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Abstract. We present a study of implementations of DGEMM using
both the cache-oblivious and cache-conscious programming styles. The
cache-oblivious programs use recursion and automatically block DGEMM
operands A, B, C for the memory hierarchy. The cache-conscious pro-
grams use iteration and explicitly block A,B, C for register files, all
caches and memory. Our study shows that the cache-oblivious programs
achieve substantially less performance than the cache-conscious programs.
We discuss why this is so and suggest approaches for improving the per-
formance of cache-oblivious programs.

1 Introduction

One recommendation of the Algorithms and Architectures (AA) approach [1, 6,
10] is that researchers from Architecture, Compilers and Algorithms communi-
cate. In this spirit, the authors of this paper, who are from the compilers and
algorithms areas, have been collaborating in a research project to build BRILA
(Block Recursive Implementation of Linear Algebra), a domain-specific compiler
for Dense Linear Algebra (DLA) programs. This compiler takes recursive descrip-
tions of linear algebra problems, and produces optimized iterative or recursive
programs as output.

As part of this effort, we investigated the cache-oblivious (CO) and cache-
conscious (CC) approaches to implementing programs for machines with memory
hierarchies. CO research introduced recursion via the divide and conquer para-
digm into DLA approximately ten years ago [9, 4]. The work in [9] was inspired
by earlier work [1] which first enunciated the AA approach; see also [10, 6]. [9]
additionally advocated the use of new data structures (NDS) and L1 cache block-
ing to improve the performance of DLA recursive algorithms such as the Level
3 BLAS [6].

The results described in this paper summarize and extend a companion pa-
per directed towards the optimizing compiler community [13]. Our main findings
can be summarized as follows. As is well-known, the performance of many pro-
grams such as DGEMM is limited by the performance of the memory system
in two ways. First, the latency of memory accesses can be many hundreds of
cycles, so the processor may be stalled most of the time, waiting for reads to
complete. Second, the bandwidth from memory is usually far less than the rate
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at which the processor can consume data. Our study examined these limitations
for highly optimized CO and CC DGEMM programs, generated by BRILA, on
four modern architectures: IBM Power 5, Sun UltraSPARC IIIi, Intel Itanium 2,
and Intel Pentium 4 Xeon. We found that there is a significant gap between the
performance of CO and CC algorithms for DGEMM; we provide reasons why
this gap exists and how it might be overcome. We are not aware of any similar
study in the literature.

The rest of this paper is organized as follows. In Section 2 we give a quan-
titative analysis of how blocking can reduce the latency of memory accesses as
well as the bandwidth required from memory. Using this analysis, one can tell
when an architecture cannot deliver a peak performing DGEMM. This was the
case for the IBM PC604 computer whose L1 cache was too small and whose
bandwidth between L2 and memory was too small1. In Section 3 we discuss the
performance of näıve iterative and recursive programs. Neither program performs
well on any architecture but for different reasons: the iterative program performs
poorly mainly because of poor memory hierarchy behavior, and the recursive one
behaves poorly mainly because of recursive overhead. In Section 4 we evaluate
approaches for reducing recursive overhead. Following [4] we introduce, in [13], a
recursive microkernel which does instruction scheduling and register blocking for
a small problem of size RU × RU ×RU . However, even after considerable effort,
we are unable to produce a recursive microkernel that performs well. In Section
5 we explore iterative microkernels produced by the BRILA compiler using tiling
and unrolling of the standard iterative programs. We show that these iterative
microkernels perform much better than the recursive microkernels. A main find-
ing of [3, 11, 13] is that prefetching is important to obtain better performance.
While prefetching is easy if the outer control structure is iterative, it is not clear
how to accomplish this if the outer control structure is recursive. In Section 6 we
discuss the importance of two recent architectural innovations: streaming and
novel floating-point units [3, 14]. We describe a new concept called the L0/L1
cache interface for reasoning about the impact of these innovations [11]. Lastly,
in Section 7, we summarize our findings on recursive and iterative approaches
to matrix multiplication.

2 Approximate Blocking

The cache-oblivious approach can be viewed as a way of performing approximate
blocking for memory hierarchies. Each step of the recursive divide-and-conquer
process generates sub-problems of smaller size, and when the working set of a
sub-problem fits in some level of the memory hierarchy, that sub-problem can
execute without capacity misses at that level. It is known that this recursive ap-
proach is I/O optimal for common problems like matrix-multiplication and FFT,
which means intuitively that the volume of data transfers between different cache

1 The IBM PC architecture introduced prefetching instructions (called touches), and
using them and the AA approach, one of us introduced the concept of algorithmic
prefetching to improve DGEMM performance on this platform
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levels is as small as it can be (to within constant factors) for any program im-
plementing the same computation [7]. However, program performance is limited
by both the latency of memory accesses and the bandwidth between different
levels of the memory hierarchy. We argue in this section that minimizing the
volume of data transfers between cache levels by approximate blocking may re-
duce bandwidth demands to an adequate level, but may not necessarily address
the latency problem.

We consider blocked Matrix-Matrix Multiply (MMM) of N × N matrices in
which each block computation multiplies matrices of size NB ×NB. We assume
that there is no data reuse between block computations, which is a conservative
assumption for both latency and bandwidth estimates. We find an upper bound
on NB by considering a simple two-level memory hierarchy model with a cache
and main memory, and requiring the size of the working set of the block compu-
tation to be less than the capacity of the cache, C. Assume that the line size is
LC , and that the cache has an access latency lC . Let the access latency of main
memory be lM . The working set is bounded above by the size of the sub-problem.
Therefore, the following inequality is a conservative approximation.

3N2
B ≤ C (1)

The total number of memory accesses each block computation makes is 4N3
B

.

Each block computation brings 3N2
B

data into the cache, which results in
3N

2

B

LC

cold misses. If the block size is chosen so that the working set fits in the cache
and there are no conflict misses, the cache miss ratio of the complete block
computation is 3

4NB×LC
. Assuming that memory accesses are not overlapped,

the expected memory access latency is as follows:

l =

(

1 −
3

4NB × LC

)

× lC +
3

4NB × LC

× lM (2)

Equation (2) shows that the expected latency decreases with increasing NB,
so latency is minimized by choosing the largest NB for which the working set fits
in the cache. In practice, the expected memory latency computed from Equa-
tion (2) is somewhat pessimistic because loads can be overlapped with each other
or with actual computations, reducing the effective values of lC and lM . These
optimizations are extremely important in the generation of the micro-kernels, as
is described in Section 4. Furthermore, hardware and software prefetching can
also be used to reduce effective latency, as is discussed in Section 5 of [13] and
Section 6.

Bandwidth considerations provide a lower bound for NB. We start by consid-
ering the bandwidth between the registers and the L1 cache, which we will refer
to as B(L0, L1). Assume that the processor can perform one fused multiply-add
per cycle. Therefore, the time to execute a matrix-multiply is bounded below
by N3 cycles. Without blocking for registers, the bandwidth required between
registers and the L1 cache is therefore 4N3 ÷ N3 = 4 doubles/cycle.

If the processor cannot sustain this bandwidth, it is necessary to perform
register-blocking. If the size of the register block is NB, we see that each block
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computation requires 4N2
B

data to be moved, so our simple memory model im-

plies that the total data movement is
(

N

NB

)3

× 4N2
B

= 4N
3

NB
. The ideal execution

time of the computation is still N3, so the bandwidth required from memory is
4N

3

NB
÷ N3 = 4

NB
doubles/cycle. Therefore, register-blocking by a factor of NB

reduces the bandwidth required from L1 cache by the same factor.
We can now write the following lower bound on the value of NB, where

B(L0, L1) is the bandwidth between registers and the L1 cache.

4

NB

≤ B(L0, L1) (3)

Inequalities (1) and (3) imply the following inequality for NB:

4

B(L0, L1)
≤ NB ≤

√

C

3
(4)

This argument generalizes to a multi-level memory hierarchy. If B(Li, Li+1)
is the bandwidth between levels i and i + 1 in the memory hierarchy, NB (i) is
the block size for the ith cache level, and Ci is the capacity of this cache, we
obtain the following inequality:

4

B(Li, Li+1)
≤ NB (i) ≤

√

Ci

3
(5)

In principle, there may be no values of NB (i) that satisfy the inequality.
This can happen if the capacity of the cache as well as the bandwidth to the
next level of the memory hierarchy are small. According to this model, the
bandwidth problem for such problems cannot be solved by blocking. The IBM
PC604 processor is an example of such a processor.

Equation (5) shows that in general, there is a range of block sizes for which
bandwidth constraints can be satisfied. In particular, if the upper bound in Equa-
tion (5) is more than twice the lower bound, the divide-and-conquer process in
the cache-oblivious approach will generate a block size that lies within these
bounds, and bandwidth constraints will be satisfied. However, Equation (2) sug-
gests that latency might still be a problem, and that it may be a bigger problem
for the CO approach since blocking only approximate.

3 Näıve Recursive and Iterative DGEMM Routines

As a baseline for performance comparisons, we considered näıve recursive rou-
tines that recursed down to 1 × 1 matrix multiplications, as well as unblocked
iterative routines for MMM. We found that both performed very poorly but for
different reasons. We show that recursive codes have low cache misses but high
calling overhead whereas the opposite holds for iterative codes.

For these implementations we need a data structure for matrices and a control
structure. We use standard Fortran and C two dimensional arrays to represent
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the matrix operands A, B, C of DGEMM. In [9, 6] the all-dimensions (AD) strat-
egy of divide and conquer is described. Here one divides the rows and columns
of A, B, C equally and thereby generates eight sub-problems of half the size.
For the iterative control, we used simple jki loop order, [5]. This was the worst
choice for iterative control as our matrices were stored in row major order. Both
programs performed very poorly on all four platforms obtaining about 1% of
peak. Three reasons emerged as the main causes of bad performance:

1. The overhead of recursive calling was in the hundreds of cycles whereas an
independent FMA executed in one cycle.

2. Both programs made poor use of the floating point register files. Currently,
compilers fail to track register values across procedure calls. For iterative
codes compilers can do register blocking; however, none of our compilers
were able to do so.

3. A remarkable fact emerged when we examined L2 cache misses on Itanium.
Our iterative code suffered roughly two cache misses per FMA resulting in
a miss ratio of 0.5! So, poor memory behavior limits the performance of
our iterative code. For the recursive code the miss ratio was a tiny .002
misses per FMA, resulting in a miss ratio of 0.0005!. This low miss ratio
is a practical manifestation of the theoretical I/O optimality of recursive
programs. However, because of the calling overhead, I/O optimality alone
did not guarantee good overall performance.

Many more details and experimental results about this Section are contained in
Section 3 of [13].

4 Recursive Kernels for DGEMM and Reducing
Recursive Overhead

A standard approach to reducing the recursive overhead is to cut the recursion
off once the problem size is below some cut-off, and call a kernel routine to
perform the sub-problem. For DGEMM one no longer performs single FMAs at
the leaves of the recursion tree; instead, the program would call a kernel routine
that would perform N3

B
FMA’s. This microkernel is a basic block obtained by

fully unrolling the recursive code for a small problem of size RU × RU × RU , as
suggested by Frigo et al. [4]. This kernel routine has to be optimized carefully
for the registers and the processor pipeline, so it is not “register-oblivious”. We
call this a recursive microkernel since the FMAs are performed in the same order
as they were in the original recursive code.

The optimal RU value is determined empirically for values between 1 and
15; i.e., this microkernel must be done in a register file. The overhead of recur-
sion is amortized over R3

U
FMAs, rather than a single FMA. Furthermore, a

compiler might be able to register allocate array elements used in the microker-
nel, which gives the effect of register blocking. Therefore, performance should
improve significantly.
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One also needs to worry about selecting a good data structure to represent
the matrix operands A, B, C of the microkernel as the standard Fortran and C
two dimensional arrays are often a poor choice [10]. Virtually all high perfor-
mance BLAS libraries internally use a form of a contiguous blocked matrix, such
as Row-Block-Row (RBR); e.g., see [9, 10, 12, 6, 11]. An alternative is to use a
recursive data layout, such as a space filling curve like Morton-Z [9, 6]. In [13]
we compared the MMM performance using both these choices and we rarely saw
any performance improvement using Morton-Z order over RBR. Thus [13] used
RBR in all of its experiments and it chose the data block size to match the kernel
block size.

In [13] we considered four different approaches to performing register allo-
cation and scheduling for the recursive microkernel; see Sections 4.1,2,3,4 and
Table 4 of [13]. The results of these four recursive microkernel experiments led
us to the following four conclusions:

– The microkernel is critical to overall performance. Producing a high per-
formance recursive microkernel is a non-trivial job, and requires substantial
programming effort.

– The performance of the program obtained by following the canonical recipe
(recursive outer control structure and recursive microkernel) is substantially
lower than the near-peak performance of highly optimized iterative codes
produced by ATLAS or in vendor BLAS. The best we were able to obtain
was 63% of peak on the Itanium 2; on the UltraSPARC, performance was
only 38% of peak.

– For generating the microkernel code, using Belady’s algorithm [2] followed by
scheduling may not be optimal. Belady’s algorithm minimizes the number of
loads, but minimizing loads does not necessarily maximize performance. An
integrated register allocation and scheduling approach appears to perform
better.

– Most compilers we used did not do a good job with register allocation and
scheduling for long basic blocks. The situation is more muddied when proces-
sors perform register renaming and out-of-order instruction scheduling. The
compiler research community needs to pay more attention to this problem.

5 Iterative Kernel Routines for DGEMM

Iterative microkernels are obtained by register-blocking the iterative code, and
have three degrees of freedom called KU , NU , and MU . The microkernel loads
a block of the C matrix of size MU × NU into registers, and then accumulates
in them the results of performing a sequence of outer products between column
vectors of A of size MU and row vectors of B of size NU . Therefore, MU + NU

loads of A and B operands accomplish MU × NU FMA’s. Clearly, with a large
enough register file one can do cache blocking out of higher levels of cache than
L1. This actually happens on Itanium and on IBM BG/L, see [3]. With this
kernel, KU can be very large.

The microkernels were generated by BRILA in [13] as follows:



7

1. Start with a simple kji triply-nested loop for performing an MMM with
dimensions 〈KU , NU , MU 〉 and unroll it completely to produce a sequence of
MU × NU × KU FMAs.

2. Use the algorithm described in Figure 5 of [13] for register allocation and
scheduling, starting with the sequence of FMAs generated above. As in Sec-
tion 4.4 of [13], Belady register allocation was used and [13] scheduled
dependent instructions back-to-back on the Pentium 4 Xeon.

5.1 Iterative Minikernels

By blocking explicitly for L1 and other cache levels, we get iterative minikernels.
These minikernels usually deal with square blocks, and invoke the iterative mi-
crokernel to perform the matrix multiplications. We also considered combining
recursive outer control structures with the iterative microkernel [13].

Not surprisingly, we found that blocking the iterative code for all levels of
cache gave roughly the same performance as using a recursive outer control
structure with the iterative microkernel. However, the iterative outer control
offers many more blocking choices as there are 3! = six choices for each higher
cache level, although this large number of choices can be reduced to only four
choices [8]. Furthermore, to get the highest level of performance, it is necessary
to implement prefetching from the memory, as is done in hand-tuned libraries.
Prefetching for iterative control structures is well understood, but appears to be
more difficult for recursive control structures because they access the matrices
in a relatively unstructured fashion. We believe more research into prefetching
for recursive codes is needed.

6 Pipelined Streaming and Novel Floating Point Units

Finally, we discuss the impact of novel features of the processor pipeline.
Many processors now support streaming but there are a limited number of

streaming units on a given platform [14]. In Section 5.1, we discussed minikernels
that block explicitly for L1 and other cache levels [1, 15, 11]. In [13] the data
structure of the minikernel was RBR, which is a special case of the Square
Block Format (SBF) [9, 10, 12]. In [12] the authors show that this data format
minimizes L1, L2, and TLB misses for common matrix operations that involve
both row and column operations. Typically, the order NB of a SBF matrix is
chosen so it will reside in L1 cache. Unfortunately, streaming makes the use
of SBF suboptimal since the iterative microkernel requires 2NU + MU streams
with RBR storage. Usually, MU and NU is around four so about twelve streams
are required. Unfortunately, twelve is too large. With NDS, we show that these
streams can be reduced to three, one each for the A, B, C operands of DGEMM.
We note that three is minimal for DGEMM as one stream is required for each
of DGEMM’s operands.

Next, we discuss novel floating point units. These are SIMD vector like and
several platforms now have them. For example, on Intel one has SSE units which
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are capable of delivering 4,2 multiplies or 4,2 adds for single,double precision
operands in a single cycle. The peak MFlop rate is thus quadrupled/doubled
with this floating point unit. On IBM Blue Gene, BG/L, there is a pair of
double SIMD Floating point units with associated double SIMD floating point
register files [3]. It turns out that these units are not fully integrated with the
CPU. Thus, there is an interface problem that exists in getting data from the L1
cache into the register files of these novel units. In [11] we discuss the matters in
more detail and in particular, we define a new concept called the L0/L1 cache
interface; also see [3]. Note that in this context the L0 cache is the register file
of a given processor.

Now we briefly describe how these problems can be handled. An answer lies
in changing the internal data structure [11]. Instead of using a standard For-
tran or C two dimensional array, it is necessary to use a four-dimensional array.
The inner two dimensions constitute register blocks. These register blocks are
transposes of the register blocks described in Section 5. However, data in this
new format can be addressed with memory stride of one so that twelve streams
mentioned above become three. Furthermore, the L0/L1 interface problem dis-
appears as data will now enter L1 (or bypass it completely) in a way that is
optimal for its entrance into the L0 cache; see [11].

7 Conclusion/Summary

We summarize the results of [13] for the recursive and iterative programming
styles. Our recursive microkernel work led us to the following conclusions.

– The performance of the program obtained by following the canonical recipe
(recursive outer control structure and recursive microkernel) is substantially
lower than the near-peak performance of highly optimized iterative codes
produced by ATLAS or in vendor BLAS. The best we were able to obtain
was 63% of peak on the Itanium 2; on the UltraSPARC, performance was
only 38% of peak.

– The microkernel is critical to overall performance. Producing a high per-
formance recursive microkernel is a non-trivial job, and requires substantial
programming effort.

– For generating code for the microkernel, using Belady’s algorithm [2] fol-
lowed by scheduling may not be optimal. Belady’s algorithm minimizes the
number of loads, but minimizing loads does not necessarily correlate to per-
formance. An integrated register allocation and scheduling approach appears
to perform better.

– Most compilers we used did not do a good job with register allocation and
scheduling for long basic blocks. This problem has been investigated before.
The situation is more muddied when processors perform register renaming
and out-of-order instruction scheduling. The compiler research community
needs to pay more attention to this problem.

Our iterative microkernel and blocking work led us to the following conclusions.
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– Using the techniques in the BRILA compiler, we can generate iterative micro-
kernels giving close to peak performance. They perform significantly better
than recursive microkernels.

– Wrapping a recursive control structure around the iterative microkernel gives
a program that performs reasonably well since it is able to block approxi-
mately for all levels of cache and block exactly for registers. If an iterative
outer control structure is used, it is necessary to block for relevant levels of
the memory hierarchy.

– To achieve performance competitive with hand-tuned kernels, minikernels
need to do data prefetching. It is clear how to do this for an iterative outer
control structure but we do not know how to do this for a recursive outer
control structure.
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