCRs are initialized at boot
time and cannot be reset. Trusted boot uses these PCRsHtiskstestaticroot of trust, which must include

all software loaded since boot, starting with the BIOS. Réegtensions to the x86 architecture support the
establishment of dynamicroot of trust by allowing a special PCR (PCR 17) to be resengttene by a
special CPU instructiorskinit in AMD processors aneenter in Intel processors. This instruction takes as
input a 64KB section of code known as thecure loaderand places the processor in an init state (which
disables interrupts and guarantees atomicity). The icstmu then resets PCR 17, measures the secure
loader, extends PCR 17 with this measurement, and traresdateol of the processor to the secure loader.

4 System Design

Each of the above technologies offer distinct benefits inoglkicomputing scenario and are available on
commodity hardware. The TPM provides a root of trust thamiglemented in hardware and is thus resilient
to many common software attacks. IMA allows the kiosk to ueftinctionality of the TPM to prove to
the user’s phone that the kiosk has loaded a particular acétatack. A difficulty in using IMA is that the
verifier (the phone in our scenario) must have a databasasdgelich it can reference all software loaded
by the kiosk—our decision to establish a dynamic root ofttisisnotivated by this problem.

In the general case, this database would need to includel®8,Bhe operating system or hypervisor,
and any applications that the computer may run. Constmiidatabase a priori that would be sufficient
for establishing trust in any given general purpose computild clearly be a daunting task. However, an
application-specific kiosk (such as an airline check-imiaal) will have dramatically fewer applications
and only a few operating system versions. If the user prevadpersonalized computing environment, the
database need not include any applications at all. Thuselie/k it is reasonable to expect that the database
contain any software the kiosk will load modulo the BIOS. pitssbeing a small and relatively stable, the
BIOS poses a unique challenge in that it varies widely betweachines. Rather than include the BIOS of
each potential kiosk in our measurement database, we retin@BiOS from the trusted computing base by
establishing a dynamic root of trust after the BIOS is load®@®S measurements may therefore be omitted
from the database entirely.

The phone will likely delegate the creation of the databasa trusted third party, who will sign the
database and any updates to guarantee their integrity. Adreecould periodically contact the trusted third
party to obtain updates. Alternatively, the kiosk couldsera the phone with a database signed by the

trusted third party that includes the software installedt@nkiosk. This would allow the phone to obtain
measurements as needed, but without requiring the trusiredddiarty to be online.

4.1 System Components

As shown in Figure 1, our system consists of a user carryingl@ledevice, a kiosk, and a kiosk supervisor.
The mobile device runs an application that aids the usermartsining the trustworthiness of the kiosk. This
application incorporates an IMA verifier. The kiosk is a PQipged with a DRTM-enabled processor and
a TPM. If the kiosk supports personalized computing envirents, it will run a hypervisor, otherwise a
standard operating system will suffice. The kiosk will agadially run an IMA attestation server and a thin
kiosk front-end for talking to the mobile device. The kiogkpervisor may be any platform capable of
running an IMA verifier.

4.2 Goals, Assumptions, and Threat Model

Goals We aim to address the concerns of two parties: the user arkidblke owner. The user's goal is
to protect the confidentiality of her data. This includesueimg that the data is transmitted to the kiosk in
secrecy, that the kiosk software will not reveal the datd,taat the data cannot be extracted from the kiosk
after the user has left. The goal of the kiosk owner is to deteg misuse of the kiosk (e.g., launching a
denial of service attack) so that appropriate action mapbkert

Assumptions Our trusted computing base includes the hardware and seftarathe mobile device as
well as the hardware on the kiosk. Verifying the hardwaregnty of a platform is an open problem, and as
a result, we must assume that the hardware on the kiosk hagentsubjected to physical tampering.
This condition implies that we also assume that the barctided to the kiosk has not been modified
and properly encodes the certificate corresponding to their\use by the TPM of the kiosk. Capturing
a barcode is an attractive method of obtaining the identitthe kiosk because of the simplicity of the
user’s action, but it is secure only if the integrity of therdzade is guaranteed. Tamper-evident barcodes
(e.g., barcodes etched in glass) will mitigate the sevetthis problem, but users must remain diligent.
Alternative approaches to obtaining the public AIK of thed’'s TPM are discussed in Section 6.1.
Furthermore, we also assume that the phone is in possedsibe public key of a trusted third party.
This third party may then certify the public keys used to sagy measurement databases and AIK creden-
tials that the phone receives.

Threat Model Our system aims to protect the confidentiality of the usatadh an environment where an
attacker is located in close physical proximity to the kicahd may evesdrop on or inject messages into any
wireless communication between the mobile device and thekkiThe attacker may have unfettered access
to the kiosk before the user arrives and after the user ldavdading knowledge of the root password), and
has computational and communication resources roughiyagut to that of a desktop PC (i.e., insufficient
to break any underlying cryptographic primitives). Theekier may not modify the hardware of the kiosk
in any way. We note that this definition considers the kioskeman attacker as well.

The kiosk owner is concerned with attackers who have phlyamzess to the kiosk, may run arbitrary
programs on the kiosk, and may boot the kiosk from a portablage device.

Mobile Device Kiosk
hash(AIK Certificate) via camera

AIK Certificate

Compute hash(AIK Certificate)
Check that hashes match

Verify AIK Certificate
Authentication protocol (optional)

4

5 User is authorized

6 Supported configurations

7 Selected configuration

8 Reboot sequence
Generate keypaik , K !
Create self-signed certificate
MeasureC into TPM

9 Done,C

10 IMA attestation request, nonce

11 Generate IMA quote:
h —has{PCRy||...||[PCRN)
q < sig{h|lnoncg arx,,,,,

12 IMA measurement list, TPM signed quaje

13 Verify quote with AIK from (2)
Verify C in measurement list
14 Kiosk is trusted

15 Personal data encrypted under

16 User works with kiosk...
User is done
Cleanup

Reboot sequence

Figure 4: Trust-establishment protocol between mobileagesnd kiosk

4.3 Trust Establishment Protocol

Figure 4 presents our protocol for establishing trust inaslki The protocol roughly consists of six phases.
In the first phase (Steps 0-3), the phone obtains the pubfithet can be used to verify attestations from
the kiosk’s TPM. In the second phase (Steps 4-5), the phamemtgrates to the kiosk that it is authorized
to use the kiosk. In the third phase (Steps 6-7), the phondiask decide which software configuration
the kiosk should boot. In the fourth phase (Step 8), the kiesloots, establishes a dynamic root of trust,
and loads the desired software. In the fifth phase (Steps) SthEdphone utilizes the IMA protocol to verify
the integrity of the kiosk’s software using the public keytaobed in the first phase. If this succeeds, the
phone will deem the kiosk trustworthy, and continue to thalfphase, in which the user interacts with the
kiosk (Steps 15-16).

4.3.1 Obtain the public key of the kiosk

Establishing secure communication between two wireleggee is challenging because the user has little
evidence indicatingvhich device is on the other end of the connection. The solution deptis that of

McCune et al. [19] in which the visual channel provided by piwne’s camera is used to securely obtain
the public key of the kiosk. First, the user photographs adme affixed to the kiosk (Step 0). This barcode
encodes the hash of the Attestation Identity Key (AIK) dmexdite of the kiosk. The AIK certificate includes
the public AIK, which is the key that the kiosk's TPM will use sign integrity measurements later in the
protocol.

After capturing the barcode, the phone will initiate thetpool with the kiosk (Step 1). The kiosk then
transmits its AIK certificate over the wireless channel ®phone, who compares the hash of the certificate
against the one obtained from the barcode.

Having checked that the AIK certificate matches the barctheephone will then verify the certificate’s
signature. If the certification authority that signed thdifieate is unknown to the phone, the phone must
first gain trust in the certification authority’s public kéyrdugh some form of public-key infrastructure. This
step is intrinsic to any application based on current TPMleamentations. Verifying the AIK certificate
allows the phone to conclude that the AIK was generated byt#ied-legitimate TPM. At the conclusion
of this phase, the phone knows the kiosk’s TPM is legitim#talso knows the public AIK that the kiosk’s
TPM will use to sign integrity measurements.

4.3.2 Demonstrate authority to use the kiosk

In scenarios where kiosk use is restricted to certain iddizis (e.g., paying customers), Step 4 allows the
user to demonstrate authority to use the kiosk. Since th&kkinot yet trusted, this scheme should not
reveal private information about the user. Anonymous padgfayment [6] is one possibility. Free public
kiosks may omit Steps 4 and 5. At the conclusion of this phémsekiosk has determined that the user is
allowed to use the kiosk.

4.3.3 Select desired configuration

In Step 6, the kiosk informs the phone of the valid configoratithat it may boot. The objective is for the
phone to select a configuration that allows the user to parfogr intended action and consists of software
that the phone knows to be trusted. If these configurationsrapass different use cases (e.g., the kiosk
may boot a hypervisor or a standard set of public applicajiahe phone must query the user to determine
the desired use case. Other configuration differences padicular Linux kernel versions, may be selected
by the phone without user interaction.

If the phone’s database of trusted software does not comeasurements for all of the software included
in the selected kiosk configuration, the phone may attemgibtain an updated database signed by a trusted
third party via the cellular network or directly from the kloitself. After Step 7, the phone and the kiosk
have agreed on a configuration that, if booted correctlyptimne will trust.

4.3.4 Reboot

Figure 5 shows the boot sequence for our kiosk, which differs a standard boot sequence by the addition
of Steps 2 and 3. Step 2 executes $kiit instruction to establish a dynamic root of trust and extend a
designated PCR with the digest of the secure loader. Coofrtiie processor is then transferred to the
secure loader (Step 3), which extends a PCR with the digetsteofelevant hypervisor and/or OS kernel
files. The secure loader then starts the hypervisor and/é-éiabled kernel, which continues the boot
process by measuring each successive component befonegoad

Reboot
Run BIOS and Boot Loader

The BIOS and boot loader are removed from the trusted computi 0
1
2 Establish DRTM
3
4

base by establishing a dynamic root of trust after they saddd. Care
must be taken to ensure that the loaded BIOS and boot loaderace not
referenced again—Section 5 explains how this was accohgulis The
boot loader is used merely to read the relevant kernel filas nmem-
ory; including file system and storage device support in el loader __Figure 5: Reboot sequence
would significantly increase the size of this securityicaikt component.

After the kiosk boots, it generates a new keypair that withalthe phone to encrypt secrets destined for
the kiosk. The kiosk includes the public key in a self signedificate, and extends a PCR with the digest
of this certificate. If the phone eventually determines thatkiosk is trusted, this will imply that the kiosk
software will not divulge the private key. As the keypair engrated for this session only, the private key
need not be written to stable storage.

For some applications, the delay incurred by rebooting thekkmay be unacceptable. This delay can
be avoided by mandating a particular configuration and hgdhe kiosk before the user arrives. Section 6
discusses the security implications of this approach.

At the conclusion of this phase, the kiosk claims to have émohe configuration agreed upon in the
previous phase and generated a new keypair for this sessibthhe phone has not yet validated this claim.

Run Secure Loader
Run Hypervisor/OS

4.3.5 \Verify the integrity of kiosk software

When the reboot is complete, the kiosk will alert the phoné iaclude the self-signed certificate of the
newly-generated public key (Step 9) . The phone verifiesnitegrity of the software loaded in the boot
process using the IMA protocol [24] (Steps 10-12). Briefhe phone challenges the kiosk to produce a
guote signed by the TPM in Step 10. Step 11 depicts the creetithis quote. All relevant PCRs are hashed
together and signed along with the nonce from Step 10 by thé @i$ing the private AIK. The inclusion
of the nonce prevents the replay of a quote from a previous@esand the cryptographic properties of the
hash function prevent an alternative boot sequence fromuging the same value fdrin Step 11. The
kiosk provides the phone with the signed quote and a measumteint describing the boot sequence that
produced the final PCR values represented in the quote (3)ep 1

To verify that the quote is legitimate, the phone first vesifiee sighature on the quote using the public
portion of the AIK obtained in Step 2. The phone then replaigsseries of PCR extensions described in the
measurement list and computés—hasi{PCRy|| ... ||PCRy). Bothh’ and the nonce supplied in Step 10
must match the contents of the signed quote. Finally, the@kerifies that each software component in the
measurement list is trusted by referencing a database wofrktrasted software. The only measurement that
will not be in the database is the credentiatontaining the public key for this session. The phone must,
however, ensure thétis actually included in the measurement list.

The barcode captured in Step 0 binds the public portion oAtKgo the TPM in the machine physically
in front of the user. The signature on the quote and the cgypfihic properties of the hash function bind
the observed measurement sequence to the TPM holding thelédi&tibed above. The nonce in the quote
binds the quote to this session. From this, the phone carummithat the kiosk physically in front of the
user did in fact boot the reported software stack while thex wss physically present. By referencing all
loaded software against a database of trusted softwarphtivee can conclude that the kiosk is trustworthy
(Step 14). Atthe end of this phase, the phone trusts the kindks in possession of a public encryption key
K generated by the kiosk.

4.3.6 Use kiosk and cleanup

At this point, the phone encrypts any necessary secremniE#tion and sends it to the kiosk. This information
may be application-specific, e.g., payment methods, or it maude instructions for resuming a user’s
suspended virtual machine. The latter case is discuss#tefun Section 4.4. After using the kiosk for
some amount of time, the user will indicate that she is firdq{8tep 16).

At this point, we want to ensure that no personal data may toeved from the kiosk after the user
walks away. This personal data may reside in memory or onite’k disk. As it is difficult to ensure that
all state has been purged from memory, we require the kiosktioot. The kiosk’s operating system must
be configured to zero memory as part of its shutdown procelss.uSer may use visual indicators to gain
assurance that the kiosk rebooted, but in scenarios with sécurity requirements, the user could wait for
the reboot to complete and verify this with IMA.

In the case where the user uses a personalized computingrmént, this environment can operate
out of an encrypted file system [9]. Since we trust the so#war the kiosk, we trust that it will properly
maintain the key, i.e., it will not disclose it to a third padr write the key to disk. When the kiosk reboots,
the decryption key will be lost and along with it the conteotshe encrypted file system. If the user elects
not to use a personalized environment, and instead usegasefprovided by the kiosk, then cleanup is
more complicated. We believe that a similar solution canropleyed where all writeable partitions are
configured to use a file system that is encrypted with a keyrgega:for this session. We have not, however,
fully investigated this solution in the context of using keprovided software.

At the end of this phase, the user can conclude that the kio$nger possesses her personal data.

4.4 Personalized Computing Environments

We use virtual machine (VM) technology to support the impottcase where the user wishes to run a
personalized computing environment on the kiosk. InteBwtpend/Resume (ISR) [18] and SoulPad [9]
have shown how VMs can be used to run complete personal corgpevironments on kiosks. This
computing model is appealing because the user maintainsot@ver the choice of operating system,
applications, settings, and data inside her personal VM.

However, both the ISR and SoulPad efforts left unresolvedrtst issues that are the focus of this work.
With ISR, the user submits her personal virtual machine oimua complete hypervisor environment that
is already running in the kiosk. The Trusted Computing Ba%eR) in the ISR prototype thus includes
the BIOS, the boot loader, the Linux host OS, and the VMwarekélation virtual machine monitor. With
SoulPad the host boots directly from the SoulPad device, tlage:fore the TCB is limited to the BIOS.
However, a malicious hypervisor running on the kiosk cowldl the user into thinking she is booting her
SoulPad environment on raw hardware when in fact it is bgotnside a virtual machine vulnerable to
snooping from the hypervisor.

The trust establishment procedure presented earlier sskfrall these problems by using trusted com-
puting hardware to remove the BIOS and boot loader from thB,TaDd to present the user proof of the
identity and integrity of all other software loaded on thedk. We thus use the protocol described in the
previous section to verify that a kiosk is running a trustirprypervisor environment before a user allows
a personal VM to run on the kiosk. In this case, the personial dwealed to the kiosk takes the form of a
suspended virtual machine image. Figure 6 shows the spepdifiocol steps we use to securely resume a
user-specified virtual machine on the kiosk. These stepsttakplace of Step 15 in Figure 4.

In Step 1 of Figure 6, the mobile device sends to the kiosk a WReére the encrypted VM image can
be accessed. The image may reside on a network server asltBRhaodel, or be carried on the device

10

Mobile Device Kiosk
URL for encrypted VM image

Fetches VM from URL
Enc{Decryption keyKy s for VM image} x

AW NP

a. Decrypt VM image usind<yv ns
b. Load and resume VM

Figure 6: Protocol for resuming a user-specified virtual Inirae on a kiosk

itself as in the SoulPad model. In Step 2, the kiosk fetchatithage. In Step 3, the device sends the kiosk
the key with which to decrypt the image. This decryption keytself sent encrypted to protect it from
eavesdroppers on the wireless channel between the devldbekiosk. The channel encryption key is the
same one generated in Step 8 of the main trust establishmantpl shown in Figure 4. Finally, in Step 4
of Figure 6, the kiosk decrypts, loads, and resumes the VMj@na

4.5 Kiosk Supervisor

As stated previously, the goal of the kiosk owner is to detguen a kiosk is being used inappropriately.
In addition to any standard external monitoring mechaniéeng., intrusion detection systems), the kiosk
supervisor machine may also request quotes from the kiddRM to monitor which software has been
loaded on the kiosk. In the scenario where the user uses @di-krovided software, the kiosk supervisor
can reference all loaded software against a database miogtaneasurementes of known-trusted software.
In the scenario where the user runs a personalized VM, thais/ilikely to respond to attestation chal-
lenges from the kiosk supervisor for privacy reasons, aedefbre the supervisor can only ensure that a
trustworthy hypervisor environment is running on the kiogkis hypervisor environment can, however,
be configured to monitor the external behavior of the VM anspeud it should it misbehave. From the
standpoint of the kiosk owner, this approach is superion®ia which the user supplies the entire software
stack (e.g., Soulpad) because the hypervisor can be casdigodimit or prevent certain types of activities
that the owner deems inappropriate.

All monitoring activity must, however, be performed withdhe kiosk owner interactively logging on
to the kiosk. Allowing the kiosk owner to login as root whileetkiosk is in use would enable the owner
to obtain the confidential data of the user by, e.g., readiregtlly from physical memory. The kiosk boot
sequence should therefore be configured to disable remtarmative login. As configuration files are
measured by IMA, the user’'s phone can ensure that such lagséndeed disabled as part of the trust
establishment protocol. When the user leaves, the kioslboahan alternative “idle” boot sequence that
allows the kiosk owner to log in and perform routine maintez@a If the kiosk fails to revert to that idle
configuration, the owner can gain physical access to theitis& lknd reboot it manually.

5 Prototype Implementation

Our prototype comprises three parties shown in Figure 1: bilendevice, a kiosk, and a kiosk supervisor.
Our mobile device is a Nokia N70 smartphone with GSM/GPRSEIndtooth wireless connectivity. The
smartphone is a Symbian Series 60 platform, which suppavis 2 Micro Edition (J2ME). Our kiosk is a
desktop PC equipped with an AMD Secure Virtual Machine-béparocessor, an Infineon TPM 1.2, and
an logear USB Bluetooth adapter. The kiosk runs the Xen jgmrmanaged by a virtual machine running

11

Linux. We note that Xen currently does not zero memory pioa reboot as is required in Section 4.3.6.
Such functionality is present in Knoppix distributions ahux, so it should be feasible to extend Xen in this
manner. Our kiosk supervisor is a generic Linux PC.

The rest of this section describes the software we addedetontbbile device and kiosk to carry out
the trust establishment protocol shown in Figure 4. Thekkmgoervisor simply runs an existing IMA
verifier [24] to periodically request an integrity attegatfrom the kiosk.

5.1 Mobile Device Software

For the phone we wrote a J2ME application that interacts thighuser and talks to the kiosk over Blue-
tooth. This application includes an IMA verifier written ftre J2ME environment. We used the Bouncy
Castle [22] library for all cryptographic operations cadiout by the IMA verifier, such as replaying PCR
extend operations and verifying TPM signatures. Finallg,pee-loaded measurements of all the software
expected to run on our prototype kiosk, including Xen, Linard the additional components described
below. Stored as ascii text, this database is approximat@yB. The N70 has 32MB of built-in storage
and a socket for adding additional flash memory. Since the@haust only store measurements for a hand-
ful of kiosk configurations, we do not anticipate that the qpdie storage capacity will hinder our ability to
maintain a measurement database.

Currently, there is no open-source J2ME implementationchpturing a barcode using the phone’s
camera, so our prototype does not include this functionatibwever, the viability of this approach on the
Symbian Series 60 platform has been demonstrated in botH1®+26] and Java [5].

A common difficulty with implementing applications that uB&ietooth is that Bluetooth device dis-
covery is exceedingly slow and does not provide any meansKdHe device that was discovered with the
device the user intends to connect to. Scott et al. [26] addids problem by encoding the Bluetooth ad-
dress of a device in a barcode that may be captured by the sleameera, thus obviating the need for device
discovery. Current C++ implementations of the barcode grizer have sufficient resolution to encode a
Bluetooth address in addition to the hash of the AIK certifgareviously described in Section 4.3.1.

5.2 Kiosk Software

We added three software components to the kiosk platformewakiosk front-end application, an existing
IMA attestation server [24], and a modified version of the @3iecure loader [16].

Kiosk front-end: The front-end interacts with the phone over Bluetooth taldsth the desired software

configuration, reboots the machine into this configuratimg provides a conduit for the mobile phone
to retrieve measurements from the IMA attestation servére ffont-end application is written in Java 2
Standard Edition (J2SE), with some help from Perl scriptmmémipulate the configuration of the GRUB
boot loader.

IMA attestation server: We employ an unmodified open-source IMA attestation setMewjhich listens
for requests via TCP. To avoid the additional difficulty ofésing TCP on Bluetooth, the phone transmits
IMA requests to the kiosk front-end, which in turn commumésawith the IMA attestation server via loop-
back TCP.

12

Secure loader: Figure 5 outlines the kiosk boot sequence. After rebootihg, BIOS runs the GRUB
boot loader, which in turn launches the OSLO secure load8i.@establishes a dynamic root of trust for
measurement (DRTM) by invokingkinit, then measures and runs the Xen hypervisor and the Linuxkern
As described in Section 3kinit atomically measures the secure loader itself, stores thdtiia the TPM,
and transfers execution to that loader.

We extended OSLO to record the measurements of itself, thertigor, and the kernel in the Advanced
Configuration and Power Interface (ACPI) table maintaimeslistem memory by the BIOS. Standard OSLO
does not keep a list of the measurements madskit and by OSLO itself. As described in Section 3,
such a list is needed by the IMA verifier to replay the measerg@mnsequence. We used the ACPI table to
communicate these measurements to IMA because there igherdevel communication facility (e.g., a
file system) available from within OSLO. Our extensions imed calling a BIOS interrupt routine from
16-bit real-mode x86 assembly code. This routine recordssorements in the ACPI table and is available
on all BIOSes that support the TPM. While the ACPI table isntaned by the BIOS, they may be read
directly from system memory by the OS.

There is an important subtlety in the use of a DRTM: softwaed tuns after the DRTM is established
must never invoke code that has not already been measuethanfTPM. In the case of our prototype,
nothing must invoke the BIOS or boot loader after OSLO exexskinit because OSLO does not measure
the BIOS or boot loader. Our kiosk satisfies this requirenmtause neither Xen or the paravirtualized
version of Linux used in Xen virtual machines ever call baaio ithe BIOS or boot loader. We also had
to be careful to update the ACPI talpeior to executingskinit because updating the ACPI table involved
calling the BIOS, as described above. As a result, we had¢alete the SHAL hash of multiboot modules
twice, once to store in the ACPI table from outside the setmader, and once to extend PCRs from inside
the secure loader.

5.3 Personalized Computing Environments

Our prototype supports personalized computing environsngmough the use of migrateable Xen virtual
machines (VMs). The base software environment on our kioskists of the Xen hypervisor plus a manage-
ment VM running Linux. The mobile phone first determines isthnvironment is trustworthy by carrying
out the protocol in Figure 4 through Step 14. The phone thexifips to the management VM a user VM
to run, as per the protocol in Figure 6.

Our sample user VM runs the Fedora Core 6 Linux distributibime VM'’s suspended state consists of
three files: a configuration file that is used to start or resitneefile containing its main disk image, and
a file containing its swap disk image. The configuration filecsfies that the two disk image files be used
in place of raw disk partitions. Having the user VM mount fijstems and swap space directly from these
image files allows the VM to be easily migrated between Xetesys. For added portability, the three files
are encapsulated in an encrypted compressed archive. Zehefshis archive is 104MB for our sample user
VM that uses 1GB of uncompressed disk space.

Upon receiving from the phone the URL and decryption keylierdarchive containing a suspended VM,
the management VM fetches the archive, decrypts it, andrapesses it. Finally, the management VM
resumes the user VM, thus making available to the user a &enpkrsonal computing environment, in-
cluding an operating system, applications, settings, ata dlany performance improvements are possible
on this basic proof of concept. The emphasis of this work leas lon resolving the trust issues surrounding
the use of personal virtual machines on public hardware.

13

6 Discussion

6.1 Kiosk-in-the-Middle Attack

The kiosk in front of the user, or local kiosk, could run malics software that relays data between the
mobile device and a second, remote kiosk. The remote kiogklecan and attest to the intended software
stack, thus fooling the device into trusting the local kio$ke local kiosk could then snoop on and misuse
personal data. This problem is similar to the chess grandmpsoblem [2]. To prevent this attack we need
to ensure that the TPM quote was signed by the AIK of the TPiinthe local kiosk.

As described in Section 4.3.1, our solution to this problemno icapture a barcode that encodes the SHA1
hash of the AIK using the camera of the mobile device [19]. @lsadvantage of this approach is that it
may not be difficult to fool the user into capturing a falsiftetcode. Here we explore alternate solutions.

A user could carry a portable TPM with a known AlK. Before igiing the trust-establishment protocol,
the user could attach the TPM to the kiosk via a physical cotioe (e.g., USB). When loading software,
the kiosk would extend the same measurement into both TPMis. would allow both the mobile device
and kiosk supervisor to obtain a quote from a TPM with a know.A his approach would require both
driver and hardware support. Molina et al. [20] also propbseuse of a mobile TPM. In their architecture,
the core root of trust of the mobile TPM is measured in the perent TPM. We envision that the two TPMs
act independently and in parallel.

Alternatively, we could bind a secure channel (e.g., SSLP&dc) to the signing key of the TPM pur-
porting to be in the local kiosk [12]. After receiving a sighattestation from that TPM, we know that the
software stack running on the other end of the secure tuamrlstworthy. At this point, the phone can gen-
erate a secret, display it on the phone’s display, and tritisensecret over the secure tunnel. The software
on the other end of the tunnel may also display the secretusé&emust then compare the secret shown on
the display of her phone to that displayed on the kiosk. Iy tmatch, we can assume that the TPM that is
bound to the secure tunnel is located within the local kidgkce the phone verifies the trustworthiness of
the kiosk software prior to transmitting the secret, we cesume that the kiosk will not willingly give away
the secret.

6.2 Reboot-between-Attestations Attack

A kiosk could reboot and run malicious software after aittgsto its software integrity but before the user
reveals personal data. The malicious software could thesuswithe personal data. Even if the user or
owner repeats the attestation request, a time window weatcin during which the kiosk could reboot into
and out of malicious software without being detected. Tlublam is not to be confused with the problem
where, between reboots the system could be in a maliciotesatal violate the integrity or confidentiality
of the VM data. This is countered by using encrypted file systésee Section 4.3.6). The problem is that
the user sitting in front of the kiosk would inadvertentiyt@mpotentially confidential data into a malicious
system or accept counterfeit output from a malicious systering such a phase. To solve this problem we
need to ensure that the kiosk has not rebooted between thetiattestation and the time of use by the user.
We have submitted to the Trusted Computing Group severahsiins to current TPM standards that
would enable remote parties to detect reboots betweertaites [13]. One possibility is to incorporate
a monotonically increasing reboot counter in the TPM quirigcture that is signed inside the TPM. This
way, if the reboot counter value in the quote of two succegditestations is the same, we are sure that the
difference in the measurements describes all new softatenas loaded between those attestations. Any
reboot would lead to an increase in the counter value, ddikcturing the verification of the quote in the

14

second attestation.

Finding a good balance between the overhead of frequerstatftsn (computing the quote signature
inside the hardware TPM takes a comparably long time) antinfeduring which a system could be com-
promised unnoticedly is difficult. This problem is not siecio the kiosk scenario, and must be resolved to
enable the safe use of remote attestation in general.

6.3 Boot Prior to User’s Arrival

In Section 4.3.4, we require that the kiosk reboot as parhefttust-establishment process. As the TPM
provides only load-time guarantees of integrity, this apph offers the greatest degree of security by min-
imizing the time between measurement and use. Howevessttyisis extremely time-consuming, and will
likely be unacceptable when the kiosk is used for short &eti@ns.

In such situations, it may be acceptable to boot the kiogktimé most likely configuration prior to the
user’s arrival. If this configuration meets the needs of therthe phone could skip Steps 7-9 of Figure 4.
Steps 10-14 would still verify the integrity of all loadedtsare, but the guarantee provided by these steps
would be weaker because the software has been running fgedourrently, the TPM does not provide
a means of securely determining when kiosk booted—thistimmality would allow the phone to place a
bound on the uptime that it considers to be secure.

The reboot in Step 16 must still occur to ensure that any semslata stored unencrypted in volatile
memory is erased. The time consumed by this reboot is legsattiecause it does not occur while the user
is waiting.

7 Related Work

Surie et al. [30] propose Trust-Sniffer as a means of estaibly trust in transient hardware (which we refer
to as a kiosk). Trust-Sniffer consists of a small softwaia af trust that the user provides via a USB flash
drive. The kiosk boots from the flash drive, and the softwai of trust validates the operating system
present on the kiosk before booting it. Trust-Sniffer uddé ko measure software before it is loaded, and
will only allow the load to continue if the software is presenthe measurement database found on the flash
drive. Trust-Sniffer emphasizes the security gains pés$ibm a simple low-cost flash drive. In contrast,
the user in our system is equipped with a much more powerfalrtginone, which allows us to achieve
stronger security guarantees. Specifically, Trust-Sniffast trust the BIOS and is susceptible to the attack
in which the entire Trust-Sniffer environment is bootedhwita rogue virtual machine monitor. Our system
establishes a dynamic root of trust to exclude the BIOS fioenttusted computing base and uses the TPM
to detect the rogue virtual machine monitor attack. Adddity, our system emphasizes the ability to load
a personalized computing environment on the kiosk in a way pghovides security guarantees to both the
user and kiosk owner.

Sinclair and Smith [28] introduce PorKI, which allows thesuso perform private key operations on
machines of varying trustworthiness. The user's mobildagemaintains the user’s private key, and uses
it to temporarily delegate authority to a short-lived keyganown to the machine in question. The trust-
worthiness of this machine is explicitly encoded in a craidésigned by the system administrator, which is
factored into the decision of a remote party to trust openatihat use the temporary private key. In contrast,
our system verifies the load-time integrity of the softwanening on the machine, which we feel provides a
stronger security guarantee. Furthermore, our systemdmmaghe confidentiality of general user data (e.g.,
a VM) in addition to private keys.

15

Asokan et al. [4] investigated the problem of authenticafiblic terminals with trusted servers, i.e.,
those of credit-card companies. They propose authemticatthemes for establishing a secure channel
between a kiosk and a server to prevent information leakageigh the network. Our work extends theirs
by verifying the software loaded on the kiosk. Our goal iswoid revealing private information to possibly
corrupted software.

Arbaugh et al. [3] propose an architecture $acure boqgtin which each layer in the software stack
is measured and compared to an expected value before itdedodf the software is not as expected, the
architecture attempts to recover by obtaining the correcdion of the software from either local backup or
a trusted third party. Thus a machine will not boot using cmmpsed software. In contrast, we adopt the
trusted bootapproach, in which the boot process merely measures eagrassfcomponent as it is loaded.
Compromised software will be detected when the machinethgeEPM to attest to its software stack.

Brands et al. [7] proposdistance-bounding procotolghere the time delay between two communication
parties is used to bound the physical distance of the twaeggariThe approach is not accurate enough to
distinguish the cheating party from the honest party whegy #re physically close to each other, as in the
kiosk scenario.

We utilize the work of McCune et al. [19] to securely obtaie fyublic key of a wireless device (a kiosk
in our case). Saxena et al. [25] suggest optimizations #tiae the bandwidth necessary of the visual
channel to the point where a blinking LED may be used in liea barcode. Controlling this LED through
software, however, enables potential software-basedkattzot possible with a fixed barcode. Stajano and
Anderson [29] accomplish similar objectives through the ofsphysical contacts. While less susceptible to
physical tampering, their approach requires hardwareighadt commonly available on commodity mobile
devices.

For devices that communicate exclusively over a wirelesdiane, probabilistic channel hopping [2]
greatly increases the number of channels that must be tetaygerform a man-in-the-middle attack. How-
ever, this solution does not work as well in systems wherepanty (e.g., a kiosk) has vastly greater re-
sources than another (e.g., a mobile phone).

Naor and Pinkas [21] prove that data may be securely tratesimid a human equipped with nothing
more than a secret, pre-printed transparency. We are ateeoted with protecting the secrecy of any data
that the user provides to the kiosk.

In this paper, we assume that the user’s personal devicasisviorthy. Pfitzmann et al. [23] explore the
many challenges of using a mobile device in a security-teasetting. Some of the issues they disscuss
are relevant to the security of the mobile device in our kissnario.

8 Conclusion

We present the design of a system in which a user’s mobiledeaagrves as a vehicle for establishing trust
in a public computing kiosk by verifying the integrity of abftware loaded on that kiosk. This process
leverages several emerging technologies, namely theetfidatform Module, Integrity Measurement Ar-
chitecture, and new x86 support for establishing a dynaout of trust. Our system balances the desire of
the user to maintain data confidentiality against the deditiee kiosk owner to prevent misuse of the kiosk.
We demonstrate the viability of our approach through im@etation, and show how our system supports
the resumption of a user’s personal virtual machine on tbhskki

16

References

[1] Integrity Measurement Architecture Implementatiottpti/sourceforge.net/projects/linux-ima.
[2] A. Alkassar, A.-R. Sadeghi, and C. Stiible. Secure dhpentification - or: Solving the chess grandmaster
problem. InProc. of New Security Paradigm Workshow (NSPX@D3.
[3] W. Arbaugh, D. Farber, and J. Smith. A Secure and ReliBbletstrap Architecture. IRroc. of IEEE Symposium
on Security and Privagyl997.
[4] N. Asokan, H. Debar, M. Steiner, and M. Waidner. Autheating Public TerminalsCompNet31(8), 1999.
[5] L. Bauer, S. Garriss, J. M. McCune, M. K. Reiter, J. Rous® P. Rutenbar. Device-enabled authorization in the
Grey system. Irinformation Security: 8th International Conference, 1S@3, volume 3650 ol ecture Notes
in Computer Sciencgages 431-445, September 2005. An extended version opapisr appears as CMU
Computer Science Department Tech Report 05-111.
[6] S.Brands. Untraceable off-line cash in wallet with alyses (extended abstract). Advances in Cryptology —
CRYPTO '93Lecture Notes in Computer Science, 1993.
[7] S. Brands and D. Chaum. Distance-bounding protocolte(eled abstract). IiTheory and Application of
Cryptographic Techniquepages 344-359, 1993.
[8] E. Brickell, J. Camenisch, and L. Chen. Direct Anonyméiiestation. InProc. of ACM Conference on Com-
puter and Communications Securig004.
[9] R. Céaceres, C. Carter, C. Narayanaswami, and M. T. Raahu Reincarnating PCs with Portable SoulPads. In
Proc. of ACM/USENIX Conference on Mobile Computing Systamlications, and Service2005.
[10] Advanced Micro Devices. Secure Virtual Machine Tedogg. http://www.amd.com/.
[11] S. Garriss, R. Caceres, S. Berger, R. Sailer, L. varrDa@mnd X. Zhang. Towards Trustworthy Kiosk Computing.
In Proc. of 8th IEEE Workshop on Mobile Computing Systems ampliégtions (HotMobile) 2007.
[12] K. Goldman, R. Perez, and R. Sailer. Linking Remote gtdon to Secure Tunnel Endpoints. Rroc. of 1st
ACM Workshop on Scalable Trusted Comput2@Q6.
[13] K. Goldman and R. Sailer. Making reboot between TPMsatioons visible. TCG standards discussions, 2006.
[14] Trusted Computing Group. Trusted Platform Modulep&itiwww.trustedcomputinggroup.org/.
[15] Intel. Trusted Execution Technology. http://wwwehtom/technology/security/.
[16] B. Kauer. OSLO - The Open Secure LOader. http://ogurdresden.de/ kauer/oslo/.
[17] S.T.King, P. M. Chen, Y. M. Wang, C. Verbowski, H. J. Waagd J. R. Lorch. SubVirt: Implementing Malware
with Virtual Machines. InProc. of 2006 IEEE Symposium on Security and Priy2OQ6.
[18] M. Kozuchand M. Satyanarayanan. Internet Suspend#ResinProc. of IEEE Workshop on Mobile Computing
Systems and Applicationz002.
[19] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing is Beiligy: Using Camera Phones for Human-Verifiable
Authentication. IrProc. of IEEE Symposium on Security and Priva2§05.
[20] J. Molina, H. Lee, S. Lee, and Z. Song. A Mobile Trustedtfeirm Module (mTPM) Architecture. IRroc. of
2nd Workshop on Advances in Trusted Computing (WAT,C06)6.
[21] M. Naor and B. Pinkas. Visual authentication and idi&dtion. Lecture Notes in Computer Sciende94,
1997.
[22] Legion of the Bouncy Castle. Bouncy Castle Lightwei@hyptography API. http://www.bouncycastle.org/.
[23] A. Pfitzmann, B. Pfitzmann, M. Schunter, and M. Waidnausting mobile user devices and security modules.
IEEE Computer30(2):61-68, February 1997.
[24] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Desighimplementation of a TCG-based integrity measure-
ment architecture. IRroc. of USENIX Security Symposiu2004.
[25] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokaecuse Device Pairing Based on a Visual Channel
(Extended Abstract). IRroc. of IEEE Symposium on Security and Priva2§06.
[26] D. Scott, R. Sharp, A. Madhavapeddy, and E. Upton. Usiggal tags to bypass Bluetooth device discovery.
Mobile Comp. and Comm. Revig¥(2), January 2005.
[27] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, andKRosla. Pioneer: Verifying Integrity and Guaran-
teeing Execution of Code on Legacy Platforms.Pioc. of ACM Symposium on Operating Systems Pringiples
2005.

17

[28] S. Sinclair and S. Smith. PorKl: Making User PKI Safe oadflines of Heterogeneous Trustworthiness. 2005.

[29] F. Stajano and R. Anderson. The Resurrecting Ducklidgcurity Issues for Ad-hoc Wireless Networks. In
Security Protocols Workshof999.

[30] A. Surie, A. Perrig, M. Satyanarayanan, and D. Farbapi& Trust Establishment for Transient Use of Unman-
aged Hardware. Iitiechnical Report CMU-CS-06-178006.

18

