
RC24184 (W0702-063) February 14, 2007
Computer Science

IBM Research Report

A Multithreaded Processor Architecture with Implicit
Granularity Adaptation

Volker Strumpen
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

A Multithreaded Processor Architecture

with Implicit Granularity Adaptation

Volker Strumpen

IBM Austin Research Laboratory

September 18, 2006

Abstract

We propose a multithreaded processor architecture for mapping a potentially unbounded
number of software threads into a bounded number of hardware threads. Our architecture de-
grades a fork instruction gracefully into a function call when all hardware threads are in use,
thereby adjusting thread granularity implicitly. This new architectural feature improves pro-
grammability by allowing programs to expose as much parallelism as is inherent in an application
without incurring a performance penalty due to excess parallelism.

1 Introduction

Our goal is to simplify the programming of parallel applications. We propose a solution that is
similar in spirit to the way in which virtual memory hides the problem of accessing different levels
in a memory hierarchy behind a simple load/store interface. The performance of virtual memory
systems degrades gracefully as larger amounts of data occupy the memory hierarchy. Replacement
algorithms, such as least-recently-used, automate data transfers across the levels while optimizing
the common case by exploiting locality. The virtual memory system is a typical application of the
design philosophy of graceful degradation: functionality is reduced gradually in the face of faults.
By interpreting the exhaustion of a fast resource as a fault and performance as a functionality, we
can tailor the philosophy of graceful degradation to our needs: performance is reduced gradually
in face of larger resource requirements.

In this article, we apply the design philosophy of graceful degradation, and show that it can pay
to elevate the degraded, special case into the common case rather than treating it as a rare excep-
tion. We focus our attention on the design of a multithreaded processor architecture. Space-time
constraints force us to limit the number of threads that we can support efficiently in hardware to a
relatively small, bounded number. When exhausting these thread resources, we gracefully degrade
the fork operation of a thread into a function call. However, we do not perform this degradation
to salvage programs that would otherwise fail when forking a larger number of threads than the
processor supports. Instead, our goal is to enable the program to specify as much parallelism as is
inherent in an algorithm, because our processor handles excess parallelism efficiently. The number
of hardware threads can then be determined independently of applications, so as to hide the average
memory latency, for example. Our proposed processor architecture avoids performance degradation
due to excess parallelism by degrading threads into functions. This fork degradation bounds the

1

bookkeeping overhead associated with parallelism by restricting the amount of parallelism adap-
tively.

Parallel programming languages such as Multilisp [14], Mul-T [18], and Cilk [12] offer adaptive
parallelism. These languages hide the bulk of the parallel programming complexity by automating
such tasks as load balancing and data transfers. Threads in these languages are different entities
than traditional software threads at the user-level or as provided by the operating system, see
[23, 26, 21, 11] to name just a few. The latter allocate one context per thread, and schedule threads
preemptively by means of context switches. In contrast, languages like Cilk and Mul-T create
and schedule threads non-preemptively on processors only if a processor idles. In addition, Cilk’s
work-stealing scheduler assigns threads to processors with theoretical performance guarantees [7].
Here, we focus on executing one parallel application efficiently. The subtle difference lies in the
scheduler constraints: The scheduler of an operating system or for conventional user-level threads
assumes that threads can be scheduled in any order. For a parallel application, the order in which
threads are scheduled may impact correctness and is crucial for performance.

In this article, we discriminate between hardware threads and software threads. Hardware
threads require hardware structures for bookkeeping, and software threads are mapped into hard-
ware threads to be executed within its context, rather than allocating a thread context in software.
We say that a hardware thread shepherds the execution of a software thread. Our proposal is
based on three observations. (1) We can lump multiple fine-grained software threads into one
coarse-grained hardware thread during execution. (2) Since hardware threads require hardware
structures for bookkeeping, we are interested in bounding the number of hardware threads so that
fast circuits can be employed for implementing thread management operations. (3) We can map
software threads into hardware threads without penalizing the creation of parallelism, neither in
space nor time. From this perspective, our proposal may be viewed pictorially as an infinite thread
architecture that enables programmers or compilers to focus on exposing the parallelism inherent in
the problem, rather than on tuning performance for a particular machine. In particular, we avoid
the space and time overheads associated with software-allocated thread contexts and the switching
between these contexts.

We denote as thread granularity the number of executed instructions of a thread. A program
with coarse-grained threads implies a relatively small number of threads, which enjoy a relatively
low bookkeeping overhead in both memory requirements and execution time. In particular for
irregular applications, however, large grain sizes can cause poor load balancing. To the contrary,
small grain sizes are usually associated with a large number of threads which can improve load
balancing at the expense of larger bookkeeping overheads. Ideally, we can relieve the programmer
from considering the intricate granularity trade-offs altogether.

Our experience with Cilk shows that it is relatively easy for a program to create excess paral-
lelism in form of threads [12, Section 6]. Research on mapping applications to dataflow architec-
tures as well as on constructing dependency graphs in the compiler arena [3, 22, 32] provide further
evidence for the validity of this assumption. In addition, we assume that programmed units of
parallelism are encapsulated within functions, as supported by Cilk. Careful design of a function
requires choosing the minimal thread granularity to be coarse enough to amortize the function call
overhead. As a side effect, we avoid the excessive space and time penalties of extremely fine-grained
instruction-level parallelism. While functions are natural units of parallelism in most programming
languages, some languages expose similar opportunities such as expressions in Scheme [1], which
are exploited by Multilisp and Mul-T.

2

In short, we tackle the problem of mapping a potentially large number of software threads
automatically and efficiently into a limited number of hardware threads. A simliar problem has
been studied before in the context of Mul-T [20] and Cilk [7]. The mapping proposed as part of
these languages is a software solution of user-level threads into kernel threads or processes. Here,
we propose a microarchitectural solution for a multithreaded processor that offers a different per-
spective and has several advantages in its own right: (1) thread creation and termination does not
incur any performance penalty, (2) context switching comes for free, (3) we implement granularity
adaptation by degrading a fork into a function call with a minor performance penalty of executing
one nop, (4) we integrate thread management with memory latency hiding in the thread scheduler.
As a result, our architecture invalidates the pretense that “lazy future calls are unlikely ever to be
as cheap as the cheapest implementation of normal calls” in [20, Section 7, p. 279].

The remainder is structured as follows. In Section 2, we introduce fork degradation abstractly
within a thread model. In Section 3, we discuss the general problem of mapping software threads
into hardware threads. Section 4 is dedicated to the implementation of our thread model, and
Section 5 describes one possible instantiation of a multithreaded processor based on a simple RISC
architecture. We position our architecture in the context of previous work in Section 6.

2 The Thread Model

In the following, we discuss our thread model from the perspective of a multithreaded architecture.
Our thread model introduces a new feature called fork degradation. Thread models have been
discussed previously in [7, 9, 16], for example. We are interested in threads as known from Cilk and
Mul-T [12, 18]. In contrast to traditional preemptive schedulers for user-level or kernel threads,
these languages rely on schedulers tailored to executing a parallel program efficiently by careful
choice of the strategy for selecting threads for execution.

A hardware thread represents the hardware resources needed to shepherd the execution of a
software thread. Software threads are created and terminated by means of the instructions:1

fork <label> creates a software thread that is mapped into a hardware thread, which then shep-
herds the execution of a code block beginning at instruction address label,

join lr synchronizes the forking and the forked thread. Register lr is the link register; its use is
explained below.

We illustrate our thread model and the semantics of the fork and join instructions by means
of the example in Figure 1. Figure 1(a) shows a code fragment consisting of two functions foo

and bar. Function foo contains code blocks A, B and C. By definition, a code block shall not contain
any fork or join instructions. Before code block B, foo forks function bar, so that code block D may
execute concurrently with code block B. The control flow of functions foo and bar synchronizes by
means of the respective join statements, which enforces that code block C is executed only after
executing both join statements behind (in textual order) code blocks B and D. The code fragment

1Conway [8] introduced the fork and join pair of instructions, see also [10]. As a tribute, we use the same
instruction names, although we use the instructions with the semantics of Dijkstra’s structured cobegin and coend

commands and Hoare’s concurrency operator || [16]. Originally, Conway [8] introduced the join instruction with a
counter argument. The counter must be initialized with the expected number of threads to join, and is decremented
atomically upon each join until it reaches value 0. The thread executing the join when the counter reaches value 0
continues execution.

3

A;

B;

fork bar;

C;

join lr;

foo:

bar: D;

join lr;

text

T1(D)

T0(C)

T0(B)

(forkee)

(forker)

(forker)

time

(forker)

T0(A)

T1(D)

T1(C)

T0(B)

(forkee)

(forker)

(forker)

time

(forkee)

T0(A)

(b) forker continues (c) forkee continues(a) code fragment

Figure 1: Code fragment (a) can be executed by two threads (T0, T1) in several ways. Illustrated
are two options where the forker continues execution after the join point (b) or the forkee (c).

specifies two software threads, one associated with function foo, and the second with function bar.
We denote a software thread executing a fork instruction a forker thread, and the associated forked
thread the forkee thread.2

The diagrams in Figure 1(b) and (c) illustrate two potential assignments of the individual code
blocks of the software threads to hardware threads T0 and T1. Vertices in these diagrams represent
fork and join instructions, and the wiggly lines represent code blocks. Hardware thread T0 is
a hardware forker thread, because it executes statement fork bar; of the software forker thread
associated with function foo. In Figure 1, thread T0 shepherds the execution of initial code block A.
When the fork instruction executes, forker T0 creates a new software thread, the forkee thread,
which is assigned to hardware thread T1 for shepherding the execution of code block D.

In Figure 1(b) and (c), hardware thread T0 continues execution with the instructions after
the fork statement, that is with code block B. Alternatively, we could have chosen the opposite
assignment, where the hardware forker shepherds the software forkee, and a new hardware thread
continues execution of the software forker. However, we prefer the option illustrated in Figure 1,
because instantiating a new hardware thread to execute the software forker would include copying
the state of the runtime stack. Our proposal avoids this potential source of overhead, because it
enables us to maintain one thread context per hardware thread rather than per software thread,
and is, therefore, better suited to support fine-grained software threads.

Hardware threads T0 and T1 exist concurrently, and execution of their associated code blocks
shall proceed in an interleaved fashion on our multithreaded processor. Both threads synchro-
nize by means of the join instruction. Execution resumes only after both threads have reached
the corresponding join instructions. In principle, this leaves us with four options for choosing a
thread mapping to continue execution after the synchronization point: (1) terminate both hard-
ware threads, and pick a new hardware thread to continue execution, (2) the hardware thread
shepherding the forker always continues, see Figure 1(b), (3) the hardware thread shepherding the
forkee always continues execution after the synchronization point, see Figure 1(c), or (4) one of the

2Our naming of forker and forkee borrows from the naming of caller and callee of function calls to emphasize the
close semantic relationship.

4

foo:

fork bar;

A;

B;

join lr;

C;

bar: D;

join lr;

T0(A)

T0(D)

T0(B)

(caller)

(callee)

(caller)

time

(caller)

T0(C)

texttext foo:

call bar;

A;

B;

nop;

C;

bar: D;

return lr;

(c) single−threaded execution(b) fork degradation(a) original code

Figure 2: Interpretation of fork and join instructions (a) as a function call (b) in a single-threaded
execution (c).

hardware threads, picked by some criterion at runtime, continues execution. The original fork/join
scheme proposed by Conway [8] corresponds to option four, where the last thread reaching its join
instruction in time continues to shepherd execution. Many multithreaded architectures, such as
HEP [24], and thread models including TAM [9] follow this proposal as well. The advantage is that
the first thread reaching its join instruction may terminate and be reused immediately without
blocking any hardware thread resources.

To facilitate an efficient implementation of the hardware structures for thread management, we
pick the second option:

[Forker-Continues Invariant] After synchronizing a forker and its corresponding
forkee, the hardware thread shepherding the forker thread continues execution with the
instruction following its join statement.

The primary advantage of the forker-continues invariant is that it matches the single-threaded
execution scenario, which enables us to degrade a fork seamlessly into a function call in case when all
hardware threads are assigned already. Figure 2 illustrates the single-threaded execution of the code
fragment of Figure 1. We now introduce our enabling mechanism, fork degradation, as a mapping
between a multithreaded and a single-threaded execution. Fork degradation is an isomorphism
mapping forker to caller, forkee to callee, and interpreting the fork and join instructions as
function call, return, and a nop, as contrasted in Figure 2(a) and (b). With a single thread,
rather than forking function bar, we call function bar by jumping to label bar and saving the
return address in link register lr. The join instruction in function bar is interpreted as a return
jump to the link register address. The join instruction in function foo is redundant, because no
synchronization is needed in case of a single-threaded execution. Hence, we interpret the join

instruction in function foo as a nop. This is the beauty spot of the degradation scheme, because
the caller’s join instruction introduces a nop rather than reducing to nothing.

5

fib(6)

fib(5)

fib(4)

fib(3) fib(1)

fib(3)

fib(2)

fib(4)

fib(3) fib(2)

T0:

T0:

T0:

T1:

T2:

fib(1)T0:

T2: T2:T3:fib(2)

T0:fib(2)

T1:

fib(2)T1:

T1:

T1:fib(1)

T0:fib(6)

fib(5)

fib(4)

fib(3) fib(1)

fib(3)

fib(2)

fib(4)

fib(3) fib(2)

T0:

T0:

T0:

T1:

T2:

fib(1)T4:

T2: T5:T3:fib(2)

T0:fib(2)

T1:

fib(2)T1:

T6:

T7:fib(1)

T0:

(b) four hardware threads (T0−T3)(a) eight hardware threads (T0−T7)

Figure 3: Multithreaded Fibonacci computation with eight software threads on eight hardware
threads (left) and four hardware threads (right), where forks degrade into function calls. Function
calls are represented by slim arcs and successful forks by fat arcs.

Architectural support for fork degradation implies:

1. Fork degradation increases the granularity of a hardware thread by executing an unsuccess-
fully forked software thread as a callee function in the hardware context of the forker thread.

2. Forking functions exposes parallelism without altering the sequential semantics of the pro-
gram. We call this feature the serial elision in Cilk [12].

3. We need only one context, including one runtime stack, per hardware thread of the machine
rather than per software thread of a parallel program.

4. The programmer or compiler may fork as many software threads as desired or inherent in an
application without being aware of the limited number of hardware threads.

5. Since fork degradation incurs essentially no performance penalty, the task of specifying ex-
cess parallelism by forking a large number of software threads should be viewed as default
programming style.

To substantiate these claims, we discuss the archetypical Fibonacci computation as an example.
Below is the tree-recursive Scheme version [1] instrumented with a fork application to effect the
creation of a thread.

(define (fib n)

(if (< n 2)

1

(+ (fib (- n 1)) (fork (fib (- n 2))))))

Unless procedure fib reaches the base case (< n 2), we call fib with argument (- n 1) and fork
a new thread to evaluate (fib (- n 2)).3 After both computations are complete, we add the
results. The join instructions are (conveniently) implicit in the program representation. Figure 3
illustrates the tree-recursive evaluation of (fib 6). We show the fork tree without closing the DAG
via join vertices, because the confluent join structure is symmetric [7]. The fat arcs indicate forked
threads, and the slim arcs correspond to regular function calls. The evaluation tree in Figure 3(a)

3We assume evaluation of the list of procedure arguments in reverse order, as for example implemented in MIT
Scheme [1], so that the evaluation of the second argument of the addition is forked before evaluation of the first
argument (fib (- n 1)) begins.

6

includes seven successful forks. Accordingly, the enumeration of the software threads results in
a total of eight threads. Thus, eight hardware threads would be sufficient to service each fork
encountered during evaluation. For example, thread T0 shepherds (fib 6), represented by the
root vertex. It forks (fib 4) and calls (fib 5). Thread T1 is assigned to shepherd (fib 4) while
thread T0 continues to shepherd (fib 5).

The evaluation tree in Figure 3(b) assumes that the hardware provides only four rather than
eight threads. We assume that hardware thread T0 forks thread T1 to shepherd the evaluation
of (fib 4). Subsequently, thread T0 forks threads T2 and T3, at which point the four hardware
threads are exhausted. Now, assume thread T1 attempts to fork (fib 2) as part of evaluating
(fib 4). Since no more hardware threads are available, the fork degrades into a function call, and
thread T1 shepherds procedure fib which executes as if the fork were not present in the program
text at all. From a programmer’s perspective, a fork can be considered as a hint to the processor
to create a thread.

The evaluation tree in Figure 3(b) emphasizes the close relationship between our hardware solu-
tion and the software solutions of Mul-T and Cilk. By replacing our hardware threads with software
threads, the evaluation tree resembles the “breadth-first saturation, then depth-first” strategy of
[20, Figure 2] for the tree summation. If we replace the fork keyword in procedure fib with a
future keyword, we obtain a Mul-T program with an analogous evaluation tree. Furthermore, the
Cilk version of fib [12, Section 2] could generate this evaluation tree as well, depending on the
outcome of the random work stealing algorithm. When executed by our multithreaded architecture,
the particular set of successful forks depends on instruction latencies and the hardware scheduler.

3 Thread Mapping

Using hardware threads as shepherds for software threads introduces the problem of mapping
software threads into hardware threads. More succinctly, we seek a mapping for the threads of a
parallel application that avoids the overheads associated with traditional preemptive scheduling.
We note that the number of software threads that a program may fork is potentially unbounded.
As an example, consider the program fragment in Figure 4 with a fork statement in the loop body
of function bar4 using Conway’s join counters [8]. The forker thread shepherds function bar, and
forks n forkee threads before joining. Thus, there are n+1 software threads that may reach a join

statement. The forker thread reaches the join statement at the end of function bar, and each of
the forkees reaches the join statement of function foo. In this example, the number of software
threads is unbounded since the value of variable n could be arbitrarily large. In a naive approach of
mapping software threads to hardware threads, we might have to maintain an unbounded number
of n + 1 hardware threads, which is quite objectionable for a hardware design.

Now, consider the alternative design of a machine with four hardware threads and fork degra-
dation. We do not use a join counter. Instead, we assume that two join statements are executed
for each fork, one by the forker and the other by the corresponding forkee. The code fragment
in Figure 4 changes into the version shown in Figure 5. The number of software threads created
by the forking loop of bar is n, as in the preceding example. However, the number of hardware
threads utilized in the presence of fork degradation depends on the execution time of function foo.

Figure 6 illustrates two possible execution scenarios of the code fragment in Figure 5. The
scenario in part (a) of Figure 6 assumes that function foo requires a long execution time, and the

4We use C syntax for this sample program, assuming that fork and join have been introduced as a new keywords.

7

int c, i, n; void bar()

{

void foo(int j) c = n+1;

{ for (i=0; i<n; i++)

/* do something */ fork foo(i);

join c; join c;

} }

Figure 4: Illustration of Conway’s fork/join scheme with a join counter, creating an unbounded
number of threads.

int i, n; void bar()

{

void foo(int j) for (i=0; i<n; i++)

{ fork foo(i);

/* do something */ for (i=0; i<n; i++)

join; join;

} }

Figure 5: Code fragment for illustrating implicit granularity adaptation. No join counter is used.

scenario in part (b) assumes a relatively short execution time. In Figure 6(a), hardware thread T0

executes function bar, and begins forking foo(i) for i = 0, 1, 2, 3, Initially unused, hardware
threads T1, T2, and T3 shepherd the software threads associated with iterations i ∈ {0, 1, 2},
respectively. Thus, all four hardware threads of the processor are busy when the next fork of
iteration i = 3 occurs. This fork fails, and thread T0 executes foo(3) as a regular function call,
that is the fork instruction degrades into a function call, and the software thread forked for foo(3)
is mapped to hardware thread T0. Note that all hardware threads are utilized in this scenario,
maximizing chances for effective memory latency hiding.

barT0:

T1: foo(0)

T2: foo(1)

foo(2)

foo(3)

T1:

T2:

barT0:

T1: foo(0)

T2: foo(1)

foo(2)

T0: foo(3)

T3:

(a) long running function foo (b) short running function foo

Figure 6: Example of threaded execution with four hardware threads (T0–T3), a long and a short
running function foo.

The example in Figure 6(b) illustrates the contrasting scenario. The execution time of function
foo shall be so short that thread T0 can fork only two threads foo(0) and foo(1), before foo(0)

terminates. Thus, hardware thread T1, which shepherds foo(0), joins before forker T0 has been

8

able to fork foo(2). If we require that both the forker and forkee hardware threads must join before
we can reassign the hardware forkee thread, the schedule of this scenario would resemble that of
Figure 6(a). That schedule is likely to be inefficient since thread T0 would shepherd n − 3 of n

executions of function foo while threads T1 to T3 would be blocked waiting for the synchronization
by T0. Fortunately, we can improve hardware thread utilization, if our mapping of software into
hardware threads supports reusing the hardware forkee thread before the forker reaches the syn-
chronizing join. In the example of Figure 6(b), we reuse thread T1 to shepherd foo(2), thread T2

to shepherd foo(3), and so on. Our proposed architecture supports reuse of forkee threads as
implied in Figure 6(b).

We point out that reuse of hardware forkee threads does not provide a guarantee against blocking
hardware threads. It is possible to devise programs with a fork structure that is wasteful in terms
of hardware thread utilization. Figure 7 shows an example with n + 1 software threads. Function
foo forks itself recursively, performs some computation, and joins with its forkee. In this scenario,
the join statement of the forker will block the shepherding hardware thread. Due to our forker-
continues invariant, we cannot reuse the hardware forker thread without saving its state, preventing
its reuse. In contrast, we can reuse the forkee, because it can terminate without waiting for the
forker. In the example of Figure 7, eventually, all but one hardware thread will be blocked, and
the remaining active hardware thread (T3 in Figure 7) will execute the program sequentially. This
example highlights the asymmetry caused by the forker-continues invariant. We may reuse forkee
threads, as demonstrated in Figure 6(b), but cannot reuse forker threads without a significant
performance penalty.

int n; void foo(int j)

{

void bar(void) if (j < n-1)

{ fork foo(j+1);

fork foo(0); /* do something */

join; join;

} }

T0:

T1:

bar

foo(0)

T0: join

joinT1:

joinT2:

T2: foo(1)

T3: foo(3)

T3: foo(2)

Figure 7: Example of an inadequately structured threaded program.

We can salvage this situation in one of four ways: (1) We may declare programs such as the
one in Figure 7 as unreasonable and blame the programmer. (2) We may increase the number of
hardware threads to ameliorate the lack of memory latency hiding due to blocked threads. This
brute-force solution does not solve the pathological example of Figure 7, however. (3) We might
implement a thread switch in software to save the state of a blocked hardware thread in dynamically
allocated memory, and facilitate reuse of that thread. (4) We could devise hardware support for
promoting a failed fork into a successful fork. This would be the inverse operation of our proposed
method of graceful degradation of a fork into a function call. The latter option may be the most
desirable, yet requires an appropriate language model, such as Multilisp [14], to be implemented
with reasonably low complexity. We will not discuss these options any further, but focus on the
idea of fork degradation itself.

9

4 Microwidgets for Thread Management

Our multithreaded processor centers around microarchitectural structures for managing hardware
threads efficiently. In particular, we introduce a hardware structure, the thread table, for tracking
the relationship between forker and forkee threads to implement the synchronizing join operations.
Our goal is a space-efficient structure that enables the implementation of fast thread management
operations. We pursue this goal with a bookkeeping structure of limited size, that is for a bounded
number of threads, so that thread creation, termination, and selection can be implemented with
fast circuits within a bounded area of silicon real estate.

In the following, N shall be the number of hardware threads supported by our architecture.
Furthermore, thread operations refer to hardware threads unless specified explicitly. For example,
thread creation refers to allocating a hardware thread, and thread termination means releasing a
hardware thread. We split the discussion of the proposed microarchitecture into three parts: (1)
we introduce the hardware thread table, (2) we discuss the use of the link register to support
an unbounded number of software threads with a bounded number of hardware threads, (3) we
illustrate the function of thread table and link register by discussing two simple execution scenarios.

4.1 Thread Table

Figure 8 shows the organization of the thread table for N = 4 hardware threads T0–T3. Each
hardware thread consists of a state field, a program counter, an identifier for a blocking thread,
and base and limit addresses of the runtime stack. In addition, we maintain a 2-dimensional table
of N2 − N join bits, one for each pair of forker and forkee thread. The join bit records whether
the forkee is active, that is whether it has executed (join-bit value 0) or has not (join-bit value 1)
executed the corresponding join instruction.

join
bits

T3T2T1T0

state

stack base
stack limit

PC

bid

T0

T1

T2

T3

T0 T1 T2 T3

fo
rk

er
 th

re
ad

forkee thread

0 0 0

0 0 0

0 0 0

0 0 0

Figure 8: Thread table structure: for N hardware threads, the table contains Θ(N) bits for
each threads’ state, program counter, an identifier of the blocking peer thread, and runtime stack
addresses, plus N2 − N join bits for pairs of forker and forkee.

The set of states for a hardware thread include the following:5

unused The thread is not assigned to a software thread, and may not be scheduled for execution.
Instead, it is available for shepherding a newly forked software thread.

active The thread is actively shepherding a software thread, and may be scheduled for execution.

5Additional states may be introduced in support of features such as atomic regions, for example.

10

join-blocked (applies to forker threads only) A forker thread has executed a join instruction, but
the forkee has not executed the corresponding join instruction yet. The thread may not be
scheduled for execution.

load-blocked The thread has issued a load instruction to memory, which has not responded yet.
The thread may not be scheduled for execution.

load-commit The thread has an outstanding memory request, which has been serviced by the
memory. The thread should be scheduled for execution to finalize the pending memory
transaction.

States ‘load-blocked’ and ‘load-commit’ support a split load operation, and are described in more
detail in Section 5.3.

The program counter (PC) of a hardware thread in Figure 8 contains the memory address of
the next instruction to be executed. Our architecture permits issuing an instruction of one thread
per clock cycle. There is no context switch overhead across hardware threads. Just the opposite,
the default mode of operation issues instructions from different threads during each clock cycle, as
already implemented in HEP [24].

The blocking thread identifier field (bid) in Figure 8 is needed to enforce the forker-continues
invariant. This field stores the thread identifier of a thread’s forkee, in case the forker thread
executes the join instruction before the forkee. For example, if thread T0 forks thread T1, and T0

executes its join instruction before forkee thread T1 reaches the corresponding join instruction,
forker T0 must block until forkee T1 reaches the join instruction. Should forker thread T0 fork
more than one forkee thread, we must ensure that T0 is reactivated only when thread T1 reaches
the join instruction. To that end, we record the thread identifier of the forkee in the bid field of
forker thread T0.

The stack base and limit fields of the thread table in Figure 8 record the range of memory
assigned to the runtime stack of each hardware thread. An operating system may initialize the
range fields when booting the processor. Each hardware thread obtains a private runtime stack
as scratch memory for the software threads it shepherds. Typically, the runtime stack is used for
local variables of functions called by a software thread, including those called due to a degraded
fork attempt.

The join-bit table in Figure 8 records the activity of a forker’s forkee threads. This table can be
implemented as an (N × N)-bit SRAM, for example. Each row is associated with a forker thread.
If a forkee is active and has not executed the corresponding join instruction yet, the join bit is
assigned value 1, otherwise value 0. The join-bit table enables us to reuse forkee threads if they
join before the forker executes the corresponding join, see Figure 6(b).

4.2 Extended Link Register Semantics

Reusing hardware forkee threads can lead to the situation where a potentially unbounded number of
join statements are yet to be executed by an active forker thread while the corresponding forkee
threads have long terminated. Figures 5 and 6 above illustrate this case, where a single forker
thread T0 creates an arbitrarily large number of n forkees before it executes the corresponding n

join statements. We need to record the information about success or failure of the fork instructions
to enable proper interpretation of the corresponding join instructions by the forker thread. Since
managing an unbounded amount of state is generally more efficient in software than in hardware,

11

we wish to pass this information from hardware to software. To that end, we employ an established
mechanism, the link register, and extend its use to support fork and join instructions. The software
is responsible for spilling the link register on the runtime stack.

012

fork succ/fail

1

forker/forkee

peer thread identifier

(b) fork success

3101

link address

2

fork succ/fail

0

(a) fork failure

31

join−nop

Figure 9: Use of link register in case of an unsuccessful (a) and successful (b) fork attempt. This
example assumes 32-bit words, with instructions being aligned to 32-bit boundaries, such that the
least significant two bits do not encode address bits.

The fork instruction generates the contents of the link register as a side effect, analogous to
a jump-and-link instruction [15]. The information assigned by the fork instruction is needed for
interpreting the associated join instructions, just like the returning jump uses the link address in
case of a function call. We need to pass three pieces of information from a fork to the associated
joins, as illustrated in Figure 9: (1) One bit enables us to distinguish between a successful or
unsuccessful fork. (2) If the fork is unsuccessful and degrades into a function call, the remaining
bits of the link register shall contain the conventional link address. The join-nop bit is initialized
to zero. When interpreting the corresponding join instruction in the callee as a return statement
we toggle the join-nop bit. Then, during execution of the corresponding join instruction in the
caller, we test for value one to determine whether we must interpret the join as a nop. (3) If the
fork succeeds, the architecture creates two link register values, one for the forker and one for the
forkee thread. One bit identifies the thread as forker or forkee, and the remaining bits encode the
peer thread identifier. The peer thread identifier associated with a forker is the forkee identifier
and vice versa. Together, the identifier of a running thread and the identifier of the peer thread in
the link register facilitate selection of the associated join bit in the join-bit table.

link register fields description
succ/fail fkr/jnop peer tid/link addr

succ forker forkee tid peer is forkee tid
succ forkee forker tid peer is forker tid
fail 0 link address return to link address
fail 1 — interpret join as nop

Table 1: Extended link register semantics.

Table 1 summarizes the four usage cases of the link register including assignments to the individ-
ual register fields that form the link register triple. The fork success/fail field and the forker/forkee
field, also used as join-nop field, require one bit each. As illustrated in Figure 9, we might use the
least significant bits of a 32-bit, big-endian architecture with 32-bit alignment of instruction words
to store these two fields, because these two byte-selector bits are typically unused anyway.

The following pseudo-assembly code demonstrates the use of the link register in the presence

12

of two nested forks. When function fork-foo-bar is entered, the link register shall hold its return
address.

fork-foo-bar:

sub sp sp 8 # create stack frame

st lr 0(sp) # spill lr for return

fork foo # first fork (assigns lr)

st lr 4(sp) # spill lr for join with foo

fork bar # second fork (assigns lr)

...

join lr # join bar

ld lr 4(sp) # restore lr for join with foo

join lr # join foo

ld lr 0(sp) # restore link register

add sp sp 8 # destroy stack frame

jr lr # return

In this code fragment the link register is used for three purposes: (1) to pass the return address
of fork-foo-bar to the returning jump at the end of the program, (2) to pass the link information
generated by the first fork instruction to the corresponding join, and (3) to pass the link information
of the second fork instruction to the corresponding join. We need to spill the link register value twice
onto the runtime stack, first to save the return address before the fork overwrites this value, and
second to save the value generated by the first fork instruction before the second fork instruction
overwrites that value. Note that the fork/join pairs for foo and bar are nested. Thus, we do not
need to spill the link register between instruction fork bar and the subsequent join lr, assuming
the program contains no further function calls or forks between these instructions. The use of the
link register in support of fork/join pairs is compatible with the use for function call/return pairs,
including common conventions for function calls and register spilling.

4.3 Execution Scenarios

We discuss three multithreaded program executions to illustrate the basic use of the thread table
and link registers as introduced in Sections 4.1 and 4.2. We assume that the thread table comprises
four threads, and that hardware thread T0 shepherds execution of the initial software thread of a
program.

Execution Scenario 1

Figure 10 illustrates the scenario where hardware thread T0 forks a first software thread that is
mapped to hardware thread T1. While thread T1 is active, thread T0 forks another software thread,
which is mapped to hardware thread T2. The fork tree structure of this multithreaded program
is shown in Figure 10(a). The thread diagram in Figure 10(b) includes the link register triples
generated for the forker and forkee threads. Figure 10(c) shows the state transitions of the relevant
portions of the thread table as it transitions due to fork and join events. For each step, the table
depicts the state after committing the transitions due to the instructions shown below the diagrams,

13

unusactive unus

T0 T1 T2 T3

active unusactive active

T0 T1 T2 T3

active

unusactive unus

T0 T1 T2 T3

unus

T2

T1

T0

(b) thread diagram (c) thread table state transitions(a) fork tree

T0

T0 T1 T2 T3

1 1 0T0

T0 T1 T2 T3

1 0 0

(1) T0: fork T2(2)

T0

T0 T1 T2 T3

0T0

T0 T1 T2 T3

0

unus

T0 T1 T2 T3

T0

T0 T1 T2 T3

0 0 0T0

T0 T1 T2 T3

active active

1

unus

T0 T1 T2 T3

block

2

1

block

2

active

T0 T1 T2 T3

2

0

unus

10

unus active

unus unus

00

T0: fork T1

(6)(5)

(4)

T2: join lr (succ,fke,T0) T0: join lr (succ,fkr,T1)

T0: join lr (succ,fkr,T2) T1: join lr (succ,fke,T0)(3)

lr=(succ,fkr,T1) lr=(succ,fke,T0)

T2T0

T0

T0

T1

lr=(succ,fkr,T2) lr=(succ,fke,T0)

T0

T0

Figure 10: Basic execution scenario of a multithreaded program. We only show the thread table
row of forker thread T0.

with the shepherding thread identifier and, in case of joins, the link register triple. Initially, we
assume that thread T0 is the only active hardware thread, the state of all other threads shall be
‘unused,’ and all join bits are initialized to 0.

The first event during execution is the fork performed by hardware thread T0, see step (1) of
Figure 10(c). We assume that our thread table management hardware detects that thread T1 is
unused, and the fork is successful. The link register value passed to thread T0 asserts the fork
success bit, the forker bit since T0 is a forker thread, and records thread T1 as forkee thread. The
link register value generated for forkee thread T1 asserts the fork success bit, marks the thread as
forkee, and assigns thread T0 as forker thread. During the second successful fork event, step (2),
the link register values are assigned analogously. At this point in time, the thread table contains
three active threads T0, T1, and T2. Forker thread T0 has two active forkee’s T1 and T2, which is
reflected by the join bits in step (2) of Figure 10(c).

In step (3) thread T0 executes a join instruction. Thread T0 is the first of the two peers,
forker T0 and forkee T2, to attempt synchronization. The link register identifies thread T0 as
forker with forkee peer T2. This information facilitates retrieving the (encircled) join bit in row T0

and column T2. Since the join bit has value 1, the forkee is still active. According to the forker
continues invariant, forker T0 must block until forkee T2 executes the corresponding join statement.
We switch the state of thread T0 to ‘block,’ and record identifier 2 of blocking thread T2 in the bid

field of T0.

14

In step (4) thread T1 executes a join instruction. The link register identifies thread T1 as forkee
with forker peer T0. We terminate thread T1 by assigning state ‘unused,’ and toggle the associated
join bit to value 0. Thread T0 remains blocked. In step (5) thread T2 joins. According to the link
register, we identify T2 as a forkee, which allows us to terminate T2 by assigning state ‘unused,’ and
toggling the join bit in the row of forker T0. Furthermore, thread T2 blocks thread T0, as recorded
in the bid field of T0. Consequently, forker T0 may continue execution. We reactivate thread T0

by assigning state ‘active.’ Thread T0 executes the last join instruction in step (6). It joins with
forkee thread T1. Since the associated join bit is 0, we deduce that T1 has terminated already.
Thus, forker T0 continues execution without changes to the thread table.

Execution Scenario 2

Figure 11 illustrates a threaded execution scenario with reuse of forkee threads. In contrast to
Scenario 1, the execution time of thread T1 shall be so short that it terminates before thread T0

executes its second fork statement.

unusactive unus

T0 T1 T2 T3

unus

unusactive unus

T0 T1 T2 T3

active

T0

T0 T1 T2 T3

1 0 0

T0

T0 T1 T2 T3

active

T0 T1 T2 T3

1

0

unusunus unus

00

T0

T0 T1 T2 T3

0

unus

T0 T1 T2 T3

block

1

01

active unus

T1

T1

T0

(c) thread table state transitions(b) thread diagram

T0

T0 T1 T2 T3

0 0

T0

T0 T1 T2 T3

0 0 0

unusactive

T0 T1 T2 T3

unus

0

unus

(a) fork tree

(3)

(1)

T0

T0 T1 T2 T3

active

T0 T1 T2 T3

0

unusactive unus

01

T0: fork T1

T0: fork T1 (4) T0: join lr (succ,fkr,T1)

(6) T0: join lr (succ,fkr,T1)(5) T1: join lr (succ,fke,T0)

T1: join lr (succ,fke,T0)(2)

T0

T0

lr=(succ,fkr,T1) lr=(succ,fke,T0)

T1T0

T0

T0

T1

lr=(succ,fke,T0)lr=(succ,fkr,T1)

Figure 11: Execution scenario of a multithreaded program with thread reuse.

Step (1) of Scenario 2 is the same than in Scenario 1. In step (2), thread T1 performs a join.
Since T1 is a forkee, we terminate T1 by reassigning ‘unused’ to its state, and toggling the join bit
to value 0. Note that the state of the thread table is identical to the initial state before the first
fork. In step (3) thread T0 forks a second software thread. Since thread T1 is unused, we reuse T1

to shepherd the new forkee of T0. We record the mapping by assigning state ‘active’ to thread T1

and toggle the join bit to value 1. The thread table is now in the same state than after the first

15

fork event. The difference in event history is encoded in the link register values.
In step (4) thread T0 joins. The link register identifies T0 as forker and the corresponding

forkee as T1. Since the associated (encircled) join bit has value 1, T1 is still active, and we block
thread T0. We record T1 in the bid field of T0. In step (5) thread T1 joins. According to the
fork structure, this join corresponds to the second fork of thread T0. Since the link register value
identifies T1 as forkee, we terminate T1. Furthermore, we reactivate forker thread T0 which has
been blocked waiting for T1. Finally, in step(6) thread T0 joins with forkee thread T1, which did
terminate already. Thus, thread T0 continues execution without modifications to the thread table.

Note that the reuse of thread T1 is not recorded in the thread table at all. Instead, the thread
table records at each point in time which hardware threads are active forkees. The fact that
hardware threads are reused is encoded in the link register values, which the software must spill on
the runtime stack to support nested fork structures.

Execution Scenario 3

Figure 12 illustrates an execution scenario with a failed fork. Since a failed fork does not modify
the thread table, the state transitions associated with the successful forks resemble those of the
previous scenarios, and we omit the derivation of the state transitions of the thread table. The
fork tree in Figure 12(a) illustrates the underlying fork structure. Thread T0 forks thread T1 and
subsequently thread T2. Thread T1 forks thread T3. At this point the four hardware threads of the
machine are in use. When thread T3 forks another software thread, the mapping into a hardware
thread fails, and T3 executes the forked software thread by degrading the fork into a function call.

T0

T0

T0

T2

T1

T3

T3T3

T1T0

T0

fail

T1

T1

T1

T3

T3

T3

T3

lr=(fail,0,link addr)

lr=(succ,fkr,T3) lr=(succ,fke,T1)

lr=(succ,fkr,T1) lr=(succ,fke,T0)

lr=(fail,1,link addr)

lr=(succ,fke,T0)lr=(succ,fkr,T2)

T2T0

T0

T0

(b) thread diagram(a) fork tree

[caller join: nop]

[callee join: return]

Figure 12: Execution scenario of a multithreaded program with a failed fork.

16

IF

RFILE

EXID

ALU DMEM

ME

LBUF

RFILE

WB

MQ
IMEMTTBL

PC

TREQ TRES TCOM

Figure 13: Sketch of a multithreaded RISC pipeline with thread table (TTBL) and thread modules
(TREQ, TRES, TCOM), and with memory queue (MQ) and load buffer (LBUF) for decoupling
the data memory (DMEM).

The thread diagram shows the link register values exported by the hardware to software. The
interpretation of the link register values assigned by the successful forks proceeds analogous to
those discussed in Scenarios 1 and 2. Therefore, we limit our discussion to the case of the failed
fork.

When thread T3 executes its fork instruction, all four hardware threads of our machine are
active already. The fork fails because no more hardware threads are available to shepherd the new
software thread. Hence, the fork degrades into a function call, and the newly assigned link register
of thread T3 encodes the failure as well as the return address for the callee. Thread T3 proceeds
shepherding the callee until it reaches the callee’s join instruction. The processor identifies this
join as a returning jump, because of the fail bit in the link register and because the join-nop bit
is zero. As a side-effect of the join instruction, the processor replaces the join-nop bit in the link
register with value one as a preparatory step for the interpretation of the next (in temporal order)
join instruction. After the returning jump, thread T3 continues shepherding the execution of the
caller which ends in a join instruction. The link register indicates a failed fork and contains a one
in the join-nop field. Therefore, the hardware interprets the caller join as a nop.

Note that no bookkeeping is required in the thread table to cope with an unsuccessful fork
attempt. The thread table is merely inspected by the fork instruction to identify that no hardware
thread is available for shepherding a new software thread.

5 Multithreaded Processor Microarchitecture

In this section, we extend the pipelined RISC architecture of Hennessy and Patterson [15] into a
multithreaded processor with implicit granularity adaptation. The choice of this simple architecture
allows us to focus on our new ideas while avoiding unnecessary complexity. It should be possible to
incorporate implicit granularity adaptation into various different architectures in principle, although
detailed design work is needed to examine the cost effectiveness on a case-by-case basis.

Figure 13 sketches the extended 6-stage pipeline. The vanilla RISC datapath consists of five
pipeline stages IF, ID, EX, ME, and WB. We add the PC-stage in front of the IF-stage to accommo-
date the thread table and a thread scheduler. Control modules TREQ, TRES, and TCOM support the
implementation of fork degradation. We decouple the data memory interface from the pipeline to
support one outstanding load request per thread. Furthermore, the register file shall have one seg-
ment per hardware thread. In the following, we outline the operational aspects of fork degradation,
thread scheduling, and a possible implementation of memory latency hiding.

17

5.1 Fork Degradation

We implement fork degradation with three structures: (1) thread table and scheduler of the PC-
stage, (2) thread modules TREQ in the ID-stage, TRES in the EX-stage, and TCOM in the ME-stage,
and (3) two link registers LRR and LRE.

Thread Table

As discussed in Section 4.1, the thread table (TTBL) maintains the state of hardware threads. In
particular, it records thread creation and termination by means of fork and join instructions.
The thread table receives fork and join requests from modules TREQ and TCOM. Upon receipt of a
fork request, it scans the state fields of the individual threads in search of an ‘unused’ thread. If an
unused thread exists, the fork request is successful, and the thread table responds with an unused
thread identifier. Otherwise, the thread table responds with a failure code.

When the thread table receives a join request, it must terminate or block the joining thread.
As described in Section 4, we use the join table and the state and bid fields of the thread table
to record the relationship between forker and forkee threads. After receiving a join request, the
thread table inspects these fields including the join table entry as determined by the link register.
It blocks a joining thread by assigning state ‘blocked’ and terminates a joining thread by assigning
state ‘unused.’ Also, blocked peer threads are reactivated if the identifier of the joining thread
matches the entry in the bid field.

Thread Modules

Thread modules TREQ, TRES, and TCOM spread the interactions of the pipeline with the thread table
across multiple clock cycles. We split the fork instruction across three pipeline stages while the
join instruction remains confined to the ME-stage.

The TREQ module is located in the ID-stage, where it identifies fork instructions by opcode.
When a fork instruction enters the pipe, the TREQ module signals a fork request to the thread table.
During the clock cycle following a fork request, the thread table responds with a fork success or fail
signal. Also, in case of a successful fork, the signal is accompanied by a new forkee thread identifier.
The TRES module in the EX-stage forwards the reply from the thread table to the ME-stage, if the
instruction occupying the EX-stage is a fork instruction.

Yet one clock cycle later, when the fork instruction occupies the ME-stage, the TCOM module
commits the fork. In case of a successful fork, it signals the thread table to activate the new forkee.
Otherwise, no action is required. The TCOM module also composes the link register triples for a
successful fork, as explained below. If a join instruction reaches the ME-stage, the TCOM module
signals a join request to the thread table, which includes forker and forkee thread identifiers.

Link Registers

We assume that each hardware thread reserves one register in its segment as a link register. As
described in Section 4, the link register passes the information from a fork instruction to the
associated join instructions, coupling the interpretation of the joins to the success of the fork.
The detour from the fork instruction through the link register, and potentially via register spilling
through the runtime stack back to the join instructions, supports an unbounded number of software
threads.

18

In case of a regular function call or an unsuccessful fork, only one link register (LRR) is needed
to store the link address, because the control flow remains within the context of the shepherding
hardware thread. We use the traditional link register mechanism for this purpose. The link address
is computed in the ID-stage, and is passed through the EX and ME stages before it is written back
into the register file.

In case of a successful fork, control flow splits into two threads. Now, we have to pass the
fork information to both hardware threads the forker and the forkee. We denote the link register
of the forker as LRR and the link register of the forkee as LRE. The TCOM module is responsible
for generating the link triples for both forker and forkee threads. Link register LRR holds the link
register triple of the forker thread. It contains the fork success bit and the forkee thread identifier
both forwarded by the TRES module. The forkee triple in the LRE register contains the success bit
and the thread identifier of the forker, and is passed to the forkee thread. During the write-back
phase, both link register values are stored in the link registers of the segments associated with the
forker and forkee threads, respectively.

Fork Walk-Through

In the following, we describe the traversal of a fork instruction through the processor pipeline. We
assume that the thread scheduler selects an active hardware thread, whose program counter (PC) is
issued to the instruction fetch (IF) stage, and the instruction memory returns the fork instruction.
It is decoded in the ID-stage. Simultaneously, the TREQ module identifies fork instructions by
opcode, and signals a fork request to the thread table.

When the fork instruction occupies the EX-stage, the thread table responds to the TRES module.
If a hardware thread is available for shepherding the forked software thread, the thread table reserves
the forkee thread and responds with its thread identifier. Otherwise, if all threads are active, the
response indicates an unsuccessful fork. The TRES module relays the response of the thread table
to the ME-stage.

The TCOM module commits the fork. If the fork request is successful, the TCOM module signals
the thread table to commit the reserved forkee thread, and initializes the link register values for the
forker and forkee in the LR and LRE portions of the ME pipeline register. In case of an unsuccessful
fork request, the TCOM module effects the degradation of the fork instruction into a function call.

We place the TCOM module in the ME-stage of the pipeline, because this is the stage where the
RISC pipeline commits an ordinary function call by feeding the address of the function entry point
back to the program counter (PC). When the multithreaded processor executes a fork instruction,
the ALU computes the same program counter as for an ordinary function call. However, the TCOM

module directs the thread table to consume the program counter in one of two ways. In case of a
successful fork, the program counter is stored in the PC field of the forkee thread. In contrast, if the
fork fails, the program counter is stored in the PC field of the forker thread, which will subsequently
jump to the function as would be the case with an ordinary function call.

5.2 Thread Scheduling

Our processor architecture enables context switching amongst hardware threads during each clock
cycle. The thread scheduler is responsible for selecting an active thread in the thread table, and
supplies its program counter to the IF-stage. Unused and blocked threads are not eligible for

19

execution. A simple scheduling algorithm such as a round-robin scheduler guarantees fairness, and
can be based on a cyclic prefix circuit.

The datapath in Figure 13 shows a simple datapath without any interlocks and forwarding
paths. This design relies on the thread scheduler to select each thread only as often as required
to prevent data and control hazards. Alternatively, we could invest into a more complex datapath
with interlocks and forwarding. The former choice facilitates a simple, faster hardware design at
the expense of allowing a single thread to be scheduled during every third or fourth clock cycle
only. In contrast, the latter choice invests hardware complexity to improve the performance of
single-threaded programs [19]. We may implement fork degradation for either of these choices.

5.3 Memory Latency Hiding

A primary purpose of multithreading is the hiding of memory latencies. Although integrating
memory latency hiding into the processor architecture is orthogonal to the implementation of fork
degradation, it does impact the design of the thread scheduler. Therefore, we discuss this topic as
far as it relates to our proposal.

Figure 13 emphasizes the structures surrounding the data memory (DMEM). To prevent load
instructions from stalling the pipeline in face of high memory latencies, we decouple the data
memory from the pipeline by introducing a memory queue (MQ) and a load buffer (LBUF). The
memory queue is used to enqueue load and store instructions, and the load buffer stores load values
returned by the data memory. The load buffer has one entry per hardware thread, so that each
hardware thread can have one outstanding load request. This design is independent of the memory
subsystem, which may include caches, employ memory banks, be a pipelined memory architecture,
or be distributed across a larger machine. Although we describe the latency hiding implementation
in the context of data memory, the same decoupling can be applied to the instruction memory
(IMEM).

We illustrate the interaction between the thread scheduler and the decoupled data memory by
means of the design of a split load instruction. The split load instruction shall not be part of the
instruction set. Instead, we maintain the regular load instruction but implement the instruction
such that the hardware interprets the load as a split load. As a concrete example, assume we have
a regular load instruction for a RISC pipeline:

lw r9 4(r8)

which loads into register r9 the word stored at the effective address computed by adding immediate
value 4 to the value stored in register r8. We split this instruction into two phases, the load issue
and the load commit phase to match the organization of the decoupled memory:

lw lbuf[tid] 4(r8) # load issue

lw r9 lbuf[tid] # load commit

The load issue phase enqueues a tuple consisting of thread identifier tid of the shepherding hardware
thread and the effective address in the memory queue. After the memory has serviced the load
request, it places the loaded value into the field of the load buffer associated with thread tid.
Thereafter, the load commit phase reads the value from the load buffer and completes the load by
writing the value back into register r9.

The execution of the two phases requires interaction between the thread scheduler and the
data memory as follows: when a load instruction traverses the pipeline for the first time, it enters

20

the load issue phase. Upon enqueuing the load request into the memory queue, we assign state
‘load-blocked’ to the shepherding thread, cf. Section 4.1. The load instruction passes through the
WB-stage without stalling the pipeline as if it were a nop. The shepherding thread will not be
scheduled for execution until the data memory places the loaded value into the load buffer. The
load buffer signals this event to the thread table. In response, we change the state of the thread to
‘load-commit,’ cf. Section 4.1.

The thread scheduler may now select the thread for execution, and reissue the original load
instruction, this time in order to commit the load. During the load commit phase, the load instruc-
tion passes through the pipeline until it reaches the ME-stage. There, it reads the loaded value
from the load buffer and passes it to the WB-stage, where the value is written back into the register
file in the same fashion a regular load instruction would be implemented. At this point in time,
the execution of the load instruction is complete. The thread state can be reset to the state before
the load instruction has been issued for the first time, commonly state ‘active.’

6 Related Work

Implicit granularity adaptation has been studied in the context of the multithreaded programming
languages Mul-T [18, 20] and Cilk [7, 12]. Both language implementations are based on lazy task
creation [20], and both languages maintain task deques (doubly-ended queues) of activation frames
in software. One way of characterizing the overhead of these implementations is to compare the
runtime of a multithreaded program executed on one single-threaded processor with the fastest
sequential version. The experimental evaluations in [20] and [12] show that these runtimes range
from a factor close to 1 up to about 2 for different suites of benchmark programs. Cilk has a
performance advantage over Mul-T, which is due to its compilation strategy. The Cilk compiler
generates a fast and a slow clone for each Cilk procedure, as described in [12, Section 4]. The
work on indolent closure creation [27] revealed that a different compilation strategy can reduce the
runtime overhead of a failed fork (spawn) even further.

Even the smallest overheads due to the parallel runtime system matter in practice, because
amortizing a loss of a seemingly harmless factor of 2 in the sequential runtime requires doubling
the number of processors to achieve the same speedup that an ideal parallel runtime system could
provide with half the number. This is the gap where our multithreaded processor helps: it reduces
the overhead of both forking a thread and degrading a fork into a function call to zero. The
hardware manages the bookkeeping of threads without the need for software contexts.

The performance benefit we can expect from implicit granularity adaptation depends on the
underlying architecture. The simple pipeline described in Section 5 offers a potential performance
benefit by means of memory latency hiding. More complex architectures may also exploit in-
struction level parallelism. Independent of the base architecture, however, implicit granularity
adaptation simplifies the programming of parallel applications. This is the primary benefit of our
proposal: When using Cilk (or similar languages like Mul-T) for work-stealing across multiple
multithreaded processors of a parallel machine, the same Cilk program exploits processor-level par-
allelism across the machine, and within each multithreaded processor it exploits memory latency
hiding by interleaving multiple threads to speedup the execution. One multithreaded Cilk pro-
gram can exploit both architectural structures seemlessly. Future research will have to determine
whether hardware support is desired to reduce the cost of stealing a thread from a multithreaded
processor. Irrespectively, since the Cilk programmer does not have to be concerned with how many

21

multithreaded processors with how many hardware threads a particular machine provides, such
Cilk programs can be considered portable.

Memory latency hiding by means of a multithreaded processor is important with respect to
the design of the memory system. Unlike depth-first scheduled threads, which can share a com-
mon cache quite effectively [6], Cilk threads tend to operate on distinct working sets. Hence, the
memory size of a multithreaded processor that supports Cilk should be proportional to the num-
ber of hardware threads. Since a larger memory has longer latencies, the multithreaded processor
should be able to hide these memory latencies. In contrast, hiding memory latencies by means of
multithreading is known to be not scalable in parallel machines [5].

A large body of software implementations of multithreaded languages has been explored in
the past. The papers on Lazy Threads [13] and Concert [17] contain a plethora of references to
related work. Lazy threads are based on compiler support to customize the memory management
of activation frames with so-called stacklets. This customization enables a more general handling
of activation frames in the context of non-strict languages than is required by the semantics of a
sequential function call. The Concert system employs a customized compiler to reduce the cost of
thread management by means of a hybrid stack-heap execution mechanism. Similar to Cilk, the
compiler generates two clones for each thread body, one of which executes off a stack-allocated
activation frame, and the other from a heap-allocated context. A thread executes optimistically
on its caller’s stack, and is converted lazily into a heap-allocated thread only when necessary. It is
the compiler’s responsibility to determine whether a parallel call can be replaced by a sequential
function call.

Besides the application-centric scheduling goal for a single multithreaded application, preemp-
tive threads have been introduced with a processor-centric scheduling goal, which is to utilize the
expensive processor resource. The most widely known types of preemptive software threads are
user-level and kernel-level threads [23, 26, 21, 11]. The primary focus of preemptive threads is to
enable the user or programmer of a machine to specify a number of independent threads that share
a single or multiple processors. If one of these threads blocks, for example in a disk access, it is
the responsibility of the scheduler to ensure utilization of the processor by switching to another
thread. Combining the methods of scheduling multiple virtualized multithreaded applications on
one or more multithreaded processors complicates the scheduling problem [25].

Multithreaded architectures appeared in early computer designs such as Bull’s Gamma 60 [4],
which used a primitive form of multithreading to hide the latency of all machine operations, in-
cluding arithmetic, memory accesses, and I/O. Later designs emphasized the use of multithreading
for memory latency hiding in multiprocessors, where memory access latencies are fundamentally
large because they are dominated by communication distances. Burton Smith pioneered the use
of multithreading for memory latency hiding in multiprocessors. He architected HEP in the late
1970’s [24], later Horizon [29], and more recently Tera [2]. Due to today’s microtechnologies, even
single-processor architectures suffer from the so-called memory wall [33]. Multithreading has been
applied in various facets; [31] provides a comprehensive review of multithreaded architectures. Si-
multaneous multithreading [30] is the most popular variant for today’s superscalar processors. We
are not aware of any existing architectural support for implicit granularity adaptation by means of
fork degradation. While we do not foresee any principle difficulties, future work will have to show
whether fork degradation can be implemented cost effectively in various computer architectures.

22

7 Conclusion

We propose a multithreaded processor architecture with implicit granularity adaptation as a means
of interpreting programs with excess parallelism efficiently. We introduce fork degradation to map
an unbounded number of software threads into a bounded number of hardware threads. Our
architecture supports Cilk or Mul-T programs that specify the parallelism inherent in an application
by executing these programs space and time efficiently.

Acknowledgements

I thank Matteo Frigo and Ahmed Gheith for our discussions on the reuse of hardware threads,
and their help with the patent application [28]. Furthermore, Jim Peterson’s and Ram Rajamony’s
comments on an earlier proposal motivated the refined architecture presented here.

References

[1] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer Programs.
MIT Press, 2nd edition, 1996.

[2] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porterfield, and
Burton J. Smith. The Tera Computer System. In 4th International Conference on Supercom-
puting, pages 1–6. ACM Press, 1990.

[3] Arvind, David E. Culler, and Gino K. Maa. Assessing the Benefits of Fine-Grain Parallelism
in Dataflow Programs. In Supercomputing’88, pages 60–69, Orlando, FL, November 1988.

[4] M. Bataille. Something Old: The Gamma 60, The Computer that was Ahead of Its Time.
Honeywell Computer Journal, 5(3):99–105, 1971.

[5] Gianfranco Bilardi and Franco P. Preparata. Horizons of Parallel Computation. Journal of
Parallel and Distributed Computing, 27(2):172–182, June 1995.

[6] Guy E. Blelloch and Phillip B. Gibbons. Effectively Sharing a Cache Among Threads. In
16th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages 235–
244, Barcelona, Spain, June 2004.

[7] Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computations by
Work Stealing. In 35th Annual Symposium on Foundations of Computer Science, pages 356–
368, Santa Fe, New Mexico, November 1994.

[8] Melvin E. Conway. A Multiprocessor System Design. In Fall Joint Computer Conference,
pages 139–146. AFIPS, Spartan Books (vol. 24), October 1963.

[9] David E. Culler, Seth C. Goldstein, Klaus E. Schauser, and Thorsten von Eicken. TAM—A
Compiler Controlled Threaded Abstract Machine. Journal of Parallel and Distributed Com-
puting, 18(3):347–370, July 1993.

[10] Jack B. Dennis and Earl C. Van Horn. Programming Semantics for Multiprogrammed Com-
putations. Communication of the ACM, 9(3):143–155, March 1966.

23

[11] Ralf S. Engelschall. Portable Multithreading: The Signal Stack Trick for User-Space Thread
Creation. In Usenix Annual Technical Conference, pages 239–250, San Diego, CA, June 2000.

[12] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation of the Cilk-5
Multithreaded Language. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 212–223, Montreal, Quebec, Canada, June 1998.

[13] Seth C. Goldstein, Klaus E. Schauser, and David E. Culler. Lazy Threads: Implementing a
Fast Parallel Call. Journal of Parallel and Distributed Computing, 37(1):5–20, August 1996.

[14] Robert H. Halstead, Jr. Multilisp: A Language for Concurrent Symbolic Computation. ACM
Transactions on Programming Languages and Systems, 7(4):501–538, October 1985.

[15] John Hennessy and David Patterson. Computer Organization and Design. Morgan Kaufmann,
2nd edition, 1998.

[16] C. Antony R. Hoare. Communicating Sequential Processes. Prentice Hall, Englewood Cliffs,
United Kingdom, 1985.

[17] Vijay Karamacheti, John Plevyak, and Andrew A. Chien. Runtime Mechanisms for Efficient
Dynamic Multithreading. Journal of Parallel and Distributed Computing, 37(1):21–40, August
1996.

[18] David A. Kranz, Jr. Robert H. Halstead, and Eric Mohr. Mul-T: a High-Performance Parallel
Lisp. In ACM SIGPLAN 1989 Conference on Programming language design and implementa-
tion, pages 81–90, Portland, OR, 1989.

[19] James Laudon, Anoop Gupta, and Mark Horowitz. Architectural and Implementation Trade-
offs in the Design of Multiple-Context Processors. In Robert A. Iannucci, editor, Multithreaded
Computer Architecture: A Summary of the State of the Art, pages 167–200. Kluwer Academic
Publishers, Boston, MA, 1994.

[20] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy Task Creation: a Technique
for Increasing the Granularity of Parallel Programs. IEEE Transactions on Parallel and Dis-
tributed Systems, 2(3):264–280, 1991.

[21] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. PThreads Programming: A
POSIX Standard for Better Multiprocessing. O’Reilly, 1996.

[22] Alexandru Nicolau and Joseph A. Fisher. Measuring the Parallelism Available for Very Long
Instruction Word Architectures. IEEE Transactions on Computers, C-33(11):968–976, Novem-
ber 1984.

[23] M. L. Powell, Steve R. Kleiman, Steve Barton, Devang Shah, Dan Stein, and Mary Weeks.
SunOS Multi-thread Architecture. In Winter 1991 USENIX Technical Conference and Exhi-
bition, pages 65–80, Dallas, TX, USA, 1991.

[24] Burton J. Smith. Architecture and Applications of the HEP Multiprocessor Computer System.
In 4th Symposium on Real Time Signal Processing, pages 241–248. SPIE, 1981.

24

[25] Bin Song. Scheduling Adaptively Parallel Jobs. Master’s thesis, MIT Department of Electrical
Engineering and Computer Science, January 1998.

[26] Dan Stein and Devang Shah. Implementing Lightweight Threads. In Summer 1992 USENIX
Technical Conference and Exhibition, pages 1–10, San Antonio, TX, 1992.

[27] Volker Strumpen. Indolent Closure Creation. MIT Laboratory for Computer Science, Technical
Memo MIT-LCS-TM-580, June 1998.

[28] Volker Strumpen, Matteo Frigo, and Ahmed Gheith. Multithreaded Processor Architecture
with Implicit Granularity Adaptation. United States Patent Application No. 11/101608, May
2005.

[29] M. R. Thistle and Burton J. Smith. A Processor Architecture for Horizon. In ACM/IEEE
Conference on Supercomputing, pages 35–41. IEEE Computer Society Press, 1988.

[30] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous Multithreading: Maxi-
mizing On-chip Parallelism. In 22nd Annual International Symposium on Computer Architec-
ture, pages 392–403, Santa Margherita Ligure, Italy, June 1995.

[31] Theo Ungerer, Borut Robič, and Jurij Šilc. A Survey of Processors With Explicit Multithread-
ing. ACM Computing Surveys, 35(1):29–63, 2003.

[32] David W. Wall. Limits of Instruction-Level Parallelism. In International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages 176–188, 1991.

[33] William A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implications of the Obvious.
Computer Architecture News, 23(1):20–24, 1995.

25

