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Supplement to “Distributions with maximum

entropy subject to constraints on their L-moments

or expected order statistics”

J. R. M. Hosking
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Yorktown Heights, NY 10598

Abstract. This report contains supplementary results to those in the paper “Distri-

butions with maximum entropy subject to constraints on their L-moments or expected

order statistics”, to be published in Journal of Statistical Planning and Inference.





Hosking (2007) derives distributions with maximum entropy subject to constraints

on their L-moments or on expectations of their order statistics. This report expands

on some points that are not described in detail in the main paper. Equations and

examples specific to this report are numbered (S.n). Equation and example numbers

that are entirely numeric refer to the main paper.

For convenience we first restate the main results of the paper, Theorems 2.1, 2.2

and 3.1.

Theorem 2.1. Consider the problem

Maximize

∫ 1

0

log{Q′(u)}du (2.4)

subject to

∫ 1

0

Ks(u)Q
′(u)du = hs, s = 1, . . . , S, (2.5)

where the Ks are linearly independent polynomials, and the maximization is over

functions Q′(u) that are strictly positive on (0, 1). If there exist constants as,

s= 1, . . . , S, that satisfy∫ 1

0

Kr(u)du∑S
s=1 asKs(u)

= hr , r = 1, . . . , S, (2.6)

and
S∑

s=1

asKs(u) > 0 , 0 < u < 1, (2.7)

then the problem has the solution

Q′(u) = Q′
0(u) ≡ 1

/ S∑
s=1

asKs(u) . (2.8)

The solution is unique up to redefinition of Q′
0(u) on a set of u values that has measure

zero.
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Theorem 2.2. Consider the problem

Maximize

∫ 1

0

log{Q′(u)}du

subject to

∫ 1

0

Jr(u)Q(u)du= gr, r= 1, . . . , R,

where the Jr are linearly independent polynomials, and the maximization is over

quantile functions Q of distributions whose cumulative distribution functions F are

continuous and differentiable, with densities f that are nonzero within the range of the

distribution. Suppose further that one of the following sets of additional constraints

is to be satisfied:

(Case 0) Q(0) =L and Q(1) =U ;

(Case 1) Q(0) =L, Q(1) unconstrained;

(Case 2a) no constraints on Q(0) or Q(1), with
∫ 1

0
Jr(u)du= 0 for all r;

(Case 2b) no constraints on Q(0) or Q(1), with
∫ 1

0
Jr(u)du 6= 0 for some r.

The problem is solved by the following procedures, provided that the equations (2.6)

referred to below can be solved and, if applicable, that the integrals in (2.20) or (2.24)

below are finite. The solution is unique except that in Case 2a the distribution is

determined only up to a location shift.

Case 0:

1. Write the constraints in the form (2.5), by setting

Kr(u) =

∫ 1

u

Jr(v)dv, hr = gr −Kr(0)L, r = 1, . . . , R. (2.19)

2. Add the constraint
∫ 1

0
Q′(u)du=U −L, by defining KR+1(u) = 1, 0≤u≤ 1, and

hR+1 =U −L.

3. Set S=R+ 1 and solve equations (2.6).

4. The maximum-entropy distribution has Q′ given by (2.8) and

Q(u) = L+

∫ u

0

dv∑S
s=1 asKs(v)

. (2.20)
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Case 1:

1. Write the constraints in the form (2.5), via (2.19).

2. Set S=R and solve equations (2.6).

3. Provided that the integral in (2.20) exists, the maximum-entropy distribution has

Q′ given by (2.8) and Q given by (2.20).

Case 2a:

1. Write the constraints in the form (2.5), via (2.19).

2. Set S=R and solve equations (2.6).

3. The maximum-entropy distribution has Q′ given by (2.8). Q is determined only

up to an additive constant, by

Q(u) =

∫ u dv∑S
s=1 asKs(v)

.

Case 2b:

1. Without loss of generality, suppose that
∫ 1

0
JR(u)du 6= 0.

2. For r= 1, . . . , R− 1, set J∗r (u) = Jr(u)−αrJR(u) and g∗r = gr−αrgR, where

αr =
∫ 1

0
Jr(u)du/

∫ 1

0
JR(u)du. The first R− 1 constraints are equivalent to the new

constraints ∫ 1

0

J∗r (u)Q(u)du = g∗r , r = 1, . . . , R− 1,

for which we have
∫ 1

0
J∗r (u)du= 0 for all r.

3. Write the new constraints in the form (2.5), by setting

Kr(u) =

∫ 1

u

J∗r (v)dv, hr = g∗r , r = 1, . . . , R− 1.

4. Set S=R− 1 and solve equations (2.6).

5. Provided that the integrals in (2.24) below exist, the maximum-entropy distribu-

tion has Q′ given by (2.8) and quantile function given by

Q(u) =
1

KR(0)

[
gR +

∫ u

0

{KR(0)−KR(v)}Q′(v)dv −
∫ 1

u

KR(v)Q′(v)dv

]
,

(2.24)

where KR(u) =
∫ 1

u
JR(u)du.
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Theorem 3.1. The distribution that has maximum entropy given specified values

of its L-moments λr, r= 1, . . . , R, is given by the following construction, provided that

the equations (3.7) below have a solution. Denote by Cases 0, 1, and 2 the instances

in which the range of the distribution is constrained to be the intervals [L,U ], [L,∞),

and (−∞,∞), respectively. Define

(in Case 0) Z0(u) = 1, k0 =U −L;

(in Cases 0 and 1) Z1(u) = 1−u, k1 =λ1−L;

(in all Cases) Zr(u) =

∫ 1

u

P ∗
r−1(v)dv , kr =λr, r≥ 2.

In Case m (m= 0, 1, or 2), the maximum-entropy distribution has quantile function

Q(u) with derivative given by

Q′(u) = 1

/ R∑
r=m

arZr(u) (3.6)

where the ar satisfy the equations∫ 1

0

Zr(u)du∑R
s=m asZs(u)

= kr , r = m, . . . , R, (3.7)

with
R∑

r=m

arZr(u) > 0 , 0 < u < 1. (3.8)

The quantile function itself is given, in Cases 0 and 1, by

Q(u) = L+

∫ u

0

Q′(v)dv (3.9)

or, in Case 2, by

Q(u) = λ1 +

∫ u

0

vQ′(v)dv −
∫ 1

u

(1− v)Q′(v)dv (3.10)

for any u∈ (0, 1).
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Example 3.5, expanded.

Example 3.5 derives the maximum-entropy distribution for a distribution on the

interval [0,∞) with the value of only λ2 constrained.

This problem is excluded from the ambit of Theorem 3.1, because λ1 is not con-

strained. In attempting to use Theorem 2.2 we find that equations (2.6)–(2.8) have

the solution Q′(u) =λ2/{u(1−u)}, but the integral in (2.20) does not exist. Thus no

maximum-entropy distribution can be found by the methods of Theorems 2.2 or 3.1.

To understand why no maximum-entropy distribution can be found, consider

Example 3.4, in which λ1 is also constrained. The maximum value of the entropy

is a function of the specified values of λ1 and λ2. We shall show that as λ1→∞ with

λ2 fixed, the entropy increases monotonically and approaches a finite limit.

The maximum value of the entropy in Example 3.4 is, using (3.14),∫ 1

0

logQ′(u)du=−
∫ 1

0

log(1−u)du−
∫ 1

0

log(a1 + a2u)du

= 2 +
a1

a2

log a1−
1

a2

(a1 + a2) log(a1 + a2)

= 2 + log λ2 + 2 log β− 1

β
(1+β) log(1+β)− log{β− log(1+β)} , (S.1)

where the last equality follows from expressing a1 and a2 in terms of β and λ2, using

(3.16) and (3.15). We consider the behavior of this maximized entropy as λ1→∞
with λ2 fixed, i.e. as β→∞ with λ2 fixed. We write (S.1) as

H(β, λ2) ≡ 2 + log λ2 + 2 log β − 1

β
(1 + β) log(1 + β)− log{β − log(1 + β)} . (S.2)

Differentiating, we obtain

∂H

∂β
=

1

β
+

1

β2
log(1 + β)− β

(1 + β){β− log(1 + β)}

=
β2− (1 + β){log(1 + β)}2

β2(1 + β){β− log(1 + β)}
. (S.3)

As β→∞, log(1 + β) = o(β1/2), so for β sufficiently large the right side of (S.3) is

positive and H(β, λ2) is an increasing function of β for fixed λ2. The limiting value
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of the entropy is obtained by writing (S.2) as

H(β, λ2) = 2 + log λ2 + log

(
β

1 + β

)
− 1

β
log(1 + β)− log

{
1− 1

β
log(1 + β)

}
;

each of the last three terms tends to zero as β→∞, so the limiting value of the

entropy is 2 + log λ2. However, this limit is not attained by any distribution that has

the specified value of λ2 and a finite lower bound, so no maximum-entropy distribution

exists within this class of distributions.

τ4 for PDQ3 distribution (Example 3.7)

We have

0 =α(1− γτ3)
∫ 1

0

(2u− 1)du

=

∫ 1

0

(2u− 1) . u(1−u){1− γ(2u− 1)}Q′(u)du by (A.5)

=

∫ 1

0

u(1−u)
[
2u− 1− γ

{
1
5
+ 4

5
(5u2− 5u+ 1)

}]
Q′(u)du

=

∫ 1

0

u(1−u)(2u− 1)Q′(u)du− 1
5
γ

∫ 1

0

u(1−u)Q′(u)du

− 4
5
γ

∫ 1

0

u(1−u)(5u2− 5u+ 1)Q′(u)du

=λ3− 1
5
γλ2− 4

5
γλ4 by (3.2)–(3.4).

Dividing by λ2, we have

τ3 − 1
5
γ − 4

5
γτ4 = 0 ,

i.e. τ4 = (5τ3/γ− 1)/4.

Variants of Example 4.3

Example 4.3 derives the maximum-entropy distribution for a distribution on the entire

real line subject to the constraint E(X3:4−X2:4) = ξ. The maximum-entropy distri-

bution has

Q′(u) = ξ/{6u2(1− u)2} , (4.2)

and, by integration,
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Q(u) = 1
6
ξ

{
2 log

(
u

1− u

)
+

2u− 1

u(1− u)

}
+ c (4.3)

where c is an undetermined constant. This quantile function corresponds to a distri-

bution whose mean does not exist.

Two variants of this example introduce additional constraints aimed at deter-

mining the value of c in (4.3).

Example S.1. Range (−∞,∞); constraints E(X3:4−X2:4) = ξ, EX =µ.

In this variant of Example 4.3 we add a constraint on EX. We obtain the same

solution (4.2) for Q′(u), but the integrals in (2.24) do not exist. The situation here

is similar to that of Example 3.5: there are distributions that satisfy the constraints

and have entropy arbitrarily close to that of the distribution (4.3), but this limit is

not attained by any distribution that satisfies the constraints.

We can construct a set of distributions that contains members that approach the

limit: we consider distributions with Q′(u) = b/{uα(1−u)α}. This family of distri-

butions has been mentioned by Kamps (1991) and is related to the complementary

beta distribution of Jones (2002). We consider the set of distributions with 0<α< 2

and b= 1
6
ξ Γ(6− 2α)/{Γ(3−α)}2. These distributions have finite mean and satisfy

E(X3:4−X2:4) = ξ: we have

E(X3:4−X2:4) =

∫ 1

0

6u2(1−u)2Q′(u)du

= 6b

∫ 1

0

u2−α(1−u)2−αdu

= 6b {Γ(3−α)}2/Γ(6− 2α)

= ξ .

The entropy of a distribution from this set is

H̄(α)≡
∫ 1

0

logQ′(u)du= log b−α
∫ 1

0

log u du−α
∫ 1

0

log(1−u) du

= log b+ 2α

= log(ξ/6) + log Γ(6− 2α)− 2 log Γ(3−α) + 2α .
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H̄(α) is a continuous function of α∈ (0, 2], and

d

dα
H̄(α) = −2ψ(6− 2α) + 2ψ(3− α) + 2

where ψ(x) = d
dx

log Γ(x) is Euler’s psi function. Now for x> 1 we have

ψ(2x)−ψ(x) =
∞∑

k=0

(
1

x+ k
− 1

2x+ k

)
(Gradshteyn and Ryzhik 1980, eq. 8.363.3)

=
∞∑

k=0

x

(x+ k)(2x+ k)

<
∞∑

k=0

x

(x+ k)(x+ 1 + k)

= 1 (Gradshteyn and Ryzhik 1980, eq. 0.243.1),

so for α< 2 we have d
dα
H̄(α)> 0. Thus as α→ 2, H̄(α) increases towards the limiting

value H̄(2) = log(ξ/6) + 4. However, the limiting case α= 2 does not correspond to a

distribution with finite mean.

Example S.2. Range (−∞,∞); constraints EX2:4 = ξ2, EX3:4 = ξ3.

In this variant of Example 4.3 we specify constraints on EX2:4 and EX3:4 sep-

arately. This is equivalent to constraining E(X3:4−X2:4) and 1
2
E(X3:4 +X2:4), the

latter being a location measure that can exist even when the mean of the distribution

does not.

From (1.3) the constraints are∫ 1

0

12u(1− u)2Q(u)du = ξ2 ,

∫ 1

0

12u2(1− u)Q(u)du = ξ3 .

In the notation of Theorem 2.2, both constraints have
∫ 1

0
Jr(u)du 6= 0, so we rewrite

them as E(X3:4−X2:4) = ξ3− ξ2≡ ξ, EX3:4 = ξ3. The first constraint is now the same

as in Example 4.3, and from it we obtain the same solution, (4.2), for Q′(u).

To obtain Q(u) we evaluate (2.24). We have R= 2, g2 = ξ3, K2(v) =∫ 1

v
12u2(1−u)du= (1− v)2(1 + 2v+ 3v2), and Q′(u) = 1

6
(ξ3− ξ2)/{u2(1−u)2}; thus
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∫ u

0

{K2(0)−K2(v)}Q′(v)dv=

∫ u

0

(4v3− 3v4)
ξ3− ξ2

6v2(1− v)2
dv

= 1
6
(ξ3− ξ2)

∫ u

0

4v− 3v2

(1− v)2
dv

= 1
6
(ξ3− ξ2)

∫ 1

1−u

1 + 2t− 3t2

t2
dt (t= 1− v)

= 1
6
(ξ3− ξ2)

[
−1

t
+ 2 log t− 3t

]1

1−u

= 1
6
(ξ3− ξ2)

(
−1− 3u− 2 log(1−u) +

1

1−u

)
and ∫ 1

u

K2(v)Q
′(v)dv=

∫ 1

u

(1− v)2(1 + 2v+ 3v2)
ξ3− ξ2

6v2(1− v)2
dv

= 1
6
(ξ3− ξ2)

∫ 1

u

1 + 2v+ 3v2

v2
dv

= 1
6
(ξ3− ξ2)

[
−1

v
+ 2 log v+ 3v

]1

u

= 1
6
(ξ3− ξ2)

(
2− 3u− 2 log(1−u) +

1

u

)
,

so (2.24) gives

Q(u) = ξ3 + 1
6
(ξ3− ξ2)

(
−3 + 2 log u− 2 log(1−u) +

1

1−u
− 1

u

)
= 1

2
(ξ2 + ξ3) + 1

6
(ξ3− ξ2)

{
2 log

(
u

1−u

)
+

2u− 1

u(1−u)

}
.

Thus the additional constraint has enabled us to determine c in (4.3). Note

that, in the notation of Theorem 2.2, we have R= 2 and J2(u) = 12u2(1−u), whence

K2(0)−K2(v) = v3(4− 3v) and K2(v) = (1− v)2(1 + 2v+ 3v2); these functions have

high enough powers of v and 1− v respectively to cancel the singularities in Q′(v) as

v→ 0 or v→ 1, so the integrals in (2.24) exist.
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