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Abstract 
Real-time materialized view maintenance has become 
increasingly popular, especially in real-time data warehousing and 
data streaming environments. Upon updates to base relations, 
maintaining the corresponding materialized views can bring a 
heavy burden to the RDBMS. A traditional method to mitigate 
this problem is to use the where clause condition in the 
materialized view definition to detect whether an update to a base 
relation is relevant and can affect the materialized view. However, 
this detection method does not consider the content in the base 
relations and hence misses a large number of filtering 
opportunities. In this paper, we propose a content-based method 
for detecting irrelevant updates to base relations of a materialized 
view. At the cost of using more space, this method increases the 
probability of catching irrelevant updates by judiciously designing 
filtering relations to capture the content in the base relations. 
Based on the content-based method, a prototype real-time data 
warehouse has been implemented on top of IBM’s Stream 
Processing Core middleware using IBM DB2. Using an analytical 
model and our prototype, we show that the content-based method 
can catch most (or all) irrelevant updates to base relations that are 
missed by the traditional method. Thus, when the fraction of 
irrelevant updates is non-negligible, the load on the RDBMS due 
to materialized view maintenance can be significantly reduced.  
 

1.  Introduction 
Recently, there has been a growing trend to use data 

warehouses to make real-time decisions about a corporation’s 
day-to-day operations [13]. Most major RDBMS vendors have 
spent great efforts on real-time data warehousing, including 
IBM’s business intelligence [4], Microsoft’s digital nervous 
system [11], Oracle’s Oracle10g [21], NCR’s active data 
warehouse [28], and Compaq’s zero-latency enterprise [14].  

A real-time data warehouse needs to handle real-time, online 
updates in addition to traditional data warehouse query workload. 
This raises a problem that is present to a lesser degree in 
traditional data warehouses − when a base relation is updated, 
maintaining the materialized view(s) defined on it can bring a 
heavy burden to the RDBMS [9]. 

This problem is not limited to real-time data warehousing, as 
real-time materialized view maintenance is a general requirement 
of modern database applications. For example, the database 
research community has recently identified data stream 
management systems as a promising approach to support many 
future data-intensive applications [31, 33]. Storing data streams on 
disks and building materialized views on them to speed up query 
processing has been proposed in [30]. In fact, the database 
research community has realized the commonality between real-
time data warehousing and data stream applications [32, 33]. 

Also, some commercial RDBMS vendors (e.g., Oracle [34], 
Teradata [35]) have started to enhance existing commercial 
RDBMSs to support data stream applications. 

To reduce materialize view maintenance overhead, [2, 6, 17] 
proposed several methods to detect irrelevant updates to a base 
relation R that do not affect the materialized view MV defined on 
R. However, all these methods are “content-independent” in the 
sense that they only consider the where clause condition in MV’s 
definition while ignoring the content in the other base relations of 
MV. As a result, these methods make over-conservative decisions 
and miss a large number of filtering opportunities.  

For example, consider the following materialized view MV:  
create materialized view MV as 
select *  
from R, S, T 
where R.a=S.b and S.c=T.d and R.e>20 and S.f=“xyz”  

and T.g=50; 
Assume that MV records anomaly so that very few tuples in R, S, 
and T satisfy the where clause condition (R.a=S.b and S.c=T.d and 
R.e>20 and S.f=“xyz” and T.g=50) in MV’s definition. Suppose a 
tuple tR whose tR.e=30 is inserted into base relation R. Since 
tR.e>20, the existing methods in [2, 6, 17] cannot tell whether or 
not MV will change. Therefore, the standard materialized view 
maintenance method has to be used. S is checked for matching 
tuple(s) tS such that tS.b=tR.a and tS.f=“xyz”. If such a matching 
tuple tS exists, T is further checked for matching tuple(s) tT such 
that tT.d=tS.c and tT.g=50. If both S and T are large and cannot be 
cached in memory, such checking can incur a large number of 
I/Os and become fairly expensive. However, since MV records 
anomaly, mostly likely the insertion of tR into R will not affect MV 
and thus all the expensive checking is wasted. 

 To address this problem, we introduce the concept of content-
based filtering into materialized view maintenance. More 
specifically, we identify four important requirements for efficient 
filtering and propose a content-based method for detecting 
irrelevant updates to base relations of a materialized view. To the 
best of our knowledge, no existing summary data structure [1, 5] 
satisfies all these four requirements. Our key idea is to design 
filtering relations that summarize the most relevant information in 
the base relations and fulfill these four requirements. These 
filtering relations capture the relationship among multiple join 
attributes and can be efficiently maintained in real time. Upon an 
update ΔR to a base relation R that has a materialized view MV 
defined on it, the RDBMS uses the corresponding filtering 
relations of the other base relations of MV to tell whether ΔR is 
irrelevant. Checking filtering relations is usually much faster than 
checking base relations. Also, compared to the where clause 
condition in MV’s definition, filtering relations can provide more 
precise information about whether ΔR is irrelevant. In this way, 
the RDBMS can quickly and more precisely detect irrelevant 
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updates to R and hence reduce the materialized view maintenance 
overhead. 

We have implemented a prototype real-time data warehouse 
SRW (Stream-based Real-time Warehouse) on top of IBM’s 
Stream Processing Core (SPC). As described in [29] in detail, 
SPC is a stream processing middleware that provides an 
application execution environment for processing elements (or 
applications) developed by users to filter and analyze data 
streams. Our real-time data warehouse is deployed as a processing 
element on top of SPC. It uses IBM DB2, and materialize views 
stored there are maintained in real-time using our content-based 
method. Figure 1 shows the architecture of our prototype. Data 
continuously comes to the SPC as streams. Some “base” data 
streams are stored in the real-time data warehouse and 
materialized views are built upon them. The SPC interacts with 
the real-time data warehouse, using materialized views to speed 
up the processing of data streams (the processing of certain data 
streams requires posing queries to the RDBMS [30]). Also, upon 
arrival of new tuples from the “base” data streams, the 
corresponding materialized views are refreshed immediately.  

 
 
 
 
 
 
 
 
 

Figure 1. Architecture of our SRW prototype. 
 

We investigate the performance of both the content-based 
method and the traditional content-independent method with an 
analytical model. This analytical model provides a means to 
determine when applying filtering relations is beneficial. The 
analytical model is validated in our SRW prototype. Our results 
show that in a large number of cases, with minor overhead, the 
content-based method can catch most (or all) irrelevant updates to 
base relations that are missed by the content-independent method. 
As a result, we can avoid most of the unnecessary load on the 
RDBMS due to materialized view maintenance. 

The rest of the paper is organized as follows. Section 2 
describes the content-based detection method for irrelevant 
updates. Section 3 investigates the performance of both the 
content-based detection method and the content-independent 
method. We discuss related work in Section 4 and conclude in 
Section 5. 
 

2. A Content-Based Detection Method for 
Irrelevant Updates 

In this section, we describe our content-based method for 
detecting irrelevant updates to base relations of a materialized 
view. We focus on materialized join views that store and maintain 
the join results of multiple base relations. Updates include 
insertions, deletions, and modifications. 

 

2.1 Requirements for Summary Data 
Structures 

Consider a base relation R that has a join view JV defined on it. 
Our goal is to quickly filter out most of the irrelevant updates to 
R. This filtering process allows false negatives for irrelevant 

updates but not false positives. In other words, for any update ΔR 
to R, this filtering process has the following characteristics: 
(1) If our method says that ΔR is irrelevant, it must be true that 

ΔR is irrelevant. 
(2) In the case that ΔR is irrelevant, with high probability p, our 

method can tell that ΔR is irrelevant; with low probability 1-
p, our method says that it does not know whether ΔR is 
irrelevant. 

(3) In the case that ΔR is relevant, our method says that it does 
not know whether ΔR is irrelevant. 

Our key idea is to design effective summary data structures that 
satisfy the following properties: 
Compactness: They are small and likely to be cached in memory. 
This is crucial for real-time purposes. 
Association: They can capture the relationship among multiple 
join attributes of a base relation – given a join attribute value (e.g., 
S.b of MV in the introduction), we can use them to find the 
associated values of other join attributes (e.g., S.c). 
High filtering ratio: They can quickly and correctly filter out 
most (or all) of the irrelevant updates to base relations of a join 
view. 
Easy maintenance: Upon updates to base relations, they can be 
efficiently maintained in real time. 

There are several existing summary data structures (e.g., bloom 
filters, multi-attribute B-tree indices). However, as will be shown 
in Section 2.5, none of them satisfies all above four properties and 
is suitable for our filtering purposes. In the following, we first 
give an overview of our content-based detection method for 
irrelevant updates. Then we present the details of our algorithm.  

 

2.2 Overview of the Method 
Consider a join view JV that is defined on base relations R1, R2, 

…, and Rn (n≥2). For each Ri (1≤i≤n), we create a filtering 
relation FRi that summarizes the most relevant information in Ri. 
Upon an update ΔRi to a base relation Ri (1≤i≤n) of JV, our 
method performs the following operations: 
Operation O1: Update the filtering relation FRi accordingly. 
Operation O2: Use the where clause condition in JV’s definition 
and the techniques in [2, 6, 17] to detect whether ΔRi is irrelevant. 
Operation O3: If Operation O2 cannot tell that ΔRi is irrelevant, 
check the filtering relations FR1, FR2, …, FRi-1, FRi+1, FRi+2, …, 
and FRn to see whether ΔRi is irrelevant. 
Operation O4: If Operation O3 cannot tell that ΔRi is irrelevant, 
check base relations R1, R2, …, Ri-1, Ri+1, Ri+2, …, and Rn to see 
exactly whether ΔRi is irrelevant. In the case that ΔRi is relevant, 
JV is refreshed. This is the standard join view maintenance 
method. 
 

2.3 Basic Algorithm Description 
Suppose that Cw is the where clause condition in the definition 

of the join view JV. Cw is rewritten into a conjunction of m terms 
ci (1≤i≤m). Each term ci belongs to one of the following three 
categories: 
Category 1: For each i (1≤i≤m1), ci is a conjunctive equi-join 
condition on two base relations Rj and Rk (1≤j<k≤n). That is, ci is 
of the conjunctive form Rj.a1=Rk.b1∧Rj.a2=Rk.b2∧…∧Rj.ah=Rk.bh 
(h≥1). For different i’s (1≤i≤m1), either the corresponding j’s or 
the corresponding k’s are different. 

DB2 

real-time data warehouse 
(materialized views) 

SPC input data streams output data streams



 3

Category 2: For each i (m1+1≤i≤m2), ci is a selection condition on 
a single base relation Rj (1≤j≤n). For different i’s (m1+1≤i≤m2), 
the corresponding j’s are different.  
Category 3: For each i (m2+1≤i≤m), ci is neither a conjunctive 
equi-join condition on two base relations nor a selection condition 
on a single base relation. 
For example, consider the join view MV mentioned in the 
introduction. The where clause condition in MV’s definition is a 
conjunction of five terms. The first two terms (R.a=S.b and 
S.c=T.d) belong to Category 1. The other three terms (R.e>20, 
S.f=“xyz”, and T.g=50) belong to Category 2. An example term 
of Category 3 is R.x+S.y>T.z, which does not appear in the where 
clause condition of MV’s definition.  

For each base relation Ri (1≤i≤n), we create a filtering relation 
FRi=πD(σC(Ri)). The projection list D contains all join attributes 
of Ri that appear in some term of Category 1. That is, for each 
term cj (1≤j≤m1) that is of the form 
Ri.a1=Rk.b1∧Ri.a2=Rk.b2∧…∧Ri.ah=Rk.bh (1≤k≤n, k≠i, h≥1), 
attributes {a1, a2, …, ah}⊆D. Also, we build an index on attributes 
(a1, a2, …, ah). The selection condition C is the term of Category 
2 that is on Ri. That is, if for some j (m1+1≤j≤m2), the term cj is a 
selection condition on Ri, then C=cj. Otherwise (i.e., if no such cj 
exists), we have C=true. 

For example, consider the join view MV mentioned in the 
introduction. We create three filtering relations, as shown in 
Figure 2. 

 
 
 
 
 
 
 

Figure 2. Example filtering relations. 
 
In Operation O3, upon an update ΔRi to base relation Ri 

(1≤i≤n), the updated tuples in Ri are joined with the corresponding 
filtering relations of the other base relations of JV (i.e., FR1, FR2, 
…, FRi-1, FRi+1, FRi+2, …, and FRn). If no join result tuple is 
generated, our method knows that ΔRi is irrelevant. Otherwise our 
method does not know whether ΔRi is irrelevant unless it checks 
the other base relations R1, R2, …, Ri-1, Ri+1, Ri+2, …, and Rn. This 
is because in checking the filtering relations, the terms in 
Category 3 are ignored and hence we may have false negatives. 

When the updated tuples in Ri are joined with the filtering 
relations FR1, FR2, …, FRi-1, FRi+1, FRi+2, …, and FRn, our 
method only cares whether the join result set JS is empty. Hence, 
during the join process, two optimizations are used to reduce the 
join overhead. First, some attributes are projected out immediately 
after they are no longer needed. Second, for a filtering relation 
whose corresponding base relation is joined with only one other 
base relation of the join view, if there are multiple matching tuples 
in the filtering relation for an input tuple, our method only finds 
the first matching tuple rather than all matching tuples. In other 
words, for each input tuple to such a filtering relation, our method 
generates at most one join result tuple. These two optimizations 
essentially compute a subset SS of the projection of JS and ensure 
that φφ =⇔= SS JS . The details of these two optimizations 

are straightforward and thus omitted here. Rather, we use two 
examples to illustrate the point. 

Consider the join view MV mentioned in the introduction. To 
illustrate the first optimization, consider an update ΔR to base 
relation R. In this case, our method only joins πa(ΔR) with the 

filtering relation FRS. Then for the join result Jr=πa(ΔR)⋈a=bFRS, 
attributes a and b are projected out before Jr is joined with FRT. If 

either Jr or πc(Jr)⋈c=dFRT is empty, our method knows that ΔR is 
irrelevant. Actually in this case, the content-based method can 
catch all irrelevant updates to base relations. Thus, if we ignore 
the overhead of checking/updating filtering relations, the content-
based method avoids all unnecessary join view maintenance 
overhead in the content-independent method. (As will be shown in 
Section 3 below, the overhead of checking/updating filtering 
relations is often minor.) 

To illustrate the second optimization, suppose tuple tS is 
inserted into S. In the filtering process, our method joins tuple 
tS1=πb, c(tS) first with FRR, and then with FRT. When our method 
searches in FRR, once it finds the first tuple tR matching tS1, it 

generates the join result tuple tj=πc(tR⋈a=btS1), stops the search in 
FRR, and continues to do the join with FRT. This is because the 
attributes of FRR do not include the join attribute c with FRT. 
Therefore, from the perspective of determining whether the join 
result with FRT is empty, there is no need to obtain more tuples in 
FRR that match tS1. (If no tuple in FRR is found to match tS1, we 
know that tuple tS is irrelevant.) Similarly, when our method 
searches in FRT, once it finds the first tuple matching tj, it stops 
the search in FRT. 

In the traditional join view maintenance method, the work 
needed when base relation Ri (1≤i≤n) is updated is as follows: 

 
update Ri; 
Operation O2; /* check where clause condition in JV 

definition */ 
If (Operation O2 fails) 

Operation O4; (expensive) /* maintain JV using base 
relations */ 

 
When we say Operation O2 fails, we mean that Operation O2 
cannot tell whether the update to Ri is irrelevant. 

For comparison, in our content-based detection method, the 
work needed when base relation Ri (1≤i≤n) is updated is as 
follows: 

 
update Ri; 
Operation O1; (cheap) /* update FRi */  
Operation O2; /* check where clause condition in JV 

definition */ 
If (Operation O2 fails) 

Operation O3; (cheap) /* check filtering relations */ 
If (Operation O3 fails) 

Operation O4; (expensive) /* maintain JV using 
base relations */ 

 
Usually, due to selection and projection, filtering relations are 

much smaller than base relations and thus more likely to be 
cached in memory. In this case, checking filtering relations is 
much faster than checking base relations. If a not-very-small 
percentage of updates to base relations are irrelevant and using 
filtering relations can filter out most of the irrelevant updates, the 
extra work of (cheap) Operations O1 and O3 is dominated by the 
work saved in the expensive Operation O4. As a result, the total 
join view maintenance overhead is greatly reduced. 

b c 

FRS=πb, c(σf=“xyz”(S)) 

index 
on b 
  index 

on c 

a 

FRR=πa(σe>20(R)) 

index 
on a 
 

d 

 index 
on d 

FRT=πd(σg=50(T)) 
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Note that in order to minimize the sizes of filtering relations 
(the compactness property), the terms in Category 3 are not 
considered in filtering relations and thus get ignored in the 
filtering process. As will be shown in Section 3 below, using the 
terms in Categories 1 and 2 is usually sufficient to filter out most 
of the irrelevant updates. 
 

2.4 Improvements to the Basic Algorithm 
In order to enhance the compactness of filtering relations, 

efficiency, and functionality, we present several improvements to 
the basic algorithm. 

 

2.4.1 Compressing Filtering Relations 
The performance advantages of the content-based detection 

method depend heavily on the sizes of filtering relations. The 
smaller the filtering relations, the more likely they can be cached 
in memory and thus the greater performance advantages of the 
content-based detection method. Therefore, it is beneficial to 
reduce the sizes of filtering relations.  

To achieve this size reduction goal, we use the following 
hashing method. For each term ci (1≤i≤m1) of Category 1 that is of 
the form Rj.a1=Rk.b1∧Rj.a2=Rk.b2∧…∧Rj.ah=Rk.bh (1≤j<k≤n, 
h≥1), if the representation of attributes (a1, a2, …, ah) is longer 
than that of an integer attribute, we use a hash function H to map 
each (a1, a2, …, ah) into an integer. In the filtering relation FRj of 
base relation Rj, we store H(a1, a2, …, ah) rather than (a1, a2, …, 
ah). Also, in the filtering relation FRk of base relation Rk, we store 
H(b1, b2, …, bh) rather than (b1, b2, …, bh). 

In practice, a large number of joins are based on key/foreign 
key attributes and the values of these attributes are usually long 
strings (e.g., ids). Therefore, hashing can often reduce the sizes of 
filtering relations significantly. 

Suppose a hash function H (or multiple hash functions) has 
been applied to the filtering relation FRi of base relation Ri 
(1≤i≤n). Upon an update ΔRi to Ri, H is first applied to the 
corresponding join attributes of the updated tuples ΔRi. Then ΔRi 
is joined with the filtering relations FR1, FR2, …, FRi-1, FRi+1, 
FRi+2, …, and FRn. 

In the above hashing method, due to hash conflicts, we may 
introduce false negatives in detecting irrelevant updates using 
filtering relations. However, typical modern computers can 
represent a large number of distinct integer values (e.g., a 32-bit 
computer can represent 232 distinct integer values). In practice, if a 
good hash function [10] is used, the probability of having hash 
conflicts should be low. As a result, this hashing method will not 
introduce a large number of false negatives. 
 

2.4.2 Reducing the Number of Filtering Relations 
In practice, most updates occur to one (or a few) base relation. 

The other base relations are rarely updated. In this case, our 
method can only keep filtering relations for the rarely updated 
base relations. No filtering relation is kept for the most frequently 
updated base relation. Then for the update to the mostly 
frequently updated base relation (i.e., for most updates to the base 
relations), the filtering relation maintenance overhead is avoided. 
As a tradeoff, when some rarely updated base relation is updated 
(i.e., for a few updates to the base relations), the content-based 
detection method cannot be used. Rather, we go back to the 
standard join view maintenance method. 

Suppose base relation Ri (1≤i≤n) is small enough to be cached 
in memory in most cases. Also, no hash function has been applied 

to the corresponding filtering relation FRi. Then there is no need 
to keep FRi. Rather, in Operation O3, when we check filtering 
relations for irrelevant updates to some other base relation Rj 
(1≤j≤n, j≠i), we use base relation Ri and filtering relation FRk’s 
(1≤k≤n, k≠i, k≠j). (We may build some indices on the join 
attributes of Ri.) This can save the maintenance overhead of FRi 
when Ri is updated. 
 

2.4.3 Relaxing the Equi-join Condition of Category 1 
For each term of Category 1, we restrict the equi-join condition 

on two base relations Rj and Rk (1≤j<k≤n) to be of conjunctive 
form. This condition can be relaxed so that for each term of 
Category 1, the equi-join condition on Rj and Rk is of disjunctive-

conjunctive form )..(
,,11
srsr

r

ikij

h

s

t

r

bRaR =∧
==

∨ , where t≥1 and 

hr≥1 (1≤r≤t). Then for each r (1≤r≤t), our method keeps attributes 

)...,,,(
,2,1, rhrrr iii aaa  in the filtering relation FRj of Rj, and 

attributes )...,,,(
,2,1, rhrrr iii bbb  in the filtering relation FRk of Rk. 

One index is built on )...,,,(
,2,1, rhrrr iii aaa  and another index is 

built on )...,,,(
,2,1, rhrrr iii bbb . Also, in checking filtering relations 

for irrelevant updates, our method considers the equi-join 
conditions on two base relations that are of disjunctive-
conjunctive form (e.g., using index OR).  
 

2.4.4 Filtering Out the Irrelevant Portion of an 
Update 

In the basic algorithm, the entire update ΔRi to base relation Ri 
(1≤i≤n) is treated as an entity. That is, in Operation O3, ΔRi is first 
joined with the filtering relations FR1, FR2, …, FRi-1, FRi+1, FRi+2, 
…, and FRn. If the join result set is empty, we know that ΔRi is 
irrelevant. Otherwise in Operation O4, the entire ΔRi is joined 
with the base relations R1, R2, …, Ri-1, Ri+1, Ri+2, …, and Rn. 

In general, if ΔRi contains multiple tuples, some tuples may be 
irrelevant while others may be relevant. In this case, treating the 
entire ΔRi as an entity is too coarse. A better method is to treat 
each individual tuple in ΔRi as an entity. In Operation O3, the 
irrelevant tuples in ΔRi are filtered out. Then the remaining tuples 
in ΔRi are passed to Operation O4. 

The concrete method is as follows. Suppose ΔRi contains q 
tuples ti (1≤i≤q). In Operation O3, for each i (1≤i≤q), the number i 
is appended as an additional attribute aa to tuple ti. When ΔRi is 
joined with the filtering relations FR1, FR2, …, FRi-1, FRi+1, FRi+2, 
…, and FRn, aa is never projected out. After we obtain the join 
result set Sj, if Sj≠∅, attribute aa is extracted from Sj. Then after 
duplicate elimination, the values of aa represent the remaining 
tuples in ΔRi that need to be passed to Operation O4. 
 

2.4.5 Sharing a Filtering Relation among Multiple 
Join Views 

Suppose multiple join views are built on the same base relation 
R. A simple method is to build multiple filtering relations of R, 
one for each join view. If those join views have non-overlapping 
selection conditions on R, then all the filtering relations of R 
contain different tuples and any update to a single tuple of R will 
affect at most one of these filtering relations. This is a good, 
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common case in practice, where no redundancy exists among the 
filtering relations. 

In certain other cases where some of the join views have 
overlapping selection conditions on R, redundancy may exist 
among these filtering relations and cause two problems. First, the 
probability that the filtering relations are cached in memory is 
decreased. As a result, Operation O3 becomes more expensive. 
Second, when R is updated, updating all the filtering relations of R 
will be costly. 

In this case, if possible, it may be better to let multiple join 
views share the same filtering relation of base relation R. For 
example, suppose join view JV1 is defined as follows: 

create materialized view JV1 as 
select *  
from R1, S, T1 
where R1.a=S.b and S.c=T1.d and C1; 

C1 is a selection condition on S.f. Join view JV2 is defined as 
follows: 

create materialized view JV2 as 
select *  
from R2, S, T2 
where R2.e=S.b and S.f=T2.g and C2; 

C2 is a selection condition on S.c. Then for base relation S, we 
may build only one filtering relation ))((

21,, SFR CCfcbS ∨= σπ  

rather than two filtering relations ))((
1,1 SFR CcbS σπ=  and 

))((
2,2 SFR CfbS σπ= . FRS can be used for both JV1 and JV2. 

Whether FRS is better than FRS1 and FRS2 depends on the 
overlapping degree of C1 and C2. 
 
 
 
 
 
 
 
 
 

2.4.6 Selectively Skipping Operation O3 
As will be shown in Section 3 below, if either a small 

percentage of the update ΔRi to base relation Ri is irrelevant, or 
ΔRi is large enough so that hash/sort-merge join becomes the join 
method of choice for the join with some base relation Rj (1≤j≤n, 
j≠i), the content-based method may perform worse than the 
traditional content-independent method. In this case, Operation 
O3 can be skipped in the content-based method. This is equivalent 
to using the content-independent method plus updating the 
filtering relation FRi accordingly. The analytical model described 
in Section 3 below will provide a means to determine the upper 
bound on the size of ΔRi (or lower bound on the percentage of ΔRi 
that is irrelevant) where performing Operation O3 is beneficial. 
 

2.4.7 Using the Information about (Intermediate) Join 
Results in Operation O3 

Recall that in Operation O3, ΔRi is joined with the filtering 
relations FR1, FR2, …, FRi-1, FRi+1, FRi+2, …, and FRn. As a 
result, we know the (intermediate) join result sizes (e.g., during 
query execution, the techniques in [16] can be used to collect 
statistics about the output cardinalities of the operators). If these 
(intermediate) join result sizes are significantly different from the 

optimizer’s original estimates, we know that the statistics in the 
database are imprecise. 

Then in Operation O4, when the remaining tuples in ΔRi (after 
filtering) are joined with the base relations R1, R2, …, Ri-1, Ri+1, 
Ri+2, …, and Rn, the optimizer may use the information that is 
gained in Operation O3 to choose a better query plan [23]. 

For example, consider the join view mentioned in the 
introduction. Base relation R is updated by ΔR. Suppose the 
optimizer thinks that each tuple in ΔR has only a few matching 
tuples in base relation S. As a result, in Operation O4, the 
optimizer chooses index nested loops as the join method for the 
join with S. However, from the information we gained in 
Operation O3, we know that each tuple in ΔR has a large number 
of matching tuples in the filtering relation FRS (and thus also a 
large number of matching tuples in S). Then in Operation O4, our 
method may advise the optimizer to choose hash join as the join 
method for the join with S. 
 

2.5 Discussions 
In this section, we show that bloom filter and multi-attribute B-

tree index are generally not suitable for our filtering purposes, as 
neither of them satisfies all four properties mentioned in Section 
2.1. Consider the materialized view MV mentioned in the 
introduction. 

Bloom filter [5] is an excellent technique to support 
membership queries in a set. However, it does not satisfy the 
association property. For example, when base relation R is 
updated, given an S.b value, we cannot use a bloom filter to find 
the associated S.c values.  

We could create two multi-attribute B-tree indices on base 
relation S: I1 for (b, c, f) and I2 for (c, b, f). When R is updated, 
given a b value, performing an index-only scan on I1 can find the 
corresponding c values with f=“xyz”. When T is updated, given a 
c value, performing an index-only scan on I2 can find the 
corresponding b values with f=“xyz”. However, I1 and I2 do not 
satisfy the compactness property. The selection condition 
S.f=“xyz” is not used to reduce their sizes. I1 and I2 contain 
duplicated information, as both of them include attributes b, c, and 
f, whose representation could be fairly long. Moreover, in general 
the selection condition on S could be arbitrarily complex and thus 
other attributes (in addition to f) may need to be included in I1 and 
I2.  
 

3. Performance Evaluation 
In this section, we evaluate the performance of our content-

based method and the traditional content-independent method for 
detecting irrelevant updates to base relations of a materialized 
view. (Recall that the traditional content-independent detection 
method only considers the where clause condition in the 
materialized view definition.) We first build an analytical model 
to gain insight into the performance advantage of our content-
based method vs. the traditional content-independent method in 
maintaining join views. Then we describe experimental results in 
our SRW prototype. 

 

3.1 Analytical Model 
Our model considers the effect that usually a significant portion 

of filtering relations is cached in memory. This is consistent with 
the approach recently proposed in [20], which considers the 
content in the buffer pool when computing the cost of a query 
plan. The goal of this model is not to accurately predict exact 

c b f 
S 

  

FRS2 FRS 

FRS1 
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performance numbers in specific scenarios. Rather, it is to identify 
and explore some of the main factors that determine the 
effectiveness of the content-based method. Moreover, this 
analytical model provides the conditions for selectively skipping 
Operation O3 that is described in Section 2.4.6. In Section 3.3, we 
show that our model for the content-based and content-
independent methods predicts trends fairly accurately where it 
overlaps with our experiments with a commercial RDBMS. 

Consider the following join view JV: 
create materialized view JV as 
select *  
from R, S 
where R.a=S.b and CR and CS; 

CR is the selection condition on base relation R. CS is the selection 
condition on base relation S. The selectivity of CS is q. 

We make the following simplifying assumptions in this model: 
(1) Base relation R (S) has an index IR (IS) on the join attribute. 

Both R.a and S.b are integer join attributes. 
(2) |ΔR| tuples are inserted into R in a single transaction. These 

|ΔR| tuples are uniformly distributed on the join attribute, and 
all satisfy the selection condition CR. The where clause 
condition in JV’s definition cannot be used to detect any 
irrelevant updates.  

(3) The percentage of irrelevant updates in these |ΔR| tuples is p. 
That is, p×|ΔR| tuples are irrelevant. 

(4) For each tuple tR, there are N matching tuples tS in base 
relation S that satisfy tR.a=tS.b.  

(5) The overhead of inserting a tuple into a filtering relation is a 
constant INSERT. 

(6) In the content-independent method, the overhead of 
searching the index IS once is a constant SEARCH. If N 
tuples tS of base relation S are found to match a tuple tR 
through index search, the overhead of fetching these N tuples 
tS, applying the selection condition CS, and then joining them 
with tuple tR is (i) N×FETCH, if index IS is non-clustered or 
(ii) FETCH, if index IS is clustered. (In the case of clustered 
index, we are assuming that all N tuples fit on a single page. 
The model could be easily extended to capture cases where tR 
joins with more tuples than that can fit on a single page; 
however, this would not change the conclusions that we draw 
from our model.)  

(7) In the content-based method, the overhead of searching the 
filtering relation ))(( SFR

SCbS σπ=  once is a constant 

SEARCH.  
 

3.1.1 Total Workload 
For each tuple tR, we use as the cost metric the total workload 

TW, which is defined to be the total work done. This is a useful 
basic metric because we can derive other metrics, such as 
response time, from it easily (as shown in Section 3.1.2 below). 

For both the content-independent method and the content-based 
method, the same updates must be performed on the base relations 
and on the join view. Because of this, our model omits the cost of 
these updates. Then the costs that must be captured are the extra 
update of the filtering relation ))(( RFR

RCaR σπ=  that is 

required by the content-based method, and the differences 
between the two methods in the cost of finding the join result 
tuples that need to be inserted into the join view. We now turn to 
quantify those costs, which we refer to as TW. 

For the content-independent method, upon an insertion of a 
tuple tR, 
(a) Searching the index IS once has overhead SEARCH. 

(b) Fetching the N matching tuples tS of base relation S, applying 
the selection condition CS, and then joining them with tuple 
tR has overhead (i) N×FETCH, if index IS is non-clustered or 
(ii) FETCH, if index IS is clustered. 

Thus for the content-independent method, the total workload TW 
for each tuple tR is (i) SEARCH+N×FETCH, if index IS is non-
clustered or (ii) SEARCH+FETCH, if index IS is clustered. 

For the content-based method, upon an insertion of a tuple tR, 
(a) Inserting tuple πa(tR) into filtering relation FRR has overhead 

INSERT. 
(b) Searching filtering relation FRS has overhead SEARCH. 
(c) With probability 1-p, tuple tR is relevant. In this case, we 

need to further perform the procedure in the content-
independent method. 

So for the content-based method, the average total workload TW 
for each tuple tR is (i) INSERT+SEARCH+(1-
p)×(SEARCH+N×FETCH), if index IS is non-clustered or (ii) 
INSERT+SEARCH+(1-p)×(SEARCH+FETCH), if index IS is 
clustered. 

Compared to the content-independent method, the content-
based method incurs an extra INSERT+(1-p)×SEARCH, while 
saving (i) p×N×FETCH, if index IS is non-clustered or (ii) 
p×FETCH, if index IS is clustered. As the percentage of irrelevant 
updates p grows, the savings in FETCH become significant 
compared to the extra overhead of INSERT+(1-p)×SEARCH. 

In general, for a large base relation T, the aggregate size of its 
filtering relation, its integer-attribute index, and the index on its 
filtering relation is a small percentage of the size of T. For 
example, a tuple of a base relation may be 200 bytes long while a 
tuple of a filtering relation may be only 4 (say, one 32-bit integer 
join attribute) or 8 (say, two 32-bit integer join attributes) bytes 
long. 4/200=2% and 8/200=4%. Therefore, in a typical case, a 
large portion of filtering relations and indexes is cached in 
memory while large base relations are stored on disk. As a result, 
the time spent on FETCH is much larger than that spent on 
INSERT and SEARCH. In the following, we will assume that both 
INSERT and SEARCH take 0.01 I/O, and FETCH takes 1 I/O. (A 
page can contain a large number of tuples. Hence, the average 
logging overhead for inserting a tuple into a relation is a small 
percentage of one I/O.) Our conclusion would remain unchanged 
by small variations in these assumptions. 
 

3.1.2 Response Time 
The model in Section 3.1.1 is accurate only if for the join with 

base relation S, the join method is index nested loops, for which 
the cost is directly proportional to the number of tuples inserted. If 
|ΔR| is large enough, an algorithm such as sort-merge may 
perform better than index nested loops. To explore this issue, our 
model is extended to handle this case. We use sort-merge join as 
an alternative to index nested loops here; we believe our 
conclusions would be the same for hash joins. The point is that for 
both sort-merge and hash join, the join time is dominated by the 
time to scan a relation. Unless the number of modified tuples is a 
sizeable fraction of the base relations, the join time is independent 
of the number of modified tuples. (To keep our model simple, we 
assume that for the content-based method, we use the index nested 
loops join method for the join with filtering relation FRS, as 
usually a significant portion of FRS is cached in memory [20]. 
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Figure 3. TW  vs. number of matching tuples.
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Again, the model could be easily extended to handle the sort-
merge/hash join method for the join with FRS. However, this 
would not change the conclusions that we draw from our model, 
as the cost of the join with FRS is likely to be dominated by the 
cost of the join with S.) 

Let ||x|| denote the size of x in pages. Let M denote the size of 
available memory in pages. In addition, we make the following 
simplifying assumptions: 
(1) The number of page I/Os is used to measure the 

performance. Then when the join method of choice is index 
nested loops, the total workload TW for each tuple tR is (i) 
0.01+N I/Os for the content-independent method when index 
IS is non-clustered, (ii) 1.01 I/Os for the content-independent 
method when index IS is clustered, (iii) 0.02+(1-p)×(0.01+N) 
I/Os for the content-based method when index IS is non-
clustered, or (iv) 0.02+(1-p)×1.01 I/Os for the content-based 
method when index IS is clustered. 

(2) ΔR can be held entirely in memory.  
Given these assumptions, TW for the two methods for the 
multiple-tuple insertion is just |ΔR| times the TW for a single-tuple 
insertion. Calculating the response time is more interesting. We 
can express the response time (in number of I/Os) for either 
method by considering the work required by index nested loops 
join and sort-merge join. 

For the content-independent method, 
(a) If the join method of choice is sort-merge,  

(i) If index IS is non-clustered, the sort-merge join time is 
dominated by the time of first scanning S and applying 
the selection condition CS, and then sorting the 
remaining tuples of S. Therefore, the sort-merge join 
time is approximated by ||S||+||S||×q×logM(||S||×q) I/Os. 
Recall that q is the selectivity of CS. 

(ii) If index IS is clustered, the sort-merge join time is 
dominated by the time of scanning S and is 
approximated by ||S|| I/Os. 

(b) If index nested loops is the algorithm of choice, the index 
join time is approximated by |ΔR|×(0.01+N) I/Os (if index IS 
is non-clustered) or |ΔR|×1.01 I/Os (if index IS is clustered). 

For the content-based method, 
(a) If for the join with base relation S, the join method of choice 

is sort-merge, then  
(i)  If index IS is non-clustered, the sort-merge join time is 

approximated by ||S||+||S||×q×logM(||S||×q) I/Os. Thus, 
the response time of the content-based method is 
approximated by |ΔR|×0.02+||S||+||S||×q×logM(||S||×q) 
I/Os. 

(ii) If index IS is clustered, the sort-merge join time is 
dominated by the time of scanning S and is 
approximated by ||S|| I/Os. Hence, the response time of 
the content-based method is approximated by 
|ΔR|×0.02+||S|| I/Os. 

(b) If for the join with S, the join method of choice is the index 
join algorithm, then the response time of the content-based 
method is approximated by |ΔR|×(0.02+(1-p)×(0.01+N)) 
I/Os (if index IS is non-clustered) or |ΔR|×(0.02+(1-p)×1.01) 
I/Os (if index IS is clustered). 

If |ΔR| is large enough that ||S||+||S||×q×logM(||S||×q)<|ΔR|×(1-
p)×(0.01+N) (if index IS is non-clustered) and ||S||<|ΔR|×(1-
p)×1.01 (if index IS is clustered) are satisfied, then the sort-merge 
join algorithm is preferable to index nested loops. 

The above analysis shows that when sort-merge is the join 
algorithm of choice, the content-independent method actually 
outperforms the content-based method. This is because either 
method has the same join cost for the join with base relation S 
(sorting/scanning S), while the content-based method has the extra 
overhead of the updates to FRR and the join with FRS. Similarly, if 
most updates are relevant and p is close to 0, the content-
independent method also outperforms the content-based method. 
(As mentioned in Section 2.4.6, in these two cases, it may be 
better for the content-based method to skip Operation O3. It is 
straightforward to apply the analytical model and get an estimate 
of the conditions on when it would be better for the content-based 
method to skip Operation O3.) In the discussion of the 
experiments with the analytical model below, we discuss the 
implications of these facts when choosing a method for join view 
maintenance. 
 

3.2 Experiments with Analytical Model 
Setting ||S||=200, M=50 pages, q=50%, N=4 (except in Figure 

3), and p=85% (except in Figures 4~7), we present in Figures 3~8 
the resulting performance of both the content-independent method 
and the content-based method.  

 
Figure 3 shows the average TW for a single-tuple insert vs. the 

number of matching tuples N. Note that Figure 3 uses logarithmic 
scale for both the x-axis and the y-axis. If index IS is clustered, 
TW is a constant 1.01 and 0.17 for the content-independent 
method and the content-based method, respectively. If index IS is 
non-clustered, for both methods, TW increases linearly with the 
number of matching tuples N. In either case, when N≥1, TW for 
the content-based method is smaller than that for the content-
independent method. This is because the content-based method 
can filter out a large percentage of irrelevant updates so that only 
a small percentage of updates need to be joined with base relation 
S. In the case that index IS is non-clustered, the larger the N, the 
more significant the performance advantage of the content-based 
method (note that the y-axis is on logarithmic scale). 

Figure 4 shows the average TW for a single-tuple insert vs. the 
percentage of irrelevant updates p. For the content-independent 
method, TW is a constant 4.01 (if index IS is non-clustered) and 
1.01 (if index IS is clustered). For the content-based method, TW 
decreases linearly with the percentage of irrelevant updates p. 
When p is close to 0, the content-independent method slightly 
outperforms the content-based method. This is due to the 
insignificant “filtering” effect of the content-based method, and 
the extra overhead of the updates to FRR and the join with FRS. 



 8

Figure 4. TW  vs. percentage of irrelevant updates.
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Figure  5. Execution time of one  transaction with 40 

tuples (index join).
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Figure 6. Speedup ratio gained by the 

content-based method.
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Figure 7. Execution time of one transaction with 5,000 

tuples (sort-merge join).
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However, whether or not index IS is clustered, once p≥2%, TW for 
the content-based method becomes smaller than that for the 
content-independent method. The larger the p, the more irrelevant 
updates can be filtered out by the content-based method and thus 
the smaller the overhead of the index join with base relation S. 
Consequently, the larger the p, the more significant the 
performance advantage of the content-based method. 

 
Figure 5 shows the execution time of one transaction with 40 

inserted tuples, where for the join with base relation S, the join 
method of choice is the indexed nested loops join algorithm. The 
shapes of the curves in Figure 5 are similar to that in Figure 4, as 
the transaction execution time = 40 × TW for a single tuple. 

 
Figure 6 shows the speedup ratio gained by the content-based 

method over the content-independent method for a transaction 
with 40 inserted tuples. Note that the y-axis uses logarithmic 
scale. When p is close to 0, the content-independent method 
slightly outperforms the content-based method and hence this 
speedup ratio is a little bit less than 1. However, once p≥2%, the 
content-based method outperforms the content-independent 
method and thus this speedup ratio becomes greater than 1. 
Moreover, this speedup ratio increases rapidly with p. When index 
IS is non-clustered, this speedup ratio is greater than that when 
index IS is clustered. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 shows the execution time of one transaction with 
5,000 inserted tuples, where for the join with base relation S, the 
join method of choice is the sort-merge join algorithm. Whether 
index IS is clustered or non-clustered, both the execution time of 
the content-independent method and that of the content-based 
method are a constant that is independent of the percentage of 
irrelevant updates p. Moreover, the constant for the content-based 
method is greater than that for the content-independent method. 
This is because the cost of the sort-merge join with S is the same 
for both methods, while the content-based method has the extra 
overhead of maintaining FRR and the join with FRS. For the 
content-based/content-independent method, the constant when 
index IS is non-clustered is greater than that when index IS is 
clustered.  

 
Note that there is nothing special about the number 5,000 other 

than that the relevant portion of it (i.e., (1-p)×5000) is greater than 
the number of pages in S. This indicates that if the expected 
update transaction inserts a number of tuples, and the number of 
relevant tuples approximately equals to the number of pages in S, 
the content-independent method is the method of choice.  

It is an interesting empirical question whether or not such large 
update transactions are likely. Anecdotal evidence suggests that 
they are not – data warehouses typically store data from several 
years of operation, so it seems highly unlikely that individual 
update transactions (of which there are presumably many each 
day) insert more than a very small fraction of the warehoused 
data. 
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Figure 8. Execution time vs. number of inserted tuples.
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Figure 8 shows the execution time of one transaction where the 
number of inserted tuples varies from 1 to 2,500. For the content-
independent method, the execution time increases rapidly with the 
number of inserted tuples. For the content-based method, the 
execution time increases much more slowly. For the join with 
base relation S, the join time of both methods reaches a constant 
when the number of inserted tuples is large enough for the sort-
merge join method to become the join method of choice. The 
content-based method reaches this point much later than the 
content-independent method. This is because of the “filtering” 
effect of the content-based method: after filtering out irrelevant 
updates using FRS, fewer tuples are joined with S. However, once 
again, as the number of relevant inserted tuples approaches the 
number of pages of S, the content-based method is indeed worse 
than the content-independent method. 

 
It is straightforward to apply the above analytical model to the 

situation of a join view on multiple base relations. Experiments 
with this model did not provide any insight not already given by 
the two-relation model, so we omit them here. 

 

3.3 Evaluation of the Content-based Detection 
Method in Our SRW prototype 

We now turn to describe experiments we performed in our 
SRW prototype using IBM DB2 Version 8.2. Our measurements 
were performed on a computer with two 3GHz processors, 2GB 
main memory, one 111GB disk. The buffer pool size of DB2 was 
set to be 1.2GB. 

The three relations used for the experiments followed the 
schema of the standard TPC-R Benchmark relations [26]: 

customer (custkey, acctbal, …), 
orders (orderkey, custkey, orderpriority, shippriority, …), 
lineitem (orderkey, …). 
 

Table 1. Test data set. 
 number of tuples total size 

customer 8M 2.6GB 
orders 16M 4.16GB 
lineitem 160M 25.2GB 

 
We wanted to test the performance of insertion into the lineitem 

relation in the presence of join views. Two join views were 
chosen for testing:  
(1) JV1 records the lineitem information of certain orders: 

create materialized view JV1 as 

select *  
from lineitem l, orders o  
where l.orderkey=o.orderkey and C1; 
Here, C1 is the selection condition on the orders relation that 
is of the form o.orderpriority=po and o.shippriority=ps. 

(2) JV2 records the lineitem information of certain orders that are 
bought by certain customers: 
create materialized view JV2 as 
select *  
from lineitem l, orders o, customer c 
where l.orderkey=o.orderkey and o.custkey=c.custkey and C1 

and C2; 
Here, C2 is the selection condition on the customer relation 
that is of the form c.acctbal<ba. 

We repeated our experiments with other kinds of join 
views/workloads. The results were similar and thus not presented 
here. 

The join view maintenance consists of three steps: updating the 
base relation, computing the changes to the join view, and 
updating the join view. As the first step and the third step were the 
same for both the content-independent method and the content-
based method, we only measured the time spent on the second 
step. 

Because DB2 does not currently support the content-based 
detection method, a query rewriting approach was used to resolve 
this problem. We evaluated the performance of join view 
maintenance when 400 tuples were inserted into the lineitem 
relation (these tuples each has one matching tuple in the orders 
relation) in the following way: 
(1) For both the orders relation and the customer relation, we 

created a non-clustered index on each selection/join attribute. 
(2) We created a new relation delta_lineitem that had the same 

schema as lineitem.  
(3) 400 tuples were inserted into delta_lineitem. 
(4) For join view JV1, we created relation 

orders_FR1=πorderkey(
1Cσ (orders)) as the filtering relation 

for orders. For join view JV2, we created two relations 

orders_FR2=πorderkey, custkey(
1Cσ (orders)) and 

customer_FR=πcustkey(
2Cσ (customer)) as filtering relations 

for orders and customer, respectively. We created a first non-
clustered index on the orderkey attribute of the orders_FR1 
relation, a second non-clustered index on the orderkey 
attribute of the orders_FR2 relation, and a third non-clustered 
index on the custkey attribute of the customer_FR relation. 
No filtering relation was created for the lineitem relation, as 
lineitem is the most frequently updated base relation in the 
database. 

(5) The execution time of the following two SQL statements was 
measured: 
Q1:  select *  

from delta_lineitem l, orders o  
where l.orderkey=o.orderkey and C1; 

 
Q2:  select *  

from delta_lineitem l, orders o, customer c 
where l.orderkey=o.orderkey and o.custkey=c.custkey  

and C1 and C2; 
These two SQL statements implemented the content-
independent method for join views JV1 and JV2, respectively, 
while 400 tuples were inserted into the lineitem relation.  
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Figure 9. Predicted join view maintenance time (JV 1 ).
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Figure 10. Real join view maintenance time (JV 1 ).
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Figure 11. Predicted join view maintenance time (JV 2 ).
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(6) We created a temporary relation tmp_lineitem that had the 
same schema as lineitem. Initially, tmp_lineitem is empty. To 
implement the content-based method for join view JV1, Q1 
was replaced with the following two SQL statements Q3 and 
Q4: 
Q3:  insert into tmp_lineitem  

select distinct(l.*) 
from delta_lineitem l, orders_FR1 o 
where l.orderkey=o.orderkey; 

 
Q4:  select *  

from tmp_lineitem l, orders o  
where l.orderkey=o.orderkey and C1; 

To implement the content-based method for join view JV2, 
Q2 was replaced with the following two SQL statements Q5 
and Q6: 
Q5:  insert into tmp_lineitem  

select distinct(l.*) 
from delta_lineitem l, orders_FR2 o, customer_FR c 
where l.orderkey=o.orderkey and o.custkey=c.custkey; 

 
Q6: select *  

from tmp_lineitem l, orders o, customer c  
where l.orderkey=o.orderkey and o.custkey=c.custkey  

and C1 and C2; 
(7) For join view JV1, we varied the selectivity s1 of the selection 

condition C1 from 1% to 100%. The percentage of irrelevant 
updates to the lineitem relation is 1-s1, which is equal to the 
filtering ratio of the content-based method. The ratio of the 
size of orders_FR1 to that of orders is s1×4/251, where 4B is 
the size of the orderkey attribute, and 251B is the average 
tuple size of orders.  

(8) For join view JV2, the selectivity of the selection condition 
C1 was fixed as 60%. We varied the selectivity s2 of the 
selection condition C2 from 1% to 100%. There is no 
correlation between C1 and C2. Hence, the percentage of 
irrelevant updates to the lineitem relation is 1-60%×s2, which 
is equal to the filtering ratio of the content-based method. 
The ratio of the size of orders_FR2 to that of orders is 
60%×8/251=0.019. The ratio of the size of customer_FR to 
that of customer is s2×4/325, where 325B is the average tuple 
size of customer. 

(9) Before we tested the content-independent method, we first 
kept inserting tuples into the lineitem relation and using the 
content-independent method to maintain the join view 
JV1/JV2 until the system became stable. Then the experiment 
was run once. The same method was used to test the 
performance of the content-based method.  

(10) For each experiment, the reported number is averaged over a 
large number of runs. 

Figure 9 shows the join view maintenance time of JV1 that is 
predicted by the analytical model. All the numbers in Figure 9 are 
scaled by a constant factor (the time unit is 80 I/Os) so only the 
relative ratios between them are meaningful. Figure 10 shows the 
experimental join view maintenance time of JV1. Figure 9 and 
Figure 10 match well. The speedup gained by the content-based 
method over the content-independent method increases with the 
percentage of irrelevant updates to the lineitem relation. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

For join view JV2, Figure 11 shows the maintenance time that is 
predicted by the analytical model (the time unit is 80 I/Os), and 
Figure 12 shows the experimental maintenance time. Figure 11 
and Figure 12 match well.  
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We also ran experiments with large update transactions, where 
our analytical model predicts that the content-independent method 
will perform better than the content-based method when sort-
merge/hash becomes the join method for the join with base 
relation S. We did indeed observe the trend that as the transaction 
size increased, the performance of the content-independent 
method first approached and then exceeded that of the content-
based method. However, the analytical model was less accurate 
for large updates than for small. This is because our cost model 
for sort-merge join is too simple (e.g., it does not take special 
consideration of the portion of base relations that is cached in 
memory). Also, it is difficult to estimate precisely the size of 
available memory for the sort-merge/hash join. For these reasons 
the large update results are not presented here. 

The difficulty of duplicating in DB2 the analytical model 
results for large updates does not affect our conclusions. The 
model is accurate for reasonably sized updates; these are the ones 
that are common in practice and also are the ones for which the 
content-based method dramatically outperforms the content-
independent method. 
 

4. Related Work 
Semi-joins (and bloom-joins) in distributed RDBMSs [1, 3] use 

filtering to reduce communication overhead. That filtering method 
is different from our filtering method: 
(1) In our method, the updated tuples of a base relation, Δ, are 

joined with the filtering relations of the other base relations. 
There is one filtering target (Δ) and multiple summary data 
structures (filtering relations). In comparison, semi-join joins 
the projection of a relation, P, with other relations. There are 
multiple filtering targets (other relations) and one summary 
data structure (P).  

(2) Our method mainly performs inexpensive in-memory 
operations, as filtering relations are likely to be cached in 
memory. In contrast, semi-join performs a large number of 
expensive I/Os, as base relations are stored on disk. 

(3) Some of our techniques either do not apply to semi-joins 
because they are used in different contexts (materialized 
view maintenance vs. distributed query processing), or have 
not been used in semi-joins before. For example, for the 
latter part, semi-joins neither use hashing to reduce the sizes 
of join attributes, nor stop processing after finding the first 
matching tuple in certain relations. (Bloom-joins use bloom 

filters. As mentioned in Section 2.5, bloom filter does not 
satisfy the association property.)  

(4) Filtering relations need to be maintained in the presence of 
updates to the base relations of the join view. In contrast, 
there is no need to maintain the data structure used in semi-
joins.  

[27] proposed using join indices to speed up join query 
processing. A join index links the row ids of matching tuples in 
multiple base relations. In our content-based detection method, a 
filtering relation links multiple join attributes (if any) of a single 
base relation. 

If the hashing-based compression method is not considered, a 
filtering relation is simply a selection and projection of a base 
relation. [19] and [15] proposed using auxiliary relations to speed 
up join view maintenance in distributed data warehouses and 
parallel RDBMSs, respectively. An auxiliary relation is also a 
selection and projection of a base relation. However, auxiliary 
relations are larger than filtering relations, as auxiliary relations 
keep both join attributes and non-join attributes while filtering 
relations only keep join attributes. Also, we can use auxiliary 
relations to compute the update to the join view. In contrast, we 
can only use filtering relations to tell whether or not the update to 
the join view is empty. 

[24, 25] use partial indices to reduce index maintenance 
overhead. Filtering relations can be regarded as another kind of 
indices – given a join attribute value, we can use the filtering 
relation to find other join attribute values. 

[22] proposed maintaining additional materialized views in 
order to reduce the total maintenance cost of a target materialized 
view. Our filtering relations can be regarded as additional “mini” 
materialized views. However,  
(1) Similar to the case of auxiliary relations, we can use the 

additional materialized views in [22] to compute the update 
to the target materialized view, while we can only use 
filtering relations to tell whether or not the update to the join 
view is empty. Filtering relations themselves cannot be used 
to compute the update to the target materialized view. 

(2) The additional materialized views in [22] are large and reside 
on disk. They do not satisfy the compactness property (see 
Section 2.1). Reading/maintaining the additional materialized 
views will cause a large number of expensive I/Os, while 
reading/maintaining filtering relations basically only requires 
cheap in-memory operations (with some minor logging 
overhead during maintenance). 

Materialized view maintenance has been widely studied before 
[9, 12]. Our content-based method can utilize the existing 
materialized view maintenance approaches. In Operation O4, we 
can use any appropriate, existing materialized view maintenance 
method to compute the change to the join view that is caused by 
the portion of the update that passes the content-based filter. 

As mentioned in the introduction, [2, 6, 17, 19] proposed 
several techniques to detect irrelevant updates and autonomously 
computable updates (i.e., self-maintainability) to reduce 
materialized view maintenance overhead. All these techniques 
only consider the materialized view definition and make over-
conservative decisions. 

[7, 8] proposed several filtering techniques for XML 
documents. Our content-based method of detecting irrelevant 
updates is another kind of filtering technique for RDBMS. 
 

5. Conclusion 

Figure 12. Real  join view maintenance time (JV 2 ).
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This paper introduces the concept of content-based filtering into 
materialized view maintenance and proposes a new method for 
detecting irrelevant updates to base relations of a join view. We 
identify four important requirements for efficient filtering 
(compactness, association, high filtering ratio, and easy 
maintenance) and design filtering relations that satisfy all of them. 
We show through an analytical model that if a not-very-small 
percentage of updates to base relations are irrelevant, our content-
based detection method can often filter out most (or all) of the 
irrelevant updates and thus greatly reduce the join view 
maintenance overhead. The analytical model is also validated 
through experiments in our SRW prototype using IBM DB2. 

There are many factors that influence the performance of the 
content-based detection method and the traditional content-
independent method, e.g., the update activity on base relations and 
the materialized view properties. Although in many cases, the 
content-based detection method can lead to substantial 
improvement over the traditional content-independent method, it 
is hard to determine when this is not the case. Our analytical 
model could form the basis for a cost model that would enable a 
system to dynamically choose the better approach [18].  
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