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Abstract 
 

Nutch is an open source search engine that is gaining increasing popularity in the 
commercial world. The Nutch architecture leads itself to a wide range of parallelization 
techniques. Multiple back-ends servers can be used to both partition the corpus of search 
data, thus increasing the rate of queries serviced, and to increase the size of the search 
data while preserving the service rate. Alternatively, multiple search engines can operate 
in parallel, further increasing the query rate. In this paper, we analyze the performance 
and scalability of various configurations of Nutch. These configurations were implemented 
as part of the Commercial Scale Out project at IBM Research, and were used to 
investigate the applicability of scale-out architectures in commercial environments. We 
conclude that Nutch is highly scalable, with the different configurations behaving 
differently from a performance perspective.  
 

1 Introduction 
 
During the past 10 years we have witnessed the complete replacement of uniprocessor computing systems 
by multiprocessor ones. The revolution that started in the early to mid-eighties in scientific and technical 
computing finally caught up with the bulk of the marketplace in the mid-nineties. Today, the mainstream 
systems for commercial computing are what we call scale-up systems: large shared-memory systems that 
can be used for a variety of needs, from transaction processing to web serving. 
 
More recently, there has been an increase in interest in clusters of loosely coupled machines for commercial 
computing. Each machine has its own private memory and the various machines communicate by passing 
messages over networks such as Gigabit Ethernet. These clusters are what we call scale-out systems. For 
many of the new web-based enterprises (e.g., Google, Yahoo, eBay, Amazon), a scale-out approach is the 
only way to deliver the necessary computational power. Also, computer manufacturers have made it easier 
to deploy scale-out solutions with rack-optimized and bladed servers. (Scale-out has been the only viable 
alternative for large scale technical scientific computing for several years, as we observe in the evolution of 
the TOP500 systems [15].) 
 
We started the Commercial Scale Out (CSO) project at IBM Research to investigate how we could further 
promote the use of scale-out systems in commercial computing. Our work covers issues such as systems 
management, software distribution, system availability and also performance of emerging commercial 
applications, including search over unstructured data (e.g, web pages).  
 
As a representative code of the operations involving search over unstructured data, we have chosen the 
Nutch search engine [1],[2]. Nutch is an open source search engine based on the Lucene framework [6] that 
is gaining increased popularity in the commercial world. A previous work [12] has reported a comparison 
between executing the Nutch search workload on scale-up versus scale-out systems. In this paper, we focus 
our study more on the scale-out behavior of Nutch. We show that there are many options for exploiting the 
inherent parallelism in search, and that each configuration has its own scalability characteristics. Whereas 
[6] reports only briefly on the scalability of Nutch, we here explore how both the number of back-ends and 
the data size per back-end affects performance and scalability. Furthermore, we report on results from multi-
cluster configurations that represent yet another alternative for exploiting parallelism. 
 
The rest of this paper is organized as follows. Section 2 describes scale-out systems, in particular the 
environment that we used for our studies, in more detail. Section 3 presents the Nutch workload that we ran 
in our CSO system. Section 4 reports our experimental findings, while Section 5 presents our estimates for 
how the system would behave at larger scales. Finally, Section 6 presents our conclusions. 
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2 Scale-out systems 
 
The first form of scale-out systems to become popular in commercial computing was the rack-mounted 
cluster. These are local-area networks of independent servers, typically interconnected with conventional 
Ethernet networks. The servers themselves are optimized for high-density, since they can be rack-mounted, 
typically occupying only 1U to 4U of vertical space (1.75” to 7” high). There is really no hardware feature that 
distinguishes the servers in a rack-mounted cluster from individual servers. The only difference is the 
purpose with which they are used. Servers in a rack-mounted cluster are used as part of a system, 
performing specific functions that together compose the scale-out solution. 
 
Examples of servers that are optimized for rack-mounting in the IBM product line include the p5 505Q 
(System p [11],[14]) and the xSeries 336 (System x). Both of these servers are 1U high and run standard 
software for either System p (AIX or Linux) or System x (Windows or Linux). These servers can be 
configured with up to 4 processors (using dual-core chips), and up to 16 GiB (x336) or 32 GiB (p5 505Q) of 
memory. Both servers include built-in support for Ethernet and SCSI, and two PCI-X expansion slots. Larger 
rack mounted systems are also available, like the 16-processor IBM p5 575 [9]. 
 
The IBM BladeCenter solution [4],[7],[8] (and similar systems from HP and Dell) represents the next step 
after rack-mounted clusters in scale-out systems for commercial computing. The blade servers used in 
BladeCenter are similar in capability to the densest rack-mounted cluster servers: 4-processor 
configurations, 16-32 GiB of maximum memory, built-in Ethernet, and expansion cards for either Fiber 
Channel, Infiniband, Myrinet, or 10 Gbit/s Ethernet. Also offered are double-wide blades with up to 8 
processors and additional memory. 
 
The differentiating characteristic of BladeCenter is the more integrated approach to building a cluster. 
Blades are assembled in a chassis that provide power, cooling, management infrastructure (through the 
Management Module) and networking (through switch modules) to the blades. Chassis connect to other 
chassis (or other non-bladed systems) and blades simply plug into the chassis, simplifying the physical 
deployment of additional blades to an existing cluster (assuming chassis slots are available). 
 
In the Commercial Scale Out project, we chose BladeCenter as our platform for scale-out. Figure 1 is a high-
level view of the CSO cluster hardware architecture. The basic building block of the cluster is a BladeCenter-
H (BC-H) chassis coupled with a DS4100 storage controller through a 2-Gbit/s Fiber Channel. The CSO 
cluster consists of 8 chassis of blades (112 blades in total) and 8 DS4100 storage subsystems. The chassis 
themselves are interconnected through two nearest-neighbor networks. One of the networks is a 4-Gbit/s 
Fiber Channel network and the other is a 1-Gbit/s Ethernet network.    
 
The BladeCenter-H chassis has 14 blade slots for blade servers. It also has space for up to two (2) 
management modules, four (4) switch modules, four (4) bridge modules

1
, and four (4) high-speed switch 

modules. We have populated each of our chassis with two 1-Gbit/s Ethernet switch modules and two Fiber 
Channel switch modules. 
 
Different kinds of blades were used in the CSO cluster. Approximately half of the cluster (4 chassis) is 
composed of JS21 blades. These are quad-processor (dual-socket, dual-core) PowerPC 970 blades, 
running at 2.5 GHz. Each blade has 8 GiB of memory, a 73 GB hard drive and a dual Fiber Channel adapter, 
which connects to the Fiber Channel switches in the chassis. The JS21 blades were the main focus of this 
study and the experiments reported in Section 4 are for those kinds of blades. 
 
The DS4100 storage subsystem consists of dual RAID storage controllers, each with a 2 Gb/s Fiber 
Channel interface, and space for 14 SATA drives in the main drawer. Our drives have a raw unformatted 
capacity of 400 GB. Therefore, each DS4100 has a raw capacity of 5.6 TB. The drives in each DS4100 are 
configured as a RAID array and used to create LUNs of approximately 1 TB in size. After formatting and 
RAID redundancy is taken into account, each DS4100 can support 4 logical units (LUNs) of 1 TB each. 
Some smaller LUNs are used for various auxiliary purposes, so our storage system consists of 
approximately 30 LUNs of 1 TB each. 
 
 
 

                                                  
1
 Switch modules 3 and 4 and bridge modules 3 and 4 share the same slots in the chassis. 
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Figure 1: Hardware architecture of the CSO cluster. 

 
Although each DS4100 is paired with a specific BladeCenter-H chassis, any blade in the CSO cluster can 
see any of the LUNs in the storage system, thanks to the Fiber Channel network. This all-to-all connectivity 
between servers and storage devices is central to our approach of using a GPFS shared file systems across 
all servers, as described below.  
 
Each BladeCenter-H chassis in CSO contains two QLogic 20-port 4 Gb/s Fiber Channel switches. 14 of 
those ports are used to connect to the blades in the chassis. Each blade has two ports, each connecting to 
one of the switches. Of the additional six ports in each switch, one is used to connect to the DS4100 paired 
with that chassis. Each DS4100 has two ports, each connected to one of the switches in the chassis. Finally, 
the remaining ports are used to form a nearest-neighbor Fiber Channel network interconnecting all the 
corresponding switches in each chassis, following the topology shown in Figure 1. Since each chassis has 
two switches, we form two independent network planes with the same topology. For simplicity, Figure 1 
shows only one of the planes. 
 
GPFS (General Parallel File System) [13] is a parallel file system designed to support high I/O throughput as 
required, for example, in multimedia and HPC applications. GPFS has two main characteristics that make it 
scalable. First, it can stripe the files in the file system across multiple storage volumes (LUNs). This is 
independent and on top of any disk striping done by the storage controllers that implement the LUNs. 
Second, GPFS supports file caching in each node that implements the file system, with cache coherence 
between the nodes. This allows local caching of read/write data and greatly improves performance for those 
operations that can leverage the cache. Sequential reads/writes benefit from caching, and so do random 
reads/writes against working sets that (mostly) fit in cache, as is the case with Nutch query index data. 
 
Figure 2 shows the high-level architecture of a system with GPFS. GPFS runs on all nodes that share that 
file system. In our CSO cluster, those nodes are the blades. We have built various independent file systems. 
In particular, the JS21 blades all share one GPFS file system. The nodes all plug into a switching fabric and 
on the other side of this switching fabric are the logical volumes (logical disks) that actually store the data for 
the file system. Not shown is the Ethernet network that interconnects all the blades and is used for file cache 
coherence traffic. The switching fabric is implemented by the Fiber Channel network and the logical disks 
are the LUNs discussed above. A single high-performance GPFS file system that can be shared by all 
blades allows a complete separation between servers and storage, since any server can see any file. That 
feature is critical in supporting our multi-cluster query operations (see Section 4). 
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Figure 2: General architecture of a GPFS system. 

 

3 Nutch 
 
As previously mentioned, Nutch is a search application based on the Lucene framework. It is all 
implemented in Java and its code is open source. Nutch, as a typical search application, has three major 
components: (1) crawling, (2) indexing, and (3) query. 
 
Crawling is the operation that navigates and retrieves the information in web pages, populating the set of 
documents that will be searched. This set of documents is called the corpus, in search terminology. Crawling 
can be performed on internal networks (Intranet) as well as external networks (Internet). Crawling, 
particularly in the Internet, is a complex operation. Either intentionally or unintentionally, many web sites are 
difficult to crawl. A lot of technology is required to develop a good crawler.  
 
The performance of crawling is usually limited by the bandwidth of the network between the system doing 
the crawling and the outside world. In the Commercial Scale Out project, our laboratory setup did not have a 
high-bandwidth connection to the outside world and it would take a long time (months) to populate our 
system with enough documents to create an interesting corpus. Therefore, we decided to use a set of 
documents that had already been collected by the IBM WebFountain project [5], and did not further consider 
crawling further in our project. 
 
Nutch includes a parallel indexing operation written using the MapReduce programming model [1]. 
MapReduce provides a convenient way of addressing an important (though limited) class of real-life 
commercial applications by hiding the parallelization and the fault-tolerance from the programmers, letting 
them focus on the problem domain. MapReduce was published by Google in 2004 and quickly became a 
de-facto standard for this kind of workloads.  
 
A parallel indexing operation in the MapReduce model works as follows. First, the data to be indexed is 
partitioned into segments of approximately equal size. Each segment is then processed by a mapper task 
that generates the (key, value) pairs for that segment, where key is an indexing term and value is the set of 
documents that contain that term (and the location of the term in the document). This corresponds to the 
map phase, in MapReduce. In the next phase, the reduce phase, each reducer task collects all the pairs for 
a given key, thus producing a single index table for that key. Once all the keys are processed, we have the 
complete index for the entire data set. 
 
In most search applications, query represents the vast majority of the computation effort. When performing a 
query, a set of indexing terms is presented to a query engine, which then retrieves the documents that best 
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match that set of terms. The overall architecture of the Nutch parallel query engine is shown in Figure 3. The 
query engine part consists of one or more front-ends, and one or more back-ends. Each back-end is 
associated with a segment of the complete data set. The driver represents external users and it is also the 
point at which the performance of the query is measured, in terms of queries per second (qps). 
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Figure 3: Overall architecture of Nutch/Lucene query. 

 
A query operation works as follows. The driver submits a particular query (set of index terms) to one of the 
front-ends. The front-end then distributes the query to all the back-ends. Each back-end is responsible for 
performing the query against its data segment and returning a list with the top documents (typically 10) that 
better match the query. Each document returned is associated with a score, which quantifies how good that 
match is. The front-end collects the response from all the back-ends to produce a single list of the top 
documents (typically 10 overall best matches). Once the front-end has that list, it contacts the back-ends to 
retrieve snippets of text around the index terms. Only snippets for the overall top documents are retrieved, 
and the front-end contacts the back-ends one at a time, retrieving the snippet from the back-end that had the 
corresponding document in its data segment. 

4 Experimental results 
 
We start by reporting results from the experiments using the configuration shown in Figure 4. In this 
particular implementation of the architecture shown in Figure 3, there is one front-end running on a JS21 
blade and a variable number of back-ends, each on their own JS21 blade. The data segment for each back-
end is stored in an ext3 file system in the local disk of each blade. 
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Figure 4: Configuration with each data segment in an ext3 file system in the local disk of each JS21 
back-end blade. 

 
Throughput measurements (queries per second) as a function of the number of back-ends are shown in 
Figure 5(a) for three different data segment size (per back-end): 10, 20, and 40 GB/back-end. The total data 
set size, therefore, varies from 10 GB (one back-end with 10 GB segment) to 480 GB (12 back-ends with 40 
GB segment each). Figure 5(b) is a plot of the average CPU utilization in the back-ends as a function of the 
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number of back-ends. This latter plot shows that the CPUs are well utilized in this workload. (100% 
utilization corresponds to all 4 cores in the JS21 running all the time.) 

  
(a) (b) 

Figure 5: Scalability results for query with data sets on local disk and ext3 file system. The plots 
show total queries per second as a function of number of back-ends (a) and average processor 
utilization in the back-ends as a function of number of back-ends (b). 

 
We observe in Figure 5(a) that the throughput, for a fixed data set size per back-end, increases with the 
number of back-ends. At first, this is a surprising result, since as we increase the number of back-ends, each 
query is sent to all the back-ends. We would expect a flat throughput or maybe even declining, as the front-
end has to do more work.  
 
We can explain the observed behavior as follows. Each query operation has two main phases: the search 
for the indexing terms in the back-ends (including the distribution and aggregation by the front-end) and the 
retrieval of the document snippets (including the requests from the front-end). In both of those phases, the 
work in the front-end is negligible for the size of systems we could experiment with. (See Section 5 for a 
prediction of how very large systems would behave.) The work per back-ends is constant with the number of 
back-ends for the first phase, but it actually decreases for the second phase. Since the total number of 
snippets retrieved is the same (10) independent of the number of back-ends, the more back-ends the less 
average work per back-end. This results in an increase in query throughput with the number of back-ends. 
The increase is less pronounced with larger data segment sizes because the back-end work in the first 
phase grows with the data size, but the work in the second phase does not change. 
 
We also observe, in Figure 5(a), that query throughput decreases with the data segment size. This behavior 
is expected because a larger data segment results in larger indices and more document entries per index 
term. The decrease is less than linear with the increase in data segment size, so larger sizes are more 
efficient according to a queries/second * data size metric. The peak value for that metric, 15840 
queries/second*GB, occurs with 12 back-ends and 40 GB/backend.  
 
We conclude this discussion of query with data on local disks with plots of CPU utilization on the front-end 
(Figure 6) and network utilization for both front-ends and back-ends (Figure 7). We observe, in Figure 6, that 
indeed the workload on the front-end is small for these sizes of systems. The network utilization is also low, 
as shown in Figure 7, for both front- and back-ends.  
 
The next configuration we experimented with is shown in Figure 8. The difference between this configuration 
and that shown in Figure 4 is that the data segments are stored in the globally accessible GPFS file system. 
We still assign each segment to one back-end, but that assignment no longer depends on the placement of 
the data in a particular storage device. Any blade in our CSO customer can be assigned to any of the data 
segments. 
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Figure 6: CPU utilization in the front-end as a function of the number of back-ends. 

Throughput measurements (queries per second) as a function of the number of back-ends, for the 
configuration in Figure 8, are shown in Figure 9(a) for three different data segment size: 10, 20, and 40 
GB/back-end. Figure 9(b) is a plot of the average CPU utilization in the back-ends as a function of the 
number of back-ends. We note that the behavior with GPFS varies with the data set size in a way similar to 
what we observed in Figure 5(a). However, the actual rates achieved with GPFS are 3 to 4 times lower. 
These measurements indicate that some optimizations are still necessary with GPFS. 
 

 
 

  

  

Figure 7: Network utilizations in the front-end and average for back-ends, both read and write. 
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Figure 8: Single-cluster GPFS configuration. 

 
 

  
(a) (b) 

Figure 9: Scalability results for query with data sets on the GPFS file system. The plots show total 
queries per second as a function of number of back-ends (a) and average processor utilization in the 
back-ends as a function of number of back-ends (b). 

 
Additional scalability experiments were performed using the configuration shown in Figure 10. We call that 
configuration multi-cluster. The back-ends are organized into multiple clusters. Each cluster has its own 
front-end and the number of back-ends is the same for all clusters. Each back-end in a cluster is responsible 
for a data segment and the data segments are all stored in a globally accessible GPFS file system. 
 
Throughput results for the multi-cluster configuration are shown in Figure 11. We observe, in general, good 
scalability with the number of clusters. Using the metric of queries per second times the data set size, the 
best result occurs for 3 clusters of 12 blades each and a data set size of 10 GB per blade (10,536 queries 
per second * GB). 
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Figure 10: Multi-cluster query configuration. The data resides in a globally accessible GPFS file 
system. Any back-end can, in principle, access any data. The back-ends can be organized into 
multiple clusters, each with its own front-end. 
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Figure 11: Throughput results for multi-cluster configuration. Each plot is for a particular cluster size. 
In each plot, we show results for three different data sizes (per blade): 10, 20, and 40 GB. 
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5 Performance projections 
 
Although intuitive arguments can be made about scalability of our workloads beyond the system sizes we 
can directly measure, we wanted to perform a more quantitative assessment. For that purpose, we 
developed a modeling approach to investigate the behavior of query operations for search at large scale.  
 
Performance projections for the Nutch query operation were performed using an innovative methodology 
combining queueing theory, statistical regression and non-linear constrained optimization. The approach is 
based on the techniques employed in the AMBIENCE toolset developed at IBM Research [9],[18].  We next 
describe the main steps of our methodology. 

5.1 Model Abstraction and Analysis  

 
We start by abstracting the experimental set-up as a queueing network model, as shown in Figure 12. There 
are two kinds of servers in the network (front-end and back-end) and three kinds of delay components 
(driver network, front-end network, and back-end network). Think time at the driver is zero, so there is no 
delay there. This is a closed queueing network, with a finite population of size equal to the number of 
outstanding query requests from the driver.   
 
An important difference between our system and other applications modeled in [9],[18]is in the nature of the 
interaction between the front-end and back-end. As discussed earlier in Section 3, when a front-end 
receives a query from the driver it sends requests to all the back-ends and then waits for replies from all of 
them. Analysis using simple closed queueing network models, assuming load balancing among back-end 
servers, as done in earlier works [9] will fail to capture this inherent dynamics of our system. We modeled 
this interaction using fork-join service stations as shown in Figure 12. We use Mean Value Analysis for 
closed queueing networks with fork-join systems [16] to obtain analytical expressions for the performance 
metrics (end-to-end response time, serve utilizations, network utilizations) in terms of the model parameters 
(population size, service times at front-end and back-end servers, network delays). 

5.2 Model Calibration and Validation 

 
We then use measurements from real experiments to solve an optimization problem and determine the best-
fit for the five unknown queueing network parameters (service time for the two kinds of servers and the three 
network delay components) that minimize the difference between measured data and results from solving 
the queueing network. The service time at the network delay components is expressed in terms of amount of 
network read/write data in Kilobits per query (Kb/q).  We first describe our measurement data.  
 
The measurements come from a large number of experiments with different configurations identified by the 
data set size per backend, the number of back-end servers and the population size. All experiments are 
done with a single front-end server. The following configurations are used: 

• Data set size per back-end: 10GB, 20GB, and 40GB. 

• 1 front-end server 

• Number of back-end servers: 1, 2, 4, 8, 12, 16, 24, 32 

• Population size: 10 and 60, for 1, 2, 4, 8 back-end servers 

• 60 for 12, 16, 24, 32 back-end servers 
And for each configuration, the following performance metrics are measured: 

• CPU utilization of front-end and back-end servers 

• Front-end and back-end network utilization 

• Average response time 
We identify each experimental configuration by the triplet: (partitions size in GB, number of back-end servers, 
population size). Thus we have measured data for thirty-six different configurations. Next for each 
experimental configuration we infer the five unknown parameters.  
 
 



 11 

Front-End

Finite Population Size

Driver

Response time does not include delay at driver

Driver Network 

Delay 

Back-End

Back-End

Back-End

Front-End 

Network Delay 

Fork Point
Join Point

Back-End 

Network Delay 

Back-End 

Network Delay 

Back-End 

Network Delay 

Front-End

Finite Population Size

Driver

Response time does not include delay at driver

Driver Network 

Delay 

Back-End

Back-End

Back-End

Front-End 

Network Delay 

Fork Point
Join Point

Back-End 

Network Delay 

Back-End 

Network Delay 

Back-End 

Network Delay  

Figure 12: Queueing model for Nutch/Lucene query. 

 
 
We formulate a constrained optimization problem with the objective being to minimize the difference 
between the measured values of the performance metrics and their analytical expressions from the model 
and with constraints on the difference between measured and analytical values. This allows us to limit the 
feasible values of service times to those which are compliant with our measured data. The solution to this 
optimization problem gives us the service times at the two servers and at the three network components.  
 
Since the service times at servers and network components are invariant to population size we can use the 
model calibrated using inferred values for population size 10 to predict the performance for population size 
60 and thus do a validation check on our model. Figure 13 shows the predictions for configuration (40GB, 8 
back-end, population 60) using the model calibrated with configuration (40GB, 8 back-end, population 10). 
We observe that performance predictions from our model are quite close to the measured values for all the 
seven performance metrics (response time, throughput, front-end and back-end server utilizations, front-end, 
back-end and driver network utilizations).  
 
We also observe that the service times at different components are sensitive to both the data set size per 
back-end and the number of back-end servers. In order to use our model to predict performance for large-
scale configurations we need to understand the dependency of the service times on these configuration 
dependent parameters.  We next employ statistical regression techniques and express service times as 
functions of the data set size per back-end and the number of back-end servers.  
 
We use the inferred values of service times from the following 20 configurations for multivariate regression 
[17]:  (10 GB, {1, 2, 4, 8, 12, 16, 24} back-end, population 60); (20 GB, {1, 2, 4, 8, 12, 16, 24} back-end, 
population 60); (40 GB, {1, 4, 8, 12, 16, 24} back-end, population 60). Figure 14 shows the inferred service 
times and the regression hyperplane. The analysis characterizes service times at different components as 
functions of the data set size per backend and the number of back-end servers.  
 

Table 1 shows these estimated functions and the corresponding goodness of fit coefficient
2

R . 
This coefficient is a statistical measure for regression and takes values between 0 and 1. The 
closer the value is to 1 the higher is the accuracy of the corresponding function.  We also define 
an alternate measure of the closeness of hyperplane to the measured data values, the average 
relative distance from hyperplane as:  

100 X 
Time(n) Service Estimated Regression

|Time(n) Service Estimated Regression-Time(n) Service Inferred|1

1

∑
=

=∆
N

nN
, 

where N is the number of data points (20) and (n) refers to the values for the nth data point. 
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Figure 13: Performance prediction for (40GB, 8 back-end, population 60)  using model calibrated 
from (40GB, 8 back-end, population 10). 

 

Table 1: Regression estimates capturing the dependency of model parameters on the data set size per 

back-end and the number of back-end servers. 

Parameter Regression Function  2
R  ∆  

front-end server (ms) 2.457-0.020*d+0.063*b 0.515 10.68% 
back-end server (ms) -7.927+3.590*d+14.069*(1/b) 0.988 3.99% 

front-end network read (Kbq) 127.261+1.160*d+6.031*b 0.988 1.65% 

front-end network write (Kbq) 34.879+0.609*d+5.087*b 0.982 3.44% 
back-end network read (Kbq) 4.169+0.049*d+38.328*(1/b) 0.989 2.32% 

back-end network write (Kbq) 4.158+0.101*d+36.156*(1/b) 0.986 3.91% 
 
 
From the equations in Table 1, we observe that the service time at front-end increases linearly with the 
number of back-end servers, which is intuitive as more back-end means more work for the front-end which 
needs to send and receive data from all the back-ends. We also observe that the service-time at a back-end 
server however decreases with the increase in the number of back-end servers.  This is conformant with the 
explanation we provided in Section 4 regarding our experimental observation for the increase in throughput 
with the number of back-end servers.  
 
Having obtained these relations we can now make predictions of the behavior of the system for different 
configurations with varying data set size per back-end and varying number of back-end servers. Those 
predictions are summarized next. 
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(f)
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(d)

(c)

(b)

(a)

(f)

(e)

(d)

(c)

(b)
 

Figure 14: Regression fit curves (a) front-end server service time (b) back-end server service time (c) 
front-end network read per query (d) front-end network write per query (e) back-end network read 
per query (f) back-end network write per query. 

5.3 Model Based Performance Prediction 

 
Figure 15 shows model predictions for query in a cluster consisting of one front-end and a varying number of 
back-end blades. The markers indicate measurements, while the solid lines represent the predictions of the 
model. We observe a generally good agreement between measurement and prediction for small number of 
back-end servers. We also observe that the response time is essentially flat with the number of back-end 
servers, up to 500, 1000, and 2000 servers for data set sizes (per server) of 10 GB, 20 GB, and 40 GB 
respectively. The system is more scalable for larger data set sizes because the work per back-end server 
per query increases. This means that other parts of the system take longer to saturate. 
 

  
(a) (b) 

Figure 15: Response time for query as a function of the number of back-end blades. 
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Figure 16 shows the corresponding predictions for throughput. Since throughput and response time, for a 
fixed population, are connected by the Little’s formula (population = throughput * response time), the 
behavior of throughput is similar to that of response time. Specifically, throughput is more or less flat for up 
to 500, 1000, and 2000 back-end servers for data set sizes of 10 GB, 20 GB, and 40 GB respectively.  
 

  
(a) (b) 

Figure 16: Throughput for query as a function of the number of back-end servers. 

 
Finally, Figure 17 shows where the saturation happens. We can see, from Figure 17(a) that the front-end 
CPU utilization increases nearly with the number of back-end servers, until it saturates (100%) at 500, 1000 
and 2000 servers for data set sizes of 10 GB, 20 GB and 40 GB, respectively. Not surprisingly, the utilization 
of the back-end serves starts to decrease after saturation. After the front-end saturates, adding back-end 
server only makes the throughput and response time worse (see Figure 15 and Figure 16 above), as the 
front-end gets even busier handling more back-ends. 
 

  

(a) (b) 

Figure 17: (a) Front-end and (b) back-end CPU utilization as function of number of servers. 

 
Furthermore, as we observe in Figure 18, link utilizations for the driver and back-end drop as we add servers 
past saturation, while link utilization for the front-end stays flat after saturation. We note that even at the 
front-end the utilization of the 1 Gbit/second Ethernet stays below 10%. This is not an application that 
stresses the communication networks, even at extreme scaling. These results also imply that we can make 
query scale to larger numbers of back-end servers by using a more powerful machine as the front-end. For 
example, even a machine 10x faster would still keep the network load within the realm of 1-Gbit/s Ethernet, 
and we could move to 10-Gbit/s Ethernet. Given that we would only need one front-end server for 1000+ 
back-end servers, the additional cost of the front-end would not be an issue. 
 
We should note that, although our analysis predicts a saturation of query performance for a single cluster, it 
does not imply a natural saturation of query services. As discussed in Section 4, it is simple to extend 
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scalability of query by operating multiple clusters in parallel. Whether data replication or a more 
sophisticated solution like GPFS is used, multiple clusters provide essentially unlimited scalability for query. 
 

   
(a) (b) (c) 

Figure 18: (a) Driver link utilization, (b) front-end link utilization, (c) back-end link utilization 

6 Conclusions 
 
Search workloads behave well in a scale-out environment. The highly parallel nature of this workload, 
combined with a fairly predictable behavior in terms of processor, network and storage scalability, makes 
search a perfect candidate for scale-out. Scalability to thousands of nodes is well within reach, based on our 
evaluation that combines measurement data and modeling. Single clusters achieve their peak performance 
at around 10 back-end servers, and maintain that performance up to hundreds or even thousands of back-
ends. Further scaling is possible with a multi-cluster solution. 
 
The use of a scalable shared file system like GPFS enables more flexible configurations of search through a 
separation between the servers doing the search and the actual data being searched. However, the 
performance with GPFS is still below that with a local file system for the same number of back-ends and 
data set size. Based on our interaction with the developers of GPFS, we expect that those optimizations can 
be implemented soon, making GPFS a valuable approach to scalability of search. 

References 

 
[1] M. Cafarella and D. Cutting. Building Nutch: open source search. ACM Queue. Vol. 2, no. 2, pp. 54-61, 

2004.  
[2] M. Cafarella and O. Etzioni. A search engine for natural language applications. WWW '05: Proceedings 

of the 14th International World Wide Web Conference. Chiba, Japan. 2005. pp. 442-452. 
 
[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. Proceedings of 

the Sixth Symposium on Operating System Design and Implementation (OSDI'04). San Francisco, CA, 

December, 2004. 
[4] D. M. Desai, T. M. Bradicich, D. Champion, W. G. Holland, and B. M. Kreuz. BladeCenter 

system overview. IBM Journal of Research and Development. Vol. 49, no. 6. 2005. 
[5] D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak, A. Tomkins, and J. Zien. How to 

build a WebFountain: An architecture for very large-scale text analytics. IBM Systems Journal. 
Vol. 13, no 1, 2006 pp. 64-77. 

[6] E. Hatcher and O. Gospodnetic. Lucene in Action. Manning Publications. 2004. 
[7] J. E. Hughes, P. S. Patel, I. R. Zapata, T. D. Pahel, Jr., J. P. Wong, D. M. Desai, and B. D. Herrman. 

BladeCenter midplane and media interface card. IBM Journal of Research and Development. Vol. 49, 
no. 6. 2005. 

[8] J. E. Hughes, M. L. Scollard, R. Land, J. Parsonese, C. C. West, V. A. Stankevich, C. L. Purrington, 
D. Q. Hoang, G. R. Shippy, M. L. Loeb, M. W. Williams, B. A. Smith, and D. M. Desai. BladeCenter 
processor blades, I/O expansion adapters, and units. IBM Journal of Research and Development. Vol. 
49, no. 6. 2005. 

[9] Z. Liu, C. H. Xia, P. Momcilovic, and L. Zhang. AMBIENCE: Automatic Model Building using InfErENCE. 
In Congress MSR03, Metz, France, Oct. 2003. 

[10] H. M. Mathis, J. D. McCalpin, and J. Thomas. IBM p5 575 ultra-dense, modular cluster node for high 
performance computing. IBM Systems and Technology Group. October 2005. 



 16 

[11] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer, and S. R. Kunkel. Characterization of 
simultaneous multithreading (SMT) efficiency in POWER5. IBM Journal of Research and Development. 
Vol. 49, no. 4/5. 2005. 

[12] M. Michael, J. E. Moreira, D. Shiloach, and R. Wisniewski. Scale-up x Scale-out: A Case Study using 
Nutch/Lucene. Third International Workshop on System Management Techniques, Processes, and 
Services (SMTPS). Held in conjunction with the 2007 International Parallel and Distributed Processing 
Symposium (IPDPS 2007). Long Beach, CA, March 30th, 2007. 

[13] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System for Large Computing Clusters. First 
Conference on File and Storage Technologies (FAST). pp. 231-244. January 2002. 

[14] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. POWER5 system 
microarchitecture. IBM Journal of Research and Development. Vol. 49, no. 4/5. 2005. 

[15] University of Mannheim, University of Tennessee, and NERSC/LBNL. TOP500 Supercomputer sites. 
http://www.top500.org/. 

[16] E. Varki. Mean value technique for closed fork-join networks. In ACM Sigmetrics, pages 103-112, 1999. 
[17] S. Weisberg. Applied Linear Regression, 3

rd
 Edition. Wiley, 2005.  

[18] L. Zhang, C. Xia, M. S. Squillante, and W. N. Mills III. Web workload service requirement analysis: A 
queueing network approach. In MASCOTS, 2002. 


