
RC24197 (C0702-011) February 27, 2007
Computer Science

IBM Research Report

A Case Study on Community-Enabled SOA
Application Development

Liu Ying, Feng Chenhua, Zhao Wei, Su Hui, Liu Hehui
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, P.R.C. 100094

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Case Study on Community-enabled SOA Application Development

Liu Ying, Feng Chenhua, Zhao Wei, Su Hui, Liu Hehui
IBM China Research Lab, Beijing, China

{aliceliu, fengch, weizhao,suhui,hehuiliu}@cn.ibm.com

Abstract

The idea to leverage large numbers of the open

community resources is straightforward to cater the
expectation on reducing the development cost.
Knowledge protection and quality assurance in this
process are critical challenges for the overall success
of such kind of software outsourcing. It is pivotal to
provide methods and technologies to ensure all the
goals of low cost, no knowledge loss as well as high
quality while outsourcing development works to open
communities. Call-For-Implementation development
method put forward in this paper intends to distribute
implementation tasks to the developers of open
communities through partitioning a holistic design into
pieces of work segments based on some knowledge
protection policies. Although CFI method can be
widely used for any types of applications, SOA
applications are regarded exactly suitable for this
method since the components of SOA applications are
designed to be loosely coupled. In this paper, we
present our study on conducting the CFI method on a
real SOA application. Some metrics are defined for
validating the hypotheses of the CFI method, including
lower cost, knowledge protection, and quality
assurance. Measurement result analysis of this case is
presented and findings acquired are also reported.

1. Introduction

With the rapid development of IT industry, more
and more large-scale applications come forth. Besides
experienced analysts and architects, large numbers of
developers are necessary for delivering the
implementation of these large applications in time. It is
of high return on invest for an enterprise to hire and
cultivate a small group of experienced requirement
analysts, business architects, and IT architects to
deliver application designs with high quality. However,
it is not always cost-effective for an enterprise to
employ and keep a large number of developers no
matter from management or cost perspectives if
software implementation is not the core business of the
enterprise. As a result, an innovative approach to
helping solve the development resource problem for

enterprises is of critical importance for the successful
delivery of a business application.

Open community, which is composed of students,
programming fans, SOHO (small office/home office),
etc., is a well-known virtual development resource
pool. Nowadays, a lot of open-source software [1]
projects have successfully demonstrated that the open
community is an unneglected channel to deliver good
software. In fact, some commercial companies have
realized the value of the huge resource pool of the
open community, and involved in some open-source
developments or incubated some open-source projects
in order to share the copyrights of the open-source
software. However, the commercial companies can
only gain limited benefits from these ad hoc
community-enabled activities. A systematic way to
leverage the open community resources is becoming a
great target pursued by the commercial companies.

Outsourcing [2] of software development has
gained much attention of researchers as well as
practitioners. It leads to lower cost of software
development. We adapt the outsourcing approach to
the open-community environment to put forward CFI
(Call-For-Implementation) development method. This
approach proposes to partition an application as some
pieces of development work segments which can be
distributed to the individual developers in the
community. These pieces of work segments are
specified as some semi-formal documents which are
ready for implementation. These documents are
published in the communities, so that the developers of
the open community can apply for the implementation.

The benefit of the CFI method is three-fold. Firstly,
the development cost of an application can be
dramatically reduced because of leveraging the
cheaper resources of the open community. Secondly,
the key knowledge of the application which may
dominate the businesses of to the enterprises can be
protected because of the adopted knowledge protection
polices. For example, the holistic design of an
application is partitioned as pieces of work segments to
be allocated to the different developers of the open
community, which is an effective way to protect the
whole application design. Thirdly, the quality of
applications developed by the CFI method can be

guaranteed because of the specialized quality
assurance process and some advanced testing
technologies. In this paper, we validate these benefits
through a real SOA application case, Digital Currency
Manager (DCM).

The rest of this paper is organized as follows.
Section 2 starts with the overview of the CFI method.
In section 3, the research method and process is briefly
introduced. Section 4 gives the background of the
DCM application. The main contents of this paper,
including the specific process of the CFI method
performed on the DCM application and metrics
acquired, are presented in section 5. Some findings
through this practice are reported in section 6. Section
7 lists some related works. The final section concludes
this paper and presents the future works.

2. CFI method overview

The CFI method essentially adapts outsourcing model
to the open community, where knowledge protection
and quality assurance technologies enable the CFI
method to be a commercialized development method
leveraging the open community. Figure 1 depicts the
overview of the CFI method.

Figure 1: Overview of CFI Development Method
In the CFI method, CFI partitioning is one of

important activities. CFI partitioning is an activity that
the design of an application is partitioned as some
pieces of work segments which are able to be
independently implemented by different developers.
Each of the work segments is called a CFI which will
be distributed to an individual developer of the open
community. The granularity of CFI can be very
flexible according to available resources, application
characteristics, and the business knowledge protection.

The participants of a CFI project are usually
grouped as two teams: in-house team and open
community. The in-house team includes project
manager, requirement analyst, application designer,
and a small number of skilled developers. The in-

house team can be regarded as the owner of the project.
This team is responsible for the works which require
high levels of knowledge and skills, such as
requirement analysis, design, CFI partition, and final
integration. The open community is a virtual team
which is constructed by the developers who join the
project implementation based on the applied CFIs.

In the CFI method, there are two important
supporting technologies, knowledge protection and
quality assurance. For a commercial application, how
to avoid the loss of ‘trade secret’ (which is called key
knowledge in this paper) during the CFI process is
pivotal to the success of the CFI method. We
categorize the key knowledge of an application as five
types: main function features, business architecture
design, IT architecture design, key data model, and key
business processes. Correspondingly, we proposed
several approaches to protecting the key knowledge,
such as, partitioning the overall application design into
some pieces of work segments, replacing some
business keywords with other domain’s words or
meaningless words, controlling the exposure rate of
data model, and partitioning a whole business process
as some small business processes.

In order to reduce the quality risk due to the
implementation work partitioning and the distribution
to the open community, we adapt the quality assurance
process of RUP [3] to the CFI method by enhancing it
with some key technologies and methods, such as
unified test technology and rigorous code review
approach. Because of space limitation, the details of
the unified test technology will not be covered in this
paper.

Requireme
nt analysis

Business
Design

Architectu
re design

CFI

Partition
ing

CFI

Integrati
on

Knowledge Protection

Open Community

In-house

Quality

3. Research method and process

In this section, we present the research method and

process employed in the study. The specific goals
which we expect to acquire through performing the
research method are introduced at first. According to
the determined specific research goals, the descriptive
study method is decided to be adopted as our research
method, which aims primarily at gathering knowledge
(i.e. descriptions and explanations) about the object of
study but does not wish to modify the object. The
target is to find out how things are, or how they have
been. We will give the detailed description to the
organization and process of our executed research
method. In addition, the metrics employed to come up
to the conclusions are also presented in this section.

3.1. Research method

The research approach which we adopted for
evaluating the CFI development method is a kind of
empirical study. This section presents the specific
goals, i.e., hypotheses expected to be validated, of this
empirical study and the organization and process of the
study based on the determined goals.

Hypotheses The CFI development method is
aiming at developing application with lower cost and
high quality by leveraging the open community
resources and assuring the necessary control on the key
knowledge of the application at the meanwhile. These
are hypotheses of CFI method that we are going to
validate through the empirical study. We will compare
the data collected from the empirical study with the
statistical data in the literature. Since the hypotheses
which we determined to verify through the study are to
acquire the recognition of the CFI development
method quantitatively to some extent just from one
case, the descriptive method can be adopted for our
purpose which focuses on acquiring the knowledge of
the observed objects but no any modification on them.

Organization and Process Based on the
method we adopt, we designed this study in detail from
both organization and process perspectives. In this
empirical study, there are three independent teams.
One is the in-house team, the other is the observation
team, and the third one is the open community team.
As introduced in CFI method overview section, the in-
house team mainly performs the CFI development
approach, and the open community team is composed
of 13 graduate students from universities. The
observation team is responsible for defining the
metrics for indicating the hypotheses, collecting raw
data and analyzing them. The specific metrics can be
found in the following sub-section.

The process of the empirical study consists of three
main steps. In the first step, the observation team
constructs the data collecting environment for each
member of the execution team and gives the training to
them to assure the integrity of the collected data. We
use IBM Rational ClearQuest [4] for this task. The
second step includes two paralleled threads of both the
CFI development and the tracking on it. That is to say,
while the in-house team performs the CFI method, the
requested data is also tracked everyday by them. At the
meanwhile, the observation team members check
whether the data is updated in time and assure their
validity and integrity. In the third step, after the CFI
development process finishes, the observation team
analyzes the collected data and presents the absolute
and comparative results.

3.2. Metrics definition

Goal oriented measurement approach [5] is widely
used in software industry. In our study, we use the G-
Q-M (Goal-Question-Metric) method to define metrics
for verifying the hypotheses of the CFI method.
Considering some essential features of the CFI method,
the following four goals are defined:
1. To give insight of effort allocation of the CFI

development method
2. To evaluate potential cost-savings and productivity-

improvement due to leveraging the open
community resources

3. To check if there is any degradation in software
quality due to work partitioning

4. To evaluate the effectiveness of knowledge
protection through work partitioning
According to these goals, we define four kinds of

metrics, including product, process, quality and
knowledge protection metrics. The details of these
metrics are given in table 1, 2, 3, and 4 by category.
Work Product Metric Definition
Code Size of code (KSLOC)
Requirement Number of use case,

Number of use case transaction
Page of requirement specification

Design Model Number of class/interface
Test Model Number of test case

Table 1: Product Metrics
Process Metrics Definition
Resource profile Project staffs profile per phase / per iteration
Efforts distribution
by discipline

Efforts on every discipline, including requirement,
analysis & design, implementation, test,
environment, configuration, project management,
training, deployment, etc.

Efforts on CFI
related activities

CFI partition
CFI partition - review & adjust
CFI specification - effort on specification
CFI specification - review & adjust
CFI specification - effort on mock testing
CFI implementation (code, unit test)
CFI - code review
CFI communication/management
CFI training
CFI partial integration by community developers
CFI system integration
CFI change management
CFI rework

Cost Development cost of developers in the in-house
team
Development cost of developers in the open
community

Table 2: Process Metrics
Quality Metrics Definition

Defects density Number of defects/product size
Defects distribution Number of defects by which phase introduced/phase

found
Number of defects found by which test activity and
defect trigger

Defects age The age/duration from defects submitted to defects
removal.

Table 3: Quality Metrics
Knowledge protection Metric Definition
Application key
functions

Keywords: total number vs. CFIed (i.e.
Distributed in CFI)
Key features: total number vs. CFIed

Key business processes Key business processes: total number vs. CFIed
Data model Number of data distributed in CFI

Percent of Business Object(BO) fields
distributed to the developers of open community

System architecture Architecture significant module: total number
vs. CFIed

Table 4: Knowledge Protection Metrics

3.3. Data collection method

The Eclipse Metric plug-in is used to calculate the
source of DCM code. Other product size is collected
when the work product is completed and is updated
when the project is finished.

We developed a daily log tool based on IBM
Rational ClearQuest to collect efforts from the in-
house team and the open-community team. In this tool,
each team member’s activities will be categorized into
disciplines (e.g. requirement, analysis and design, test,
implementation, etc.) and detailed categories (e.g. CFI
partition, CFI specification, CFI implementation, CFI
integration, etc.). The observation team sent daily
emails to reminder each team member to input their
daily efforts properly. And all the effort data is
validated by the observation team periodically.

For the quality metric, we also use the IBM
Rational ClearQuest to manage all the defects of DCM.
And the ODC (Orthogonal Defect Classification) [6]
technique is used to analyze defect data.

In order to collect data of knowledge protection
metrics, we design some questionnaires to collect
qualitative data from developers when the developers
deliver their works.

4. DCM project overview

Digital Currency Manager (DCM) is a real SOA
application developed for IBM China Research Lab,
which has been on-line in December of 2006. DCM
includes 10 main functions, including user
management, use account management, digital
currency exchange rules management, digital currency
transfer, transaction management, batch deduction
process, food service provider management, food
booking service, food orders management.

DCM aligns with SCA standard [7], and application
layer and data layer are implemented as the SCA
components. Overall, there are 19 components in the
application layer and 21 components in the data layer.
Each component has about 4 interfaces, and each
interface has several operations. The development
environment is WebSphere Integration Developer
6.0.1[8] and the application is deployed on WebSphere
Process Server 6.0.

5. DCM practice process and data

In this experiment, we do not put UI development
works in the CFI scope but only data and functional
components. In this practice, interface is taken as the
basic unit of CFI, i.e. each CFI includes multiple
interfaces coming from different SCA components. In
addition, there are also some BPEL components in
DCM, so each BPEL component is also taken as the
basic unit of CFI.

5.1. Experiment process

The CFI process introduced in section 2 is
customized to align with SCA development features in
this case study. In this section, we introduce some key
activities in the DCM development process which
omits some detailed steps just for the simplicity. The
following several steps are key activities in this
process.

 Business Key knowledge identification
In the DCM application, most of the SCA

components are Java components. Besides, we also
have several BPEL components. For those Java
components, they mainly implement the data
management or data processing functionalities which
do not refer to the business knowledge at all. For the
BPEL components, all of them consist of some
confidential contents of the business. As a result, we
decided not to distribute the BPEL components to the
open community. Instead, they were developed by the
in-house team.

 CFI generation and documentation
CFI partitioning is the key step of the whole CFI

approach which is different from the traditional
software development process. As mentioned in
section 2, the granularity of CFI partition can be very
flexible. In our study, we partition the project into
CFIs each of which include several interfaces. In this
experiment, 54 CFIs are generated, which are allocated
to the 13 developers of the open community. Besides
CFI document, the whole DCM project is partitioned
as different pieces based on CFI documents. So each
CFI has a corresponding project which only includes
the necessary content related to this CFI.

A key difference of CFI partition from the
distributed development is that different holders of
CFIs do not share the implemented contents each other
although the dependencies among the different CFIs
are kept for debugging and unit testing. That is to say,
if interface A depends on another interface B, the CFI
of interface A includes the definition of interface B but
no the implemented contents of it.

In this experiment, the CFI partitioning activity is
conducted completely manually since CFI partitioning
supporting tools are still under development.

 CFI development
The CFIs generated from CFI partitioning are

distributed to the open community. Each developer of
the open community receives their applied CFI
packages. A CFI package includes a CFI document,
the DCM partial project, and some test cases. Then
these developers can import the DCM partial project
into their workspace and implement them by referring
to the CFI document. During the implementation, the
developers can have communications with the in-house
team for clarifying some unclear design points. At the
same time, when the design has some changes, the in-
house team updates these changes to the developers.

 CFI integration
Once all of the CFIs have been finished by the

developers of the open community, the in-house team
performs the integration work based on the overall
design. The integration testing is also conducted as
follows. In our study, the defects found during the
integration phase are fixed by the in-house team.

In this experiment, the unified test cases are
designed manually and applied to test the system in
integration testing. In system testing, some main
functions of DCM are implemented with BPEL
(Business Process Execution Language) [9].
BPELTester [10] is applied to help generate the test
cases for these BPEL processes.

5.2. Measurement results

In this section, we present the measurement results
according to the pre-defined metrics.

 Product size:
Product size results are showed in Table 5.

Product Type Metric Description Unit Size
Number of use case # 33
Number of use case transaction # 57

Requirement Size

Requirement Specification # of page 70
Software architecture description
(design specification)

 # of page 70

Number of CFI # 53

Design Model Size

Number of database table # 20
Implementation
Model

New developed source code
(NCNB, no comment, no blank)

 SLOC 25860

 Reused source code SLOC 0
 Number of class/interface # 281
 Number of JSP files # 78
 Number of XML, WSDL, XSD # 188
Test Model Number of test case # 211
 Page of test case specification # of page 154

Table 5: Product Size Metrics
 Project resource profile:

Project resources include resources of the in-house
team and the open community, where in-house team
includes 5 IBM employees and the open community
includes 13 graduate students from universities. The
resource profile is given in Figure 2.

Figure 2: DCM project staffing profile (Note: Oct.

1- Oct. 8 is the public holiday)
 Efforts and cost:

DCM Efforts distribution by disciplines and CFI
activities are given in Table 6 and Table 7. Cost profile
is given in Table 8.
Discipline Effort (hours)

Analysis and Design 826
Business Modeling 82
Deployment 14
Environment 126
Implementation 975
Others 102
Project Management 90
Requirement 176
Test 343
Training 32
Total: 2765

Table 6: Efforts distribution by discipline
CFI Related Activity Effort(hours)

Conduct CFI communication 10
Develop CFI WBS - prepare 103
Develop CFI WBS - review & adjust 55

Handle CFI change request 68
Perform CFI integration 185
Perform CFI Promotion 6
Write CFI specification - effort on spec 369

Write CFI specification - effort on test mock 27

Table 7: Efforts distribution by detail CFI activities
Effort Distribution Effort (hours)

In-House Effort 1543
Open community 1222

Table 8: Cost profile
 Quality:

The number and age data of defects are presented in
Figure 3 and Figure 4.

Figure 3: Defects number chart

Figure 4: Defect aging chart

 Knowledge protection:
Knowledge protection metric Data

Keywords: total number vs. averaged CFIed (i.e.
Distributed in CFI)

40 vs. 4

Key features: total number vs. average CFIed 10 vs. 1

Key business process: total number vs. CFI 5 vs. 0
Average percent of Business Object(BO) fields in CFI 52%
Architecture significant module: total vs. average CFIed 10 vs. 1

Table 9: CFI knowledge protection data

5.3. Metrics result analysis

In this section we conduct analysis on the collected
data. First, the project summary data is consolidated in
Table 10. The analysis is presented afterwords.
 Total size New developed Reused
Product
size

34727
SLOC(NCNB)

34727 SLOC 0

 754 FP (Function
Point)

754 FP 0

 Effort (hours) Effort (man-month)
Project
Effort

2765 2765/6/22 = 20. 95
We assume one month has 22
working day and each day has 6
working hours

 Total calendar days Project start date Project close date
Project
Duration

77 Sept. 18, 2006 Dec. 4, 2006

 Number of defects before

shipping
Number of defects after
release

Defect 122 7

Table 10: Project summary data
 Productivity:

34727 SLOC / 20.95Man-Month=167.85
SLOC/Man-Month

754 FP / 2765Hours*100= 27.30 FP/100Hours
Comparing the productivity of the CFI method with

the data from ISBSG (International Software

Benchmarking Standards Group, the average
productivity from ISBSG is 12.87 FP/100Hours (196
new dev projects, java, 2000-2005) [11]), it is obvious
that the productivity of DCM project is higher than the
ISBSG average productivity.

 Defect density:
(122+7)/34.727=3. 715 defects / KSLOC
It is not enough to judge the quality only from the

defect density. But from the fact that only 7 field
defects (no critical/major defects) are found after DCM
online 90 days, we can conclude the quality is
acceptable to some extent.

 Lifecycle effort distribution:
The comparisons on efforts distribution by each

discipline of our case study and data of typical RUP [3]
are given in Table 11.

 RUP DCM case
Project Management 11% 8%
Requirement 11% 9%
Analysis & design 19% 30%
Implementation(Code and Unit Test) 27% 35%
Test 20% 12%
Deployment 6% 1%
Environment 6% 5%

Table 11: Efforts comparison between DCM case
and typical RUP

From the above comparison, we can have the
following facts: the percent of analysis & design (30%
vs. 19%) and implementation (35% vs. 27%) discipline
is a bit higher; test discipline is a bit lower (12% vs.
20%). In the collected data, the CFI integration effort
is allocated into the implementation discipline instead
of test discipline. That is the partial reason why
implementation is a bit higher and test is a bit lower
than that of RUP profile. Through the analysis, we can
conclude that more efforts in CFI method would be
allocated to the analysis and design discipline.

 CFI efforts profile:
Figure 5 shows the CFI efforts profile.

Effort

0%
13%

7%

8%

23%

1%

45%

3%

Conduct CFI communication

Develop CFI WBS - prepare

Develop CFI WBS - review
& adjust

Handle CFI change request

Perform CFI integration

Perform CFI Promotion

Write CFI specification -
effort on spec

Write CFI specification -
effort on test mock

Figure 5: Efforts distribution by CFI activities
CFI related activity accounts for about 30% effort

in the whole development. Among the CFI related
activities, CFI specification writing, CFI integration
and CFI partition are the top 3 effort-consuming
activities. We are developing some supporting tools

which are expected to help reduce manual CFI activity
efforts in the future.

 Cost model:
In the DCM project development, there are two

kinds of development resources: in-house developers
and the open community developers. We assume that
the cost rate is r1 for in-house developers and r2 for
community developers. The efforts contributed by in-
house developers are 1543 hours and the efforts of the
open community developers are 1222 hours. Cost
saving rate is:
[(1543+1222)*r1–
1543*r1+1222*r2)]/(1543+1222)*r1

 = 1222 *(r1-r2) / 2765*r1
 = 0.44 * (1- r2/r1).

If r2:r1=1:3, the cost saving rate is: 0.44*(1-1/3)
*100%= 29.48%, if r2:r1=1:2, the cost savings rate is
0.44*(1-1/2) * 100% = 22%.

 Knowledge protection:
We conducted questionnaire survey within the open

community developers to assess knowledge protection
results. The survey results showed that only the
knowledge carried in the CFI documents has been
grasped by the developers. All the open community
developers do not know the overall project background,
overall application architecture, and BPEL processes.
In fact, these results are natural and intuitive because
there are no communications among these developers
and CFI is the only channel for them to acquire
knowledge of the project.

6. Findings and lessons learnt

Through the DCM project, we have the following

findings and lessons acquired from the CFI application
development approach:
1.CFI method can be used for SOA application
development
2.CFI partitioning is feasible to protect knowledge
3.CFI method can reduce development cost and
improve productivity
4.The quality of application developed in CFI method
is acceptable
5.CFI related activities account for about 30% efforts
in the whole development. Some supporting tools are
necessary to reduce the efforts of CFI partitioning and
documentation. Specifically, we learned a lot in quality
assurance, knowledge protection, and the overall
method through this case study.

For quality assurance, we have the following three
main findings. Firstly, the correctness and clearness of
CFI document are of special importance for assuring
the quality. A detailed and unambiguous specification

could help avoid errors in CFI development due to
misunderstanding. Secondly, the automatic testing
framework is important for bug identification at the
earlier stages. Thirdly, in the integration of CFIs, the
test cases with boundary values are critical to reveal
bugs. Through strictly following CFI specification,
some logic errors and interface errors may be avoided.
A lot of bugs come from the missing branches for the
boundary value such as the null value of the string type.
Therefore, to design test cases with boundary values
would be helpful in revealing the bugs.

From knowledge protection perspective, this case
illustrated that the CFI partitioning is an effective way
to protect the whole design related knowledge, such as
application architecture and application holistic
function structure. In fact, this result is natural and
intuitive because each developer only has a local view
of the application. Another important purpose of this
case study is to validate that each developer can
correctly perform implementation works under the
constraints that they only have limited knowledge of
the project. This case study has illustrated this point.

From the CFI overall method perspective, this case
study at least proves that SOA applications can be
developed using the CFI method. As you have noticed
in this paper, CFI partitioning is closely related to
application types, we should not make the conclusion
that CFI method can be applied to any applications
only through this particular SOA case. In addition, the
following five specific problems of the CFI method
identified from this case are useful for the further study
of the CFI method: Firstly, the open community
developers have different coding styles and skills,
which may lead that the overall coding style of an
application is inconsistent. It is necessary to provide
effective way to avoid this problem in the CFI method
deep study. Secondly, how to guarantee the developers
to finish their works on schedule is a big challenge.
CFI implementation can be regarded as the service
delivered by the open community, so the CFI method
can leverage some experiences in the service level
agreement (SLA) area to make contract with the open
community developers. Thirdly, CFI documentation is
a kind of labor-intensive work, which demands us to
provide some supporting tools. Fourthly, the rigorous
quality assurance process is proposed in the CFI
method. However, code review and test coverage
checking may spend big efforts of the in-house team.
We need further study on the balance of quality
assurance process and efforts control. Fifthly, the large
volume of resources of the open community is a sugar
for the CFI method. However, how to effectively
communicate with them in CFI document clarification,
CFI implementation checking, code review, and CFI

bug fixing are also great concerns. Finally, how to
handle CFI change is another critical problem for the
in-house team.

7. Related works

The CFI method can be considered as the
combination of open source software development
method and software development outsourcing model.
There are lots of existing research works on
outsourcing [2] and open source software development
model [1]. We pay more attention to the research
works on discussing knowledge management issues of
outsourcing [12] and the skill barriers issue of open
source software development [13]. As our survey, a lot
of papers only mention these issues or give high level
methods but without providing concrete technologies.

Quality assurance of the CFI method can leverage
some existing works, for example, the quality
assurance activities in open source model is a good
reference. In face of the quality assurance problems in
open source development, Adam Porter etc. [14]
designed a Skoll DCQA (distributed continuous
quality assurance) process to help assure the product
quality in open source development, in currently, the
process is applied to the development of ACE+TAO.
In CFI method, to leverage development resource is
one of the major targets. In fact, how to leverage this
resource to disperse testing works is our future
research works for the CFI method. Luyin Zhao etc.
[15] found that the user participation is considered as
the major quality assurance activity. In the survey of
Luyin Zhao, 20% to 40% of the faults in 20% of the
projects are found by users, and 44% of the
respondents thought that users found “hard” bugs. This
work reminds us that we should study how to allocate
system and function testing works to open community.

8. Conclusion and future works

In this paper, we present the experiment process of
developing an SOA application, Digital Currency
Manager, using the CFI development method. Through
the analysis on the experiment data, we have validated
some hypotheses of the CFI method, i.e. the
development cost of SOA applications by the CFI
method can be dramatically reduced by leveraging the
cheaper open community resources, the quality of
delivered application can be assured, and the key
knowledge of the application can be avoided losing
because of some specific technologies provided by the
CFI method, such as CFI partitioning and business
keywords replacement.

In the future, more experiments will be conducted
to validate that CFI method is appropriate for other
kinds of applications. In addition, we will continue to
do the further deep study on knowledge protection
technologies, such as business keywords hiding and
information exposure control. For quality assurance
perspective, unified test technology is one of research
keystones. How to partition function and system
testing works to CFIs is another research focus.

9. References

[1] T. O′reilly, Lessons From Open-Source Software
Development, Comm. ACM, vol. 42, pp. 32-37, 1999.
[2] Huff, S. L., Outsourcing of Information Services,
Business Quarterly, Spring 1991, pp. 62-65.
[3] Kruchten, P., Rational Unified Process – An Introduction,
1999: Addison-Wesley.
[4] IBM Rational ClearQuest, http://www-
306.ibm.com/software/awdtools/clearquest/index.html.
[5] Robert E. Park, Wolfhart B. Goethert, William A. Florac,
Goal-Driven Software Measurement: A Guidebook, 1996,
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/hb002
.96.pdf .
[6] ODC,
http://www.research.ibm.com/softeng/ODC/ODC.HTM.
[7] Service Component Architecture Specifications,
http://www.osoa.org/display/Main/Service+Component+Arc
hitecture+Specifications
[8] WebSphere Studio Application Developer Integration
Edition (WSAD-IE). (2006). http://www-
306.ibm.com/software/integration/wsadie/support/ .
[9] Business Process Execution Language for Web Services.
(2003);ftp://www6.software.ibm.com/software/developer/libr
ary/ws-bpel.pdf .
[10] Zhongjie Li, Wei Sun, Zhongbo Jiang, and Xin Zhang.
Bpel4ws unit testing: framework and implementation. In the
proceedings of the 2005 IEEE International Conference on
Web Services (ICWS’ 2005), pages 103-110. Orlando,
Florida, USA, July, 2005.
[11] ISBSG, http://www.isbsg.org.
[12] L. Zhao, T. H. Yim-Teo, K. T. Yeo, Knowledge
Management Issues in Outsourcing, International
Engineering Management Conference 2004, pp. 541-545.
[13] Georg von Krogh, Sebastian Spaeth, Karim R. Lakhani,
Community, Joining, and Specialization in Open Source
Software Innovation: a Case Study. Research Policy 32(2003)
pp. 1217-1241.
[14] Adam Porter, Cemal Yilmaz, Atif M. Memon, Arvind S.
Krishna, Douglas C. Schmidt, Aniruddha Gokhale.
Techniques and Processes for Improving the Quality and
Performance of Open-Source Software. 11(2): 163-176.
Software Process: Improvement and Practice, 2006. John
Wiley & Sons, Ltd.
[15] Luyin Zhao, Sebastian Elbaum. Quality Assurance
under the Open Source Development Model. 66(1): 65-75,
Journal of Systems and Software, 2003. Elsevier Science Inc.
New York, NY, USA.

http://www-306.ibm.com/software/awdtools/clearquest/index.html
http://www-306.ibm.com/software/awdtools/clearquest/index.html
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/hb002.96.pdf
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/hb002.96.pdf
http://www.research.ibm.com/softeng/ODC/ODC.HTM
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www-306.ibm.com/software/integration/wsadie/support/
http://www-306.ibm.com/software/integration/wsadie/support/
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
http://www.isbsg.org/

	1. Introduction
	2. CFI method overview
	3. Research method and process
	3.1. Research method
	3.2. Metrics definition
	3.3. Data collection method
	4. DCM project overview
	5. DCM practice process and data
	5.1. Experiment process
	5.2. Measurement results
	5.3. Metrics result analysis

	6. Findings and lessons learnt
	7. Related works
	8. Conclusion and future works
	9. References

