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Abstract

We study the Master Equality Polyhedron (MEP) which generalizes the Master Cyclic Group

Polyhedron and the Master Knapsack Polyhedron.

We present an explicit characterization of the polar of the nontrivial facet-defining inequali-

ties for the MEP. This result generalizes similar results for the Master Cyclic Group Polyhedron

by Gomory [9] and for the Master Knapsack Polyhedron by Araoz [1]. Furthermore, this char-

acterization also gives a polynomial time algorithm for separating an arbitrary point from the

MEP.

We describe how facet defining inequalities for the Master Cyclic Group Polyhedron can be

lifted to obtain facet defining inequalities for the MEP, and also present facet defining inequalities

for the MEP that cannot be obtained in such a way. Finally, we study the mixed-integer

extension of the MEP and present an interpolation theorem that produces valid inequalities for

general mixed integer programming problems using facets of the MEP.

1 Introduction

We study the Master Equality Polyhedron (MEP), which we define as:

K(n, r) = conv

{

(x, y) ∈ Z
n
+ × Z

n
+ :

n
∑

i=1

ixi −
n

∑

i=1

iyi = r

}

(1)

where n, r ∈ Z and n > 0. Without loss of generality we assume that r ≥ 0. To the best of our

knowledge, K(n, r) was first defined by Uchoa [14] in a slightly different form and described as an

important object for study.

Two well-known families of polyhedra can be viewed as forming lower dimensional faces of the

MEP: the Master Cyclic Group Polyhedron (MCGP), which is defined as

P (n, r) = conv

{

(x, y) ∈ Z
n−1
+ × Z+ :

n−1
∑

i=1

ixi − nyn = r

}

, (2)

where r, n ∈ Z, and 0 ≤ r < n; and the Master Knapsack Polyhedron (MKP), which is defined as

K(r) = conv

{

x ∈ Z
r
+ :

r
∑

i=1

ixi = r

}

, (3)
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where r ∈ Z and r > 0.

Facets of P (n, r) are a useful source of cutting planes for general MIPs. The Gomory mixed-

integer cut (also known as the mixed-integer rounding (MIR) inequality) can be derived from a facet

of P (n, r) [10]. For work on other properties and facets of the Master Cyclic Group Polyhedron,

see [2, 4, 5, 6, 7, 8, 11, 12, 13]. In particular, several relationships between facet-defining inequalities

of the MCGP and facet-defining inequalities of the MKP were established in [2]. The Master Cyclic

Group Polyhedron is usually presented as

P ′(n, r) = conv

{

x ∈ Z
n−1
+ :

n−1
∑

i=1

ixi ≡ r mod n

}

which is the projection of P (n, r) in the space of x variables. We use (2) as it makes the comparison

to K(n, r) easier and clearer.

Gomory [9] and Araoz [1] give an explicit characterization of the polar of the nontrivial facets

of P (n, r) and K(r). In this paper, we give a similar description of the nontrivial facets of K(n, r),

yielding as a consequence a polynomial time algorithm to separate over it. We also analyze some

structural properties of the MEP and relate it to the MCGP.

In addition, we describe how to obtain valid inequalities for general MIPs using facet defining

inequalities for the MEP. Another motivation to study the MEP is that it also arises as a natural

structure in a reformulation of the Fixed-Charge Network Flow problem, which has recently been

used in [15] to derive strong cuts for the Capacitated Minimum Spanning Tree Problem and can

also be used in other problems such as the Capacitated Vehicle Routing Problem.

In the next section, we present our characterization of the polar of the nontrivial facets of

K(n, r), for any n > 0 and any r satisfying 0 < r ≤ n. In Section 3, we study K(n, r) when

r = 0. Based on the results of these sections, we describe how to separate a point from K(n, r)

for arbitrary r (including the case r > n) in Section 4. In Section 5 and Section 6, we discuss how

some, but not all, of the facets of K(n, r) can be obtained by lifting facets of P (n, r). In Section 7,

we follow the approach of Gomory and Johnson [10] and derive valid inequalities for mixed-integer

programs from facets of K(n, r) via interpolation. We conclude in Section 8 with some remarks

on directions for further research on K(n, r), along the lines of the work of Gomory and Johnson

[10, 11] on P (n, r).

2 Polyhedral Analysis of K(n, r)

Throughout this section, we assume 0 < r ≤ n. The cases r = 0 and r > n are studied in Sections 3

and 4. We start with some notation and some basic polyhedral properties of K(n, r).

Let ei ∈ R
2n be the unit vector with a one in the component corresponding to xi and let fi ∈ R

2n

be the unit vector with a one in the component corresponding to yi, for i = 1, . . . , n.

Lemma 2.1 dim(K(n, r)) = 2n− 1.
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Proof. Clearly dim(K(n, r)) ≤ 2n− 1 as all points in K(n, r) satisfy
∑n

i=1 ixi−
∑n

i=1 iyi = r. Let

U be the set of 2n points p1 = re1, pi = re1 + ei + if1 for i = 2, . . . , n, and qi = (r + i)e1 + fi for

i = 1, . . . , n. U is an affinely independent set, as {u− p1 : u ∈ U, u 6= p1} is a linearly independent

set. As U ⊆ K(n, r), dim(K(n, r)) ≥ 2n− 1.

Lemma 2.2 The nonnegativity constraints of K(n, r) are facet-defining if n ≥ 2.

Proof. Let U be defined as in the proof of Lemma 2.1. For any i 6= 1, the sets U \{pi} and U \{qi}

are affinely independent, and satisfy xi = 0 and yi = 0, respectively. Therefore xi ≥ 0 and yi ≥ 0

define facets of K(n, r) for i ≥ 2. To see that y1 ≥ 0 is facet defining, replace pi (2 ≤ i ≤ n) in

U by p′i = re1 + nei + ifn to get the affinely independent set U ′ ⊆ K(n, r). All points in U ′ other

than q1 satisfy y1 = 0. Finally, let V be the set of points t0 = en + (n − r)f1, ti = t0 + ien + nfi

for i = 1, . . . , n, and si = t0 + ei + if1 for i = 2, . . . , n− 1. V is contained in K(n, r), and is affinely

independent as {v− t0 : v ∈ V, v 6= t0} is linearly independent. The points in V also satisfy x1 = 0.

Clearly, K(n, r) is an unbounded polyhedron. We next characterize all the extreme rays (un-

bounded one-dimensional faces) ofK(n, r). We represent an extreme ray {u+λv : u, v ∈ R
2n
+ , λ ≥ 0}

of K(n, r) simply by the vector v. Let rij = jei + ifj for any i, j ∈ {1, . . . , n}.

Lemma 2.3 The set of extreme rays of K(n, r) is given by R = {rij : 1 ≤ i, j ≤ n}.

Proof. Let (c, d) be a ray of K(n, r), that is,
∑n

i=1 ici−
∑n

j=1 jdj = 0. We will show, by induction

on the number of nonzero components of (c, d), that (c, d) can be written as a conic combination

of rays in R.

First, we can assume that (c, d) 6= 0. In such a case, c 6= 0 and d 6= 0. Therefore, (c, d) has at

least two nonzero components. If (c, d) has exactly two nonzero components, we have ici = jdj for

some i, j and therefore, (c, d) = δijrij where δij = ci/j. On the other hand, if (c, d) has more than

two nonzero components, pick any i, j such that ci, dj > 0 and let δij = min{ci/j, dj/i}. Notice

that (c′, d′) = (c, d) − δijrij satisfies
∑n

i=1 ic
′
i −

∑n
j=1 jd

′
j = 0 and has fewer nonzero components

than (c, d). By induction, (c′, d′) can be written as a conic combination of rays in R, and therefore,

so can (c, d).

We have shown that R contains all extreme rays of K(n, r). To complete the proof, it suffices

to notice that a conic combination of 2 or more rays in R gives a ray with at least 3 nonzero entries

and therefore a ray in R cannot be written as a conic combination of other rays in R.

As K(n, r) is not a full-dimensional polyhedron, any valid inequality πx+ ρy ≥ πo for K(n, r)

has an equivalent representation with ρn = 0. If a valid inequality does not satisfy this condition,

one can add an appropriate multiple of the equation
∑n

i=1 ixi −
∑n

i=1 iyi = r to it. We state this

formally in Observation 2.4, and subsequently assume all valid inequalities have ρn = 0.

Observation 2.4 If πx + ρy ≥ πo defines a valid inequality for K(n, r), we can assume ρn = 0

without loss of generality.

3



We classify the facets of K(n, r) as trivial and non-trivial facets.

Definition 2.5 The following facet-defining inequalities of K(n, r) are called trivial:

xi ≥ 0,∀i = 1, . . . , n

yi ≥ 0,∀i = 1, . . . , n− 1

All other facet-defining inequalities of K(n, r) are called nontrivial.

According to this definition, the inequality yn ≥ 0 defines a non-trivial facet. With this distinction

between yn ≥ 0 and the other trivial facets, our results are easier to state and prove. There is

nothing special about the yn ≥ 0 inequality except that it is the only nonnegativity constraint that

does not comply directly with the ρn = 0 assumption. A consequence of the above assumptions

and definitions is: if πx+ ρy ≥ πo defines a non-trivial facet of K(n, r), then for i = 1, . . . , n, there

exists an integral point χi in K(n, r) lying on the facet such that eT
i χ

i > 0. A similar property

holds for the components corresponding to yj, j = 1, . . . , n− 1.

2.1 Characterization of the non-trivial facets

Let N = {1, . . . , n}. We next state our main result:

Theorem 2.6 The inequality πx + ρy ≥ πo defines a nontrivial facet of K(n, r) if and only if it

can be represented as an extreme point of T ⊆ R
2n+1 where T is defined by the following linear

equations and inequalities:

πi + ρj ≥ πi−j, ∀i, j ∈ N, i > j, (SA1)

πi + πj ≥ πi+j, ∀i, j ∈ N, i+ j ≤ n, (SA2)

ρk + πi + πj ≥ πi+j−k, ∀i, j, k ∈ N, 1 ≤ i+ j − k ≤ n, (SA3)

πi + πr−i = πo, ∀i ∈ N, i < r, (EP1)

πr = πo, (EP2)

πi + ρi−r = πo, ∀i ∈ N i > r, (EP3)

ρn = 0, (NC1)

πo = 1. (NC2)

We call constraints (SA1)-(SA3) relaxed subadditivity conditions as they are implied by the

following pair-wise subadditivity conditions on the facet coefficients:

πi + ρj ≥ πi−j, ∀i, j ∈ N, i > j, (SA1)

πi + ρj ≥ ρj−i, ∀i, j ∈ N, i < j, (SA1’)

πi + πj ≥ πi+j, ∀i, j ∈ N, i+ j ≤ n, (SA2)

ρi + ρj ≥ ρi+j, ∀i, j ∈ N, i+ j ≤ n. (SA2’)
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As we show later, any non-trivial facet defining inequality πx+ρy ≥ πo for K(n, r) satisfies (SA1)-

(SA3) as well as (SA1’) and (SA2’). We think it would be more natural to have a description

of the coefficient polyhedron T that uses pairwise subadditivity conditions instead of the relaxed

subadditivity conditions but we were not able to derive such a description.

The equations (EP1)-(EP3) essentially state that the following n−
⌊

r−1
2

⌋

points, which we call

the elementary points of K(n, r),

{ei + er−i : 1 ≤ i < r} ∪ er ∪ {ei + fi−r, : r < i ≤ n}

lie on every non-trivial facet of K(n, r). In other words, K(n, r) has a low dimensional face where

all non-trivial facets intersect. Note that the dimension of this face is at least n−
⌊

r−1
2

⌋

− 1 as the

elementary points are affinely independent.

The last two constraints (NC1) and (NC2) are normalization constraints that are necessary to

have a unique representation of nontrivial facets.

Note that the definition of T in Theorem 2.6 is similar to that of a polar. However, T is not

the polar of K(n, r), as it does not contain extreme points of the polar that correspond to the

trivial inequalities. In addition, some of the extreme rays of the polar are not present in T . It is

possible to interpret T as an important subset of the polar that contains all extreme points of the

polar besides the ones that lead to the trivial inequalities. In the rest of this section we develop

the required analysis to prove Theorem 2.6.

2.2 Basic Properties of T

We start with a basic observation which states that any valid inequality for K(n, r) has to be valid

for its extreme rays and elementary points.

Observation 2.7 Let πx+ ρy ≥ πo be a valid inequality for K(n, r), then the following holds:

jπi + iρj ≥ 0,∀i, j ∈ N (R1)

πi + πr−i ≥ πo,∀i ∈ N, i < r, (P1)

πr ≥ πo, (P2)

πi + ρi−r ≥ πo,∀i ∈ N, i > r. (P3)

We next show that nontrivial facet-defining inequalities satisfy the relaxed subadditivity condi-

tions and they are tight at the elementary points of K(n, r).

Lemma 2.8 Let πx+ ρy ≥ πo be a nontrivial facet-defining inequality of K(n, r), then it satisfies

(SA1)-(SA3) as well as (SA1’), (SA2’) and (EP1)-(EP3).

Proof. (SA1): Let (x∗, y∗) be an integral point inK(n, r) lying on the facet defined by πx+ρy ≥ πo

such that x∗i−j > 0. Then (x∗, y∗)+(ei +fj− ei−j) is contained in K(n, r). Therefore, (SA1) holds.
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The proofs of (SA2), (SA3), (SA1’) and (SA2’) are analogous.

(EP1): Let (x′, y′) and (x′′, y′′) be integral points in K(n, r) lying on the facet defined by

πx+ ρy ≥ πo such that x′i > 0 and x′′r−i > 0. Then (x̄, ȳ) = (x′, y′) + (x′′, y′′)− ei − er−i ∈ K(n, r).

Therefore

πx̄+ ρȳ = πx′ + ρy′ + πx′′ + ρy′′ − πi − πr−i = 2πo − πi − πr−i ≥ πo.

The last inequality above implies that πi + πr−i ≤ πo and therefore (P1) ⇒ (EP1).

The proofs of (EP2) and (EP3) are analogous, using (P2) and (P3) instead of (P1).

We next show that the normalization condition (NC2) does not eliminate any nontrivial facets.

Lemma 2.9 Let πx + ρy ≥ πo be a nontrivial facet-defining inequality of K(n, r), that satisfies

ρn = 0. Then πo > 0.

Proof. By (R1), we have, for all i ∈ N , nπi + iρn ≥ 0 and therefore πi ≥ 0. Also by (EP2), we

have πo = πr which implies that πo ≥ 0.

Assume πo = 0. As π ≥ 0, using (EP1) we have πi = 0 for i = 1, . . . , r. But then, (SA2) implies

that

0 + πi−1 ≥ πi ≥ 0, for i = 2, . . . , n.

Starting with i = r + 1, we can inductively show that πi = 0 for all i ∈ N . This also implies that

ρk = 0 for 1 ≤ k ≤ n− r by (EP3). In addition ρk ≥ 0 for n− r + 1 ≤ k ≤ n by (SA3).

Therefore, if πo = 0, then π = 0, ρ ≥ 0 and therefore πx + ρy ≥ 0 can be written as a conic

combination of the nonnegativity facets, which is a contradiction. Thus πo > 0.

Combining Lemmas 2.8 and 2.9 we have therefore established the following.

Corollary 2.10 Let πx+ρy ≥ πo be a nontrivial facet-defining inequality of K(n, r), that satisfies

ρn = 0. Then 1
πo

(π, ρ, πo) ∈ T.

In the following result, we show that a subset of the conditions presented in Theorem 2.6 suffices

to ensure validity of an inequality for K(n, r).

Lemma 2.11 Let (π, ρ, πo) satisfy (EP2), (SA1), (SA2) and (SA3). Then πx+ ρy ≥ πo defines a

valid inequality for K(n, r).

Proof. We will prove this by contradiction. Assume that πx + ρy ≥ πo satisfies (EP2), (SA1),

(SA2) and (SA3) but πx + ρy ≥ πo does not define a valid inequality for K(n, r), r > 0. Let

(x∗, y∗) be an integer point in K(n, r) that has minimum L1 norm amongst all points violated by

πx+ ρy ≥ πo.

If ||(x∗, y∗)||1 = 0 then (x∗, y∗) = 0 6∈ K(n, r). If ||(x∗, y∗)||1 = 1 then clearly x∗ = er and

y∗ = 0 but as πr = πo, (x∗, y∗) does not violate the inequality. Therefore ||(x∗, y∗)||1 ≥ 2. We next

consider three cases.

Case 1: Assume that y∗ = 0. Then
∑n

i=1 ix
∗
i = r. By successively applying (SA2), we obtain

πo >

n
∑

i=1

πix
∗
i ≥

n
∑

i=1

πix∗
i
≥ π∑

n

i=1
ix∗

i
= πr
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which contradicts (EP2). Therefore y∗ 6= 0.

Case 2: Assume that x∗i > 0 and y∗j > 0 for some i > j. Let (x′, y′) = (x∗, y∗)+(ei−j−ei−fj).

Clearly, (x′, y′) ∈ K(n, r), and ||(x′, y′)||1 = ||(x∗, y∗)||1 − 1. Moreover, as πx + ρy ≥ πo satisfies

(SA1), πx′ + ρy′ = πx∗ + ρy∗ + πi−j − πi − ρj ≤ πx∗ + ρy∗ < πo, which contradicts the choice of

(x∗, y∗). Therefore i ≤ j whenever x∗i > 0 and y∗j > 0.

Case 3: Assume that for any i, j ∈ N , if x∗i > 0 and y∗j > 0, then i ≤ j. Assume that

either there exists i, j ∈ N such that x∗i > 0, x∗j > 0 or there exists i ∈ N such that x∗i ≥ 2 (in

which case, we let j = i). If i + j ≤ n, let (x′, y′) = (x∗, y∗) + (ei+j − ei − ej). If i + j > n, as

y∗ 6= 0, there exists k such that y∗k > 0 and k ≥ i, and therefore i + j − k ≤ n. Then let (x′, y′) =

(x∗, y∗) + (ei+j−k − ei − ej − fk). In either case, (x′, y′) ∈ K(n, r) and ||(x′, y′)||1 < ||(x∗, y∗)||1.

Moreover, as (π, ρ, πo) satisfy (SA2) and (SA3), in either case πx′ + ρy′ ≤ πx∗ + ρy∗ < πo, which

contradicts the choice of (x∗, y∗).

Corollary 2.12 Let (π, ρ, πo) ∈ T , then πx+ ρy ≥ πo is a valid inequality for K(n, r).

Remark 2.13 The proof technique in Lemma 2.11 can be used to show that the pair-wise subad-

ditivity conditions and the condition πr = πo imply πx+ ρy ≥ πo is a valid inequality for K(n, r).

More precisely, an inequality satisfying (SA1), (SA2), (SA1’) and πr ≥ πo is valid for K(n, r).

We next determine the extreme rays of T .

Lemma 2.14 The extreme rays of T are (fk, 0) ∈ R
2n+1 for n− r < k < n

Proof. First note that (fk, 0) is indeed an extreme ray of T for n− r < k < n.

Let (π, ρ, πo) be an extreme ray of T that is not equivalent to fk for some n − r < k < n.

Clearly πo = 0. In this case, πx + ρy ≥ 0 is a valid inequality for K(n, r). Using the same

arguments presented in the proof of Lemma 2.9, it is straight forward to to establish that πi = 0

for all i ∈ N , ρk = 0 for 1 ≤ k ≤ n− r and ρk ≥ 0 for n− r + 1 ≤ k ≤ n. But then, (π, ρ, πo) can

be written as a conic combination of the rays (fk, 0) for n− r < k < n, a contradiction.

2.3 Facet characterization

Let

F =
{

(πk, ρk, πk
o )

}M

k=1

be the set of coefficients of nontrivial facets of K(n, r) with ρn = 0 and πo = 1. Note that by

Lemma 2.9 these two assumptions do not eliminate any nontrivial facets. Also, as yn ≥ 0 is a

nontrivial facet, F 6= ∅. By Lemma 2.8, F ⊆ T .

We are finally ready to prove Theorem 2.6. We do it in two steps.

Lemma 2.15 If (π, ρ, πo) ∈ F , then (π, ρ, πo) is an extreme point of T .
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Proof. Assume that (π, ρ, πo) ∈ F but is not an extreme point of T , and therefore can be written

as a convex combination of two distinct points in T . The normalization conditions ρn = 0 and

πo = 1 imply that any two distinct points in T represent two distinct valid inequalities for K(n, r)

in the sense that neither inequality can be obtained from the other by scaling or by adding multiples

of the equation
∑n

i=1 ixi −
∑n

i=1 iyi = r. Therefore πx+ ρy ≥ πo can be written as a combination

of two distinct valid inequalities for K(n, r), and therefore does not define a facet of K(n, r).

Lemma 2.16 If (π, ρ, πo) is an extreme point of T , then (π, ρ, πo) ∈ F .

Proof. Let (π̂, ρ̂, 1) be an extreme point of T . By Lemma 2.11, (π̂, ρ̂, 1) defines a valid inequality

for K(n, r) and therefore it is implied by a conic combination of facet defining inequalities plus a

multiple of the equation
∑n

i=1 ixi −
∑n

i=1 iyi = r. In other words, there exists multipliers λ ∈ R
M
+

and α ∈ R such that

π̂i ≥
M
∑

k=1

λkπ
k
i + iα, ∀ i ∈ N (4)

ρ̂i ≥
M
∑

k=1

λkρ
k
i − iα, ∀ i ∈ N \ {n} (5)

ρ̂n =

M
∑

k=1

λkρ
k
n − nα, (6)

1 ≤
M
∑

k=1

λk + rα (7)

hold. The inequalities in (4) and (5) correspond to the fact that xi ≥ 0 for i = 1, . . . , n and yi ≥ 0

for i = 1, . . . , n − 1 are not included in the non-trivial facets, whereas the equality in (6) is due

to the fact that yn ≥ 0 is considered to be nontrivial. As ρ̂n = 0 and ρk
n = 0 for all nontrivial

facet defining inequalities, (6) implies that α = 0. Furthermore, ρ̂r = 1 and ρk
r = 1, for all k, and

therfore, combining (5) and (7) we conclude that
∑M

k=1 λk = 1.

For any i < r, inequality (4) for i and r − i combined with the equation (EP1) implies that

1 = π̂i + π̂r−i ≥
M
∑

i=1

λk(π
k
i + πk

r−i) = 1

which can hold only if π̂i =
∑M

i=1 λkπ
k
i for all i < r.

Similarly, for i > r, we use the equation (EP3) to observe that

1 = π̂i + ρ̂i−r ≥
M
∑

i=1

λk(π
k
i + ρk

i−r) = 1

and therefore π̂i =
∑M

i=1 λkπ
k
i and ρ̂i−r =

∑M
i=1 λkρ

k
i−r for all i > r,.
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Finally as ρ̂i ≥
∑M

i=1 λkρ
k
i for i > n−r, we can write (π̂, ρ̂, 1) as a convex combination of points

of F plus a conic combination of extreme rays of T . This can only be possible if (π̂, ρ̂, 1) ∈ F .

Thus, (π̂, ρ̂, 1) is a nontrivial facet.

As a final remark, it is interesting to note that conditions (R1) do not appear in the description

of T even though they are necessary for any valid inequality. This is because conditions (R1) are

implied by (SA1), (SA2) and (SA3). The proof is analogous to the proof of Lemma 2.11, so we just

state it as an observation.

Observation 2.17 Let (π, ρ, πo) ∈ T . Then jπi + iρj ≥ 0,∀i, j ∈ N .

We next show that coefficients of facet defining inequalities are bounded by small numbers.

Lemma 2.18 Let (π, ρ, πo) be an extreme point of T , then

0 ≤ πk ≤ dk/re and − dk/re ≤ ρk ≤ dn/re

for all k ∈ N .

Proof. Using Observation 2.17 with j = n and the fact that ρn = 0, we have π ≥ 0.

For k < r, combining inequality (EP1) πk + πr−k ≤ 1 with π ≥ 0 gives πk ≤ dk/re. For k > r,

let k = bk/rc r+ q, where 0 ≤ q < r. If q = 0, by (SA1) we have πk ≤ bk/rc πr = dk/re. Similarly,

if q > 0 we have πk ≤ bk/rcπr + πq = bk/rc+ πq, where πq ≤ 1. Therefore, 0 ≤ πk ≤ dk/re.

The inequality (SA3) with i = 1 and j = k implies that ρk ≥ −πk and therefore ρk ≥ −dk/re

for all k ∈ N . If k ≤ n − r, (EP3) implies that ρk = πr − πk+r ≤ 1 ≤ dn/ke. If k > n− r, then

as (π, ρ, πo) is an extreme point of T , at least one of (SA1) and (SA3) must hold with equality, in

which case, ρk ≤ πi, for some i ∈ N . Thus ρk ≤ dn/re

3 The case r = 0

Observe that LK(n, 0), the linear relaxation of K(n, 0), is a cone and is pointed (as it is contained

in the nonnegative orthant) and has a single extreme point (x, y) = (0, 0). Therefore LK(n, 0)

equals its integer hull, i.e., LK(n, 0) = K(n, 0). In Lemma 2.3, we characterized the extreme rays

of K(n, r) and thereby showed that the characteristic cone of K(n, r) is generated by the vectors

{rij}. But the characteristic cone of K(n, r) for some r > 0 is just K(n, 0). Therefore, LK(n, 0) is

generated by the vectors {rij}, and the next result follows.

Theorem 3.1 The inequality πx+ ρy ≥ πo is facet defining for K(n, 0) if and only if (π, ρ, πo) is

a minimal face of

To =

{

jπi + iρj ≥ 0 ,∀i, j ∈ N,

πo = 0.
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In his work on the MCGP, Gomory also studied the convex hull of non-zero integral solutions

in P (n, 0) and gave a dual characterization of its facets. We now consider a similar modification of

K(n, 0) and study the set:

K̄(n, 0) = conv

{

(x, y) ∈ Z
n
+ × Z

n
+ :

n
∑

i=1

ixi −
n

∑

i=1

iyi = 0, (x, y) 6= 0

}

We will next prove that all non-trivial facet defining inequalities for K̄(n, 0) are given by the extreme

points of T̄o defined below.

Definition 3.2 Let T̄o ⊆ R
2n+1 be the set of points that satisfy the following linear equalities and

inequalities:

πi + ρj ≥ πi−j , ∀i, j ∈ N, i > j, (SA1)

πi + ρj ≥ ρj−i, ∀i, j ∈ N, i < j, (SA1’)

πi + ρi = πo, ∀i ∈ N, (EP1-R0)

πo = 1, (N1-R0)

ρn = 0. (N2-R0)

It is easy to see that the conditions (SA1), (SA1’), and (EP1-R0) are together equivalent to the

conditions (SA2), (SA2’) and (EP1-R0). For example, replacing πi by πo−ρi and πi−j by πo−ρi−j

in (SA1), we get (SA2’). Therefore, a point in T̄o satisfies all the pair-wise subadditivity conditions

given in the previous section.

Lemma 3.3 If (π, ρ, πo) ∈ T̄o then πx+ ρy ≥ πo is a valid inequality for K̄(n, 0).

Proof. Suppose πx+ ρy ≥ πo is not valid for K̄(n, 0). Then, let (x∗, y∗) ∈ K̄(n, 0) be the integer

point in K̄(n, 0) with smallest L1 norm such that πx∗ + ρy∗ < πo. Note that any point in K̄(n, 0)

has L1 norm 2 or more.

If ||(x∗, y∗)||1 = 2, then (x∗, y∗) = ei + fi for some i ∈ N , but by (EP1-R0), πx∗ + ρy∗ = πo,

which is a contradiction. So we may assume that ||(x∗, y∗)||1 > 2.

As (x∗, y∗) ∈ K̄(n, 0), there exists i, j ∈ N such that x∗i > 0 and y∗j > 0. Let,

(x′, y′) = (x∗, y∗)− ei − fj +











fj−i if i < j,

0 if i = j,

ei−j if i > j

Clearly, (x′, y′) is an integer point in K̄(n, 0) and ||(x′, y′)||1 ≤ ||(x∗, y∗)||1 − 1. Furthermore, as

(π, ρ, πo) satisfies (SA1), (SA1’) and (EP1-R0), we also have πx′ + ρy′ ≤ πx∗ + ρx∗ < πo, which

contradicts the choice of (x∗, y∗).

Theorem 3.4 The inequality πx + ρy ≥ πo defines a nontrivial facet of K̄(n, 0) if and only if it

can be represented as an extreme point of T̄o.
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Proof.

(⇒):

Let πx+ ρy ≥ πo define a nontrivial facet of K̄(n, 0). We first show that (π, ρ, πo) satisfies (SA1),

(SA1’) and (EP1-R0), and can be assumed to satisfy (N1-R0) and (N2-R0).

(SA1) - (SA1’): Let i, j be indices such that i, j ∈ N and i > j. Let z = (x∗, y∗) be an integral

point lying on the above facet such that x∗i−j > 0. As z+(ei + fj− ei−j) belongs to K̄(n, 0), (SA1)

is true. The proof of (SA1’) is similar.

(EP1-R0): Let γ = (π, ρ). Let z1 = (x1, y1) and z2 = (x2, y2) be integral points lying on

the facet such that x1
i > 0 and y2

i > 0. Then z = z1 + z2 − ei − fi ∈ K̄(n, 0), and therefore

γz = γz1 + γz2−πi− ρi = 2πo−πi− ρi ≥ πo ⇒ πi + ρi ≤ πo. But as ei + fi ∈ K̄(n, 0), πi + ρi ≥ πo

and the result follows.

(N1-R0): Assume πo < 0, and let (x∗, y∗) be an integral point in K̄(n, 0) satisfying πx∗+ρy∗ =

πo. As α(x∗, y∗) ∈ K̄(n, 0) for any positive integer α, whereas παx∗ + ραy∗ = απo < πo, we obtain

a contradiction to the fact that points in K̄(n, 0) satisfy πx+ ρy ≥ πo.

If πo = 0, then (EP1-R0) implies that ρi = −πi for all i ∈ N . This fact, along with (SA1) and

(SA1’) implies that πi = iπ1 and ρi = −iπ1 for all i ∈ N . But then πx + ρy ≥ πo is the same as

π1(
∑n

i=1 ixi −
∑n

i=1 iyi) ≥ 0, and therefore cannot define a proper face of K̄(n, 0). Therefore, for

any non-trivial facet, πo > 0 and can be assumed to be 1 by scaling.

We can assume, by subtracting appropriate multiples of
∑n

i=1 ixi−
∑n

i=1 iyi = 0 from πx+ρy ≥

πo, that (N2-R0) holds.

Therefore (π, ρ, πo) can be assumed to be contained in T̄o. If it is not an extreme point of T̄o,

it can be written as a convex combination of two distinct points of T̄o, different from itself, each

of which defines a valid inequality for K̄(n, 0) (by Lemma 3.3). As the normalization conditions

(N1-R0) and (N2-R0) mean that each non-trivial facet-defining inequality corresponds to a unique

point in T̄o, this implies that (π, ρ, πo) is an extreme point of T̄o.

(⇐):

Let F =
{

(πk, ρk, πk
o )

}M

k=1
be the set of all nontrivial facets of K̄(n, 0) such that ρn = 0 and

πk
o = 1. Let (π, ρ, 1) be an extreme point of T̄o. By Lemma 3.3, (π, ρ, 1) defines a valid inequality

for K̄(n, 0), and therefore there exist numbers λk and α such that

αi+
∑M

k=1 λkπ
k
i ≤ πi,∀i ∈ N

−αi+
∑M

k=1 λkρ
k
i ≤ ρi,∀i ∈ N

∑M
k=1 λk ≥ 1

λ ≥ 0, α free

Clearly, πx+ρy ≥
∑M

k=1 λk is a valid inequality for K̄(n, 0). As ei+fi ∈ K̄(n, 0) and πei+ρfi = 1, we

can conclude that
∑M

k=1 λk = 1. (EP1-R0) implies that for all i ∈ N , 1 = πi + ρi ≥
∑M

i=1 λk(π
k
i +

ρk
i ) = 1, and therefore πi =

∑M
i=1 λkπ

k
i and ρi =

∑M
i=1 λkρ

k
i . In other words, (π, ρ, 1) can be

expressed as a convex combination of the elements of F , each of which is contained in T̄o. This is

possible only if (π, ρ, 1) is itself an element of F , i.e., it defines a nontrivial facet of K̄(n, 0).
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4 Separating over K(n, r)

Let LK(n, r) be the linear relaxation of K(n, r). Define the (facet-) separation problem over K(n, r)

as follows: given (x∗, y∗) ∈ LK(n, r), either verify that (x∗, y∗) ∈ K(n, r) or find a violated (facet-

defining) valid inequality for K(n, r). Note that the condition that (x∗, y∗) ∈ LK(n, r) is easy to

satisfy.

The next result is an immediate consequence of Theorems 2.6, 3.1 and 3.4.

Theorem 4.1 Given (x∗, y∗) ∈ LK(n, r), with 0 ≤ r ≤ n, the separation problem over K(n, r) can

be solved in polynomial-time using an LP with O(n) variables and O(n3) constraints.

Proof. If r > 0, solve

min{πx∗ + ρy∗ : (π, ρ, πo) ∈ T}.

As (x∗, y∗) ∈ LK(n, r) and y∗ ≥ 0 and the extreme rays of T are given by (fk, 0) for n− r < k < n,

the above problem is bounded and has a solution.

If the optimal extreme point (π, ρ, 1) ∈ T is such that πx∗+ρy∗ < 1, then πx+ρy ≥ 1 defines a

facet that separates (x∗, y∗) from K(n, r). Otherwise, (x∗, y∗) satisfies all nontrivial facet-defining

inequalities of K(n, r), and (x∗, y∗) ∈ K(n, r).

In a similar fashion, we can use To and T̄o to solve the separation problem over K(n, 0) and

K̄(n, 0) respectively.

The following theorem states that the separation problem over K(n, r) can also be solved for

any value of r.

Theorem 4.2 Given (x∗, y∗) ∈ LK(n, r), the separation problem over K(n, r) can be solved in time

polynomial in max{n, r} using an LP with O(max{n, r}) variables and O(max{n, r}2) constraints.

Proof. The case r = 0 is unchanged from Theorem 4.1.

Now consider the case 0 < r ≤ n. Suppose that instead of T , we have a set T ′ that contains all

nontrivial facets and is contained in the set of valid inequalities. We then solve:

min{πx∗ + ρy∗ − πo : (π, ρ, πo) ∈ T
′}.

If there is a solution (π, ρ, πo) ∈ T ′ such that πx∗ + ρy∗ − πo < 0, then πx + ρy ≥ πo defines

a valid inequality that separates (x∗, y∗) from K(n, r). Otherwise, (x∗, y∗) satisfies all nontrivial

facet-defining inequalities of K(n, r), and therefore (x∗, y∗) ∈ K(n, r).

Consider the set T ′ obtained by removing (SA3) from T and adding (SA1’) to it. By Re-

mark 2.13, Corollary 2.12 is true with T replaced by T ′. Lemmas 2.8 and 2.9 imply that Corol-

lary 2.10 also holds with T replaced by T ′. Therefore T ′ satisfies all desired properties and can be

used to solve the separation problem.

Finally, if r > n, then define (x′, y′) ∈ R
r × R

r such that x′i = x∗i ; y
′
i = y∗i , for i = 1, . . . , n and

x′i = y′i = 0, for i = n + 1, . . . , r. The point (x′, y′) ∈ K(r, r) ⇐⇒ (x∗, y∗) ∈ K(n, r), and so the

separation can be done in time polynomial in r.
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5 Lifting facets of P (n, r)

Lifting is a general principle for constructing valid (facet defining) inequalities for higher dimensional

sets using valid (facet defining) inequalities for lower dimensional sets. Starting with the early work

of Gomory [9], this approach was generalized by Wolsey [16], Balas and Zemel [3] and Gu et. al

[17], among others.

In this section we discuss how facets of P (n, r) can be lifted to obtain facets of K(n, r). P (n, r)

can also be considered as an n − 1 dimensional face of K(n, r) obtained by setting n variables to

their lower bounds. Throughout this section we assume that n > r > 0.

We start with a result of Gomory [9] that gives a complete characterization of the nontrivial

facets (i.e., excluding the non-negativity inequalities) of P (n, r).

Theorem 5.1 (Gomory [9]) The inequality π̄x ≥ 1 defines a non-trivial facet of P (n, r) if and

only if π̄ ∈ R
n−1 is an extreme point of

Q =























πi + πj ≥ π(i+j)mod n
∀i, j ∈ {1, . . . , n− 1},

πi + πj = πr ∀i, j such that r = (i+ j)mod n,

πj ≥ 0 ∀j ∈ {1, . . . , n− 1},

πr = 1.

Given a non-trivial facet defining inequality for P (n, r)

n−1
∑

i=1

π̄ixi ≥ 1 (8)

it is possible to lift this inequality to obtain a facet-defining inequality

n−1
∑

i=1

π̄ixi + π′nxn +
n−1
∑

i=1

ρ′iyi ≥ 1 (9)

for K(n, r). We call inequality (9) a lifted inequality and note that in general for a given starting

inequality there might be an exponential number of lifted inequalities, see [16].

5.1 The restricted coefficient polyhedron T π̄

First note that a non-trivial facet of P (n, r) can only yield a non-trivial facet of K(n, r). This, in

turn, implies that (π̄, π′n, ρ
′, 0) has to be an extreme point of the coefficient polyhedron T . Therefore,

the lifting procedure can also be seen as a way of extending an extreme point of Q to obtain an

extreme point of T .

Let p = (π̄, π′n, ρ
′, 0) be an extreme point of T . Then, p also has to be an extreme point of the

lower dimensional polyhedron

T π̄ = T ∩
{

πi = π̄i, ∀i ∈ {1, . . . , n− 1}
}

obtained by fixing some of the coordinates.

Let L = {n− r + 1, . . . , n− 1}.
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Lemma 5.2 If inequality (8) defines a non-trivial facet of P (n, r), then T π̄ 6= ∅ and it has the

form

T π̄ =































































τ ≥ πn ≥ 0

ρk ≥ lk ∀ k ∈ L

ρk + πn ≥ tk ∀ k ∈ L

ρk − πn ≥ fk ∀ k ∈ L

πn + ρn−r = 1

ρn = 0

ρk = π̄n−k ∀k ∈ {1, . . . , n− r − 1}

πi = π̄i ∀i ∈ {1, . . . , n− 1}

where numbers lk, tk, fk and τ can be computed easily using π̄.

Proof. First note that π̄ ∈ Q and therefore π̄ satisfies inequality (SA2) as well as equations (EP1)

and (EP2). In addition, as π̄i + π̄j = 1 for all i, j such that r = (i + j)modn, equality (EP3) can

be rewritten as ρi = πn−i for all 1 ≤ i ≤ n− r. Further, as π̄ is subadditive (in the modular sense),

inequalities (SA1) and (SA3) are satisfied for all k ∈ {1, . . . , n− r − 1}. Therefore, setting

πn = 0 and ρk =







π̄n−k if k ∈ {1, . . . , n− r − 1},

1 otherwise ,

produces a feasible point for T π̄, establishing that the set is not empty.

We next show that the T π̄ has the form given in the Lemma, and also compute the values of

lk, tk, fk and τ .

Inequality (SA1): If i = n, this inequality becomes πn + ρk ≥ π̄n−k. If i 6= n, it becomes

ρk ≥ π̄i−k − π̄i, and therefore ρk ≥ l1k = maxn>i>k{π̄i−k − π̄i}.

Inequality (SA2): The only relevant case is i+j = n when the inequality becomes πn ≤ π̄i+π̄n−i.

When combined, these inequalities simply become πn ≤ τ1 = minn>i>0{π̄i + π̄n−i}.

Inequality (SA3): Without loss of generality assume i ≥ j. We consider 3 cases.

Case 1, k = n: In this case the inequality reduces to πi + πj ≥ πi+j−n which is satisfied by π̄ when

i, j < n. For i = n, this inequality simply becomes πn ≥ 0.

Case 2, k < n and i+ j−k = n: In this case the inequality becomes ρk−πn ≥ −πi−πj . If i, j < n

these inequalities can be combined to obtain ρk − πn ≥ f1
k = max1≤i,j<n, k=i+j−n

{

− π̄i − π̄j

}

. If,

i = n, then j = k and the inequality becomes ρk ≥ −π̄k.

Case 3, k < n and i+ j − k < n: If i, j < n the inequality becomes ρk ≥ πi+j−k − πi − πj. These

inequalities can be combined to obtain ρk ≥ l2k = max1≤i,j<n: k<i+j<n+k

{

π̄i+j−k − π̄i − π̄j

}

. If

i = n then j < n, so the inequality becomes πn + ρk ≥ πn+j−k − πj , implying πn + ρk ≥ t1k =

maxk>j

{

π̄n+j−k − π̄j

}

.

Therefore, combining these observations, it is easy to see that T π̄ has the above form where
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lk, tk, fk and τ are computed as follows:

lk = max
{

l1k, l
2
k,−π̄k

}

,

tk = max
{

t1k, π̄n−k

}

= π̄n−k,

fk = f1
k ,

τ = min
{

τ1, 1− ln−r, (1− fn−r)/2
}

.

The second equality in the description of tk states that tk = π̄n−k comes from the fact that π̄ is

sub-additive and therefore π̄n−k + π̄j ≥ π̄n+j−k for all j < k. The 1− ln−r and (1−fn−r)/2 terms in

the last equation come from using the bounds on ρn−r together with the equations and inequalities

of T π̄ to obtain implied bounds for πn.

We next make a simple observation that will help us show that T π̄ has a small (polynomial)

number of extreme points.

Lemma 5.3 If p = (π̄, π′n, ρ
′, 0) is an extreme point of T π̄, then

ρ′k = max
{

lk, tk − π′n, fk + π′n
}

for all k ∈ L.

Proof. Assume that the claim does not hold for some k ∈ L and let θ = max
{

lk, tk−π
′
n, fk +π′n

}

.

As p ∈ T π̄, ρ′k ≥ θ and therefore ε = ρ′k − θ > 0. In this case, two distinct points in T π̄ can be

generated by increasing and decreasing the associated coordinate of p by ε, establishing that p is

not an extreme point, a contradiction.

We next characterize the set possible values π ′n can take at an extreme point of T π̄.

Lemma 5.4 Let p = (π̄, π′n, ρ
′, 0) be an extreme point of T π̄, if π′n 6∈ {0, τ}, then

π′n ∈ Λ =





⋃

k∈L1

{

tk − lk, lk − fk

}





⋃





⋃

k∈L2

{

(tk − fk)/2
}





where L1 = {k ∈ L : tk + fk < 2lk} and L2 = L \ L1.

Proof. Notice that the description of T π̄ consists of 3(r − 1) inequalities that involve ρk variables

and upper and lower bound inequalities for π ′n. Being an extreme point, p has to satisfy r of these

inequalities as equality. Therefore, if π ′n 6∈ {0, τ} then, there exists an index k ∈ L for which at

least two of the following inequalities

ρk ≥ lk (a)

ρk + πn ≥ tk (b)

ρk − πn ≥ fk (c)

15



hold as equality. Clearly, this uniquely determines the value of π ′n and therefore

π′n ∈ Λ+ =
⋃

k∈L

{

tk − lk, lk − fk, (tk − fk)/2
}

Furthermore, for any fixed k ∈ L, adding inequalities (b) and (c) gives 2ρk ≥ tk + fk. Therefore

if tk + fk > 2lk inequality (a) is implied by inequalities (b) and (c) and it cannot hold as equality.

Similarly, if tk+fk < 2lk, inequalities (b) and (c) cannot hold simultaneously. Finally, if tk+fk = 2lk

then it is easy to see that tk − lk = lk − fk = (tk − fk)/2. Therefore letting

L1 = {k ∈ S : tk + fk < 2lk}, L2 = L \ L1

proves the claim.

Combining the previous Lemmas, we have the following result:

Theorem 5.5 Given a non-trivial facet defining inequality (8) for P (n, r), there are at most 2r

lifted inequalities that define facets of K(n, r).

Proof. The set L has r − 1 members and therefore together with 0 and τ , there are at most 2r

possible values for π′n in a facet defining lifted inequality (9). As the value of π ′n uniquely determines

the remaining coefficients in the lifted inequality, by Lemma 5.3, the claim follows.

In general, determining all possible lifted inequalities is a hard task. However, the above

results show that obtaining all possible facet-defining inequalities lifted from a facet of P (n, r) is

straightforward and can be performed in polynomial time. We conclude this section by presenting

a result from Wolsey [16] adapted to K(n, r), which allows us to state a result on sequential lifting.

Lemma 5.6 (Wolsey [16]) Given a facet defining inequality (8) for P (n, r) and a lifting sequence

for the variables xn and yi for i = 1, . . . , n−1, sequential lifting procedure produces a facet defining

inequality for K(n, r).

Furthermore, at each step of lifting, the variable being lifted is assigned the smallest possible

facet coefficient for a lifted facet that has the same coefficients for the variables that are already

lifted.

Lemma 5.7 If variable xn is lifted before all yk for k ∈ {n− r, . . . , n− 1}, then independent of the

rest of the lifting sequence the lifted inequality is

n−1
∑

i=1

π̄ixi +
n−1
∑

i=1

π̄n−iyi ≥ 1.

Proof. By Lemma 5.6, we know that variable xn will be assigned the smallest possible facet

coefficient for a lifted facet. As πn ≥ 0 in the description of T π̄ and as T π̄ does contain a point

with πn = 0 (described in the proof of Lemma 5.2), we can conclude that πn = 0 in the lifted facet.

Therefore, by Lemma 5.3, ρ′k = min
{

lk, π̄n−k, fk

}

and we need to show that π̄n−k ≥ lk, tk for

all k ∈ {1, . . . , n− 1}. First, observe that 0 ≥ tk and therefore π̄n−k ≥ tk for all k ∈ {1, . . . , n− 1}.

Finally, recall that π̄ is subadditive (in the modular sense), and therefore π̄n−k + π̄i ≥ π̄i−k for all

n > i > k and π̄n−k + π̄i + π̄j ≥ π̄i+j−k for all i, j < n, k < i+ j < n+ k.
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6 Mixed integer rounding inequalities

In this section we study MIR inequalities in the context of K(n, r). Our analysis also provides

an example that shows that lifting facets of P (n, r) cannot give all facets of K(n, r). Throughout,

we will use the notation x̂ := x− bxc and (x)+ = max{x, 0}. Recall that, for a general single row

system of the form:
{

w ∈ Z
p
+ :

∑p
i=1 aiwi = b

}

where b̂ > 0, the MIR inequality is:

p
∑

i=1

(

baic+ min
(

âi/b̂, 1
))

wi ≥ dbe .

We define the 1
t
-MIR (for t ∈ Z+) to be the MIR inequality obtained from the following equivalent

representation of K(n, r) =
{

(x, y) ∈ Z
n
+ × Z

n
+ :

∑n
i=1(i/t)xi −

∑n
i=1(i/t)yi = r/t

}

.

Lemma 6.1 Given t ∈ Z such that 2 ≤ t ≤ n, the 1
t
-MIR inequality

n
∑

i=1

(⌊

i

t

⌋

+ min

(

i mod t

r mod t
, 1

))

xi +

n
∑

i=1

(

−

⌈

i

t

⌉

+ min

(

(t− i) mod t

r mod t
, 1

))

yi ≥
⌈r

t

⌉

is facet defining for K(n, r) provided that r/t 6∈ Z.

Proof. Let πx+ ρy ≥ πo denote the 1
t
-MIR inequality and let F denote the set of points that

are on the face defined by this inequality. Also let v denote (r mod t) and q i denote (i mod t)

and note that using this definition r = v + br/tc and i = qi + bi/tc.

For i ∈ N \ {1, t}, consider the point

wi = ei + (br/tc − bi/tc)+et + (bi/tc − br/tc)+ft + (v − qi)+e1 + (qi − v)+f1

and observe that wi ∈ K(n, r). Moreover,

(π, ρ)Twi = (bi/tc+ min{qi/v, 1}) + (br/tc − bi/tc) +
(v − qi)+

v
= br/tc+ 1 = πo

and therefore wi ∈ F . Similarly, let −i = −di/te+mi, with 0 ≤ mi < t and consider the point

zi = fi + (br/tc+ di/te)et + (v −mi)+e1 + (mi − v)+f1

for i ∈ N \ {1, t}. Clearly xi ∈ K(n, r). Furthermore,

(π, ρ)T zi = (−di/te+ min{m/v, 1}) + (br/tc+ di/te) +
(v −m)+

v
= br/tc+ 1 = πo

and therefore zi ∈ F .

Additionally the following three points are also in K(n, r) ∩ F : u1 = br/tc et + ve1, u
2 =

(br/tc+1)et+(t−v)f1, u
3 = (br/tc+1)et+ft+ve1. Therefore, {ui}3

i=1∪{w
i}i∈N\{1,t}∪{z

i}i∈N\{1,t}

is a set of 2n− 1 affinely independent points in F .

We next show that 1
t
-MIR inequalities are not facet defining unless they satisfy the conditions

of Theorem 6.1. First, observe that the inequality is not defined if t divides r. Next, we show that

1/n-MIR inequality dominates all 1
t
-MIR inequalities with t > n.

17



Lemma 6.2 If t > n, then 1
t
-MIR inequality is not facet defining for K(n, r)

Proof. When t > n, 1
t
-MIR inequality becomes

∑

i∈N

min{i/r, 1}xi −
∑

i:i>t−r

(

1−
t− i

r

)

yi ≥ 1

and is dominated by the 1/n-MIR:

∑

i∈N

min{i/r, 1}xi −
∑

i:i>n−r

(

1−
n− i

r

)

yi ≥ 1

We conclude this section by showing that 1
t
-MIR inequalities give facets that cannot be obtained

by lifting facets of P (n, r).

Theorem 6.3 Not all facet-defining inequalities of K(n, r) can be obtained from lifting facet-

defining inequalities of P (n, r), for n ≥ 9 and 0 < r ≤ n− 2.

Proof. When 0 < r ≤ n− 4, consider the facet induced by the 1
n−2 -MIR inequality πx+ ρy ≥ πo

where

ρn = −2 + min

(

n− 4

r
, 1

)

= −1.

We therefore subtract 1
n

times
∑n

i=1 ixi −
∑n

i=1 iyi = r to the inequality to obtain π′x+ ρ′y ≥ π′o
where ρ′n − 0 and therefore it satisfies the normalization condition (NC1). Notice that

π′r+1 + π′n−1 =

(

1−
r + 1

n

)

+

(

1 +
1

r
−
n− 1

n

)

= 1−
r

n
+

1

r

whereas π′r = 1− r/n < π′r+1 + π′n−1. This proves the claim for 0 < r ≤ n− 4 as all facet defining

inequalities for P (n, r) have to satisfy π ′r+1 + π′n−1 = π′r.

For r ∈ {n− 3, n− 2}, the 1
r−1 -MIR provides such an example.

For r = n − 1, all points in T automatically satisfy all equations in Q. Therefore, any given

facet-defining inequality of K(n, r) can be obtained by lifting a point in Q. However, this point is

not necessarily an extreme point of Q.

7 Mixed-Integer extension

Consider the mixed-integer extension of K(n, r):

K ′(n, r) = conv

{

(v+, v−, x, y) ∈ R
2
+ × Z

2n
+ : v+ − v− +

n
∑

i=1

ixi −
n

∑

i=1

iyi = r

}

where n, r ∈ Z and n ≥ r > 0. As in the case of the mixed-integer extension of the MCGP studied

by Gomory and Johnson [10], the facets of K ′(n, r) can easily be derived from the facets of K(n, r)
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when r is an integer. To prove such a result, we introduce a few definitions, and also state some

easy results without proof.

The dimension of K ′(n, r) is 2n+1, i.e., one less than the number of variables. The inequalities

xi ≥ 0 and yi ≥ 0, for i = 1, . . . , n, and v+ ≥ 0 and v− ≥ 0 define facets of K ′(n, r). We refer

to the facets above – other than yn ≥ 0 – as trivial facets, and refer to the remaining facets of

K ′(n, r) as non-trivial. Finally, note that the characteristic cone of K ′(n, r) contains the vectors

jei + ifj , for any i, j satisfying 1 ≤ i, j ≤ n. For K ′(n, r), let e+ and e− be the unit vectors in

R
2n+2 with ones in, respectively, the v+ component, and the v− component, and zeros elsewhere.

For a vector χ in the K ′(n, r) space, define its restriction to the K(n, r) space by removing the v+

and v− components, and denote it by χre.

Proposition 7.1 All non-trivial facet defining inequalities for K ′(n, r) have the form

π1v+ + ρ1v− +

n
∑

i=1

πixi +

n
∑

i=1

ρiyi ≥ πo. (10)

Furthermore, inequality (10) is facet defining if and only if πx+ ρy ≥ πo defines a non-trivial facet

of K(n, r).

Proof. Let πx + ρy ≥ πo define a non-trivial facet of K(n, r). We first show that the inequality

(10) is valid for K ′(n, r). Assume (10) is violated by some integral point χ ∈ K ′(n, r) (the x

and y components of χ are integral). Then the left hand side of (10) evaluated at χ equals a

number z less than πo. Let v′+ = eT+χ and v′− = eT−χ. The property (R1) in Observation 2.7

implies that π1 + ρ1 ≥ 0. Therefore, if min{v′+, v
′
−} = ε > 0, then (10) is also violated by the

point χ − ε(e+ + e−) ∈ K ′(n, r). We can thus assume that χ satisfies min{v ′+, v
′
−} = 0. But

min{v′+, v
′
−} = 0 combined with the integrality of χ implies that v ′+ and v′− are both integers.

Therefore χ′ = χre + v′+e1 + v′−f1 is an integral point contained in K(n, r), and (π, ρ)Tχ′ = z < πo,

which contradicts the fact that πx+ ρy ≥ πo is satisfied by all points in K(n, r).

To see that (10) defines a facet of K ′(n, r), let χ1, . . . χ2n−1 be affinely independent integral

points in K(n, r) which satisfy (π, ρ)Tχi = πo. As the facet defined by πx+ρy ≥ πo does not equal

the facet defined by either x1 ≥ 0 or y1 ≥ 0, there are indices j, k such that eT
1 χ

j = s > 0 and

fT
1 χ

k = t > 0. Define 2n+ 1 affinely independent points in R
2n+2 as follows:

ψi = (0, 0, χi) for i = 1, . . . , 2n− 1;

ψ+ = ψj + se+ − se1; ψ
− = ψk + te− − tf1.

These points satisfy (10) as an equation, and therefore (10) defines a facet of K ′(n, r).

We now show that every non-trivial facet of K ′(n, r) has the form in (10). Let ηT (v+, v−, x, y) ≥

ηo define a non-trivial facet F of K ′(n, r). Let η = (α+, α−, π, ρ), where α+, α− ∈ R, and π, ρ ∈ R
n.

There exists a point χ ∈ K ′(n, r) lying on the above facet such that χT e1 > 0. As χ− e1 + e+ ∈

K ′(n, r), we conclude that α+ ≥ π1. We can similarly conclude that α− ≥ ρ1 and therefore

α+ + α− ≥ π1 + ρ1 ≥ 0. The last inequality is implied by the fact that e1 + f1 is contained
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in the characteristic cone of K ′(n, r). If α+ + α− = 0, then clearly α+ = π1 and α− = ρ1.

Assume α+ + α− > 0. As F is not the same as the facet v+ ≥ 0, there exists an integral point

χ = (v′+, v
′
−, x

′, y′) ∈ K ′(n, r) lying on F such that v′+ > 0. If v′− > 0, let min{v′+, v
′
−} = ε > 0.

Then χ1 = χ − ε(e+ + e−) ∈ K ′(n, r), but ηTχ1 = ηo − ε(α+ + α−) < ηo. This contradicts the

fact that (η, ηo) defines a valid inequality for K ′(n, r). We can therefore assume that v ′− = 0 and

v′+ = t, for some positive integer t. Define χ2 as χ − te+ + te1. As χ2 ∈ K ′(n, r), it follows that

ηTχ2 ≥ ηo ⇒ α+ ≤ π1. We can conclude that α+ = π1; a similar argument shows that α− = ρ1.

Finally, we show that if (10) defines a facet of K ′(n, r), then the inequality πx + ρy ≥ πo

defines a facet of K(n, r). Firstly, this defines a valid inequality for K(n, r) as any point in K(n, r)

can be mapped to a point in K ′(n, r) by appending zeros in the v+ and v− components. If it

does not define a facet, then (π, ρ) ≥
∑

i λi(π
i, ρi) and πo ≤

∑

i λiπ
i
o for some non-trivial facet-

defining inequalities πix + ρiy ≥ πi
o of K(n, r), and some numbers λi ≥ 0. But that would

imply that (π1, ρ1, π, ρ) ≥
∑

i λi(π
i
1, ρ

i
1, π

i, ρi). By the first part of the proof, the inequalities

πi
1v+ + ρi

1v− + πix + ρiy ≥ πi
o define facets of K ′(n, r), and this contradicts the assumption that

(10) defines a facet of K ′(n, r).

7.1 General mixed-integer sets

Gomory and Johnson used facets of P (n, r) to derive valid inequalities for knapsack sets. In

particular, they derived subadditive functions from facet coefficients via interpolation. We show

here how to derive valid inequalities for knapsack sets from facets of K(n, r) via interpolation. For

a real number v, we define v̂ as v − bvc.

Definition 7.2 Given a facet defining inequality πx+ρy ≥ πo for K(n, r), let f z : Z∩ [−n, n] → R

be defined as:

f z(s) =











πs if s > 0

0 if s = 0

ρ−s if s < 0

We say that f : [−n, n] → R is a facet-interpolated function derived from (π, ρ, πo) if

f(v) = (1− v̂)f z(bvc) + v̂f z(dve)

The function f , as defined above, equals f z(v) when v is an integer, and therefore satisfies:

f(v) = (1− v̂)f(bvc) + v̂f(dve). (11)

In the next result, we show that continuous functions arising via interpolation from facets of

K(n, r) satisfy continuous analogues of the pair-wise subadditivity conditions.

Proposition 7.3 Let f be a facet-interpolated function associated with K(n, r). Then:

f(u) + f(v) ≥ f(u+ v) if u, v, u + v ∈ [−n, n].
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Proof. The proposition is true when u and v are integers; the condition f(u) + f(v) ≥ f(u + v)

translates to one of (SA1), (SA2), (SA1’) or (SA2’). Assume u is not an integer. As u+v ∈ [−n, n],

clearly bu+ vc and du+ ve also belong to [−n, n].

Case 1: û + v̂ ≤ 1. Then bu+ vc = buc + bvc and du+ ve = due + bvc. We can rewrite the

expression for f(u) in (11) as

f(u) = (1− û− v̂)f(buc) + ûf(due) + v̂f(buc). (12)

Similarly,

f(v) = (1− û− v̂)f(bvc) + v̂f(dve) + ûf(bvc). (13)

Adding the right-most terms in the above expressions, and using the fact that the proposition is

true when u and v are integers, we obtain

f(u) + f(v) ≥ (1− û− v̂)f(bu+ vc) + ûf(du+ ve) + v̂f(buc+ dve). (14)

If v is an integer, then v̂ = 0 and the right-hand side of (14) the above expression equals f(u+v). If

v is not an integer, then du+ ve = buc+ dve, and again the right-hand side of (14) equals f(u+ v).

Case 2: û+ v̂ > 1. Then bu+ vc = buc+ dve = due+ bvc and du+ ve = due+ dve. We can expand

ûf(due) in (11) as (û+ v̂ − 1)f(due) + (1− v̂)f(due). We can similarly expand v̂f(dve). When we

add the expressions for f(u) and f(v) in (11) after writing the expanded terms, we get

f(u) + f(v) ≥ (û+ v̂ − 1)f(du+ ve) + (2− û− v̂)f(bu+ vc).

The right-hand side of the inequality above equals f(u+ v).

We say that functions satisfying the property in Proposition 7.3 are subadditive over the interval

[−n, n]. We will see how to generate valid inequalities for knapsack sets from such functions in

Proposition 7.5. Also, we can obtain valid inequalities using slightly more restricted functions:

we say that f is a restricted subadditive function if f(u) + f(v) ≥ f(u + v) for u ∈ [−n, n], and

v, u+v ∈ [0, n]. In the next result, we show that facet-interpolated functions satisfy the continuous

analogue of the condition (SA3).

Proposition 7.4 Let f be a facet-interpolated function associated with K(n, r). Then:

f(u) + f(v) + f(w) ≥ f(u+ v + w) if u ∈ [−n, n], and v, w, u + v + w ∈ [0, n].

Proof.(sketch) The proposition is true when u, v and w are integers; the condition f(u) + f(v) +

f(w) ≥ f(u + v) translates to (SA3). As in the proof of (7.3), we assume either that û + v̂ + ŵ

is contained in (0, 1] or (1, 2] or (2, 3). In the first case, we expand (1 − û)f(buc) as (1 − û − v̂ −

ŵ)f(buc) + (v̂+ ŵ)f(buc), and proceed similarly for the terms involving f(bvc) and f(bwc). In the

third case, we expand ûf(due) as (û+ v̂+ŵ−2)f(due)+(2− v̂−ŵ)f(due), and proceed similarly for

the terms involving f(dve) and f(dwe). The second case has a number of sub-cases. For example,

in expanding the terms in the definition of f(u) in (11), we need to consider the value of v̂+ ŵ with
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respect to 1. If v̂+ ŵ ≤ 1, then we write ûf(due) as (û+ v̂+ ŵ− 1)f(due) + (1− v̂− ŵ)f(due). On

the other hand, if û+ v̂ > 1, we expand (1− û)f(buc) as ((2 − û− v̂ − ŵ) + (v̂ + ŵ − 1))f(buc).

It is well-known that subadditive functions yield valid inequalities for knapsack sets; the point

we emphasize in the next result is that one does not need subadditivity over the entire real line.

Proposition 7.5 Consider the set K = {w ∈ Z
p :

∑p
i=1 aiwi = b}, where the coefficients ai and b

are rational numbers. Let t be a number such that tai, tb ∈ [−n, n] and tb > 0. If a function f is

(i) subadditive over the interval [−n, n] or (ii) satisfies restricted subadditivity and the condition in

Proposition 7.4, then
p

∑

i=1

f(tai)wi ≥ f(tb)

is a valid inequality for K.

Proof. By scaling, we can assume the coefficients ai and b in the constraint defining K are all

integers contained in the interval [−m,m]. Let t = n/m. Define the function g : [−m,m] → R

by g(w) = f(tw). In case (i), g is subadditive over the domain [−m,m]. Therefore the vector

g̃ = (g(−m), g(−m+1), . . . , g(1), . . . , g(m)) satisfies (SA1), (SA2), (SA1’), and (SA2’) with respect

to K(m, b), and (by Remark 2.13)
p

∑

i=1

g(ai)wi ≥ g(b)

is a valid inequality for K. In case (ii), g̃ satisfies (SA1), (SA2) and (SA3) with respect to K(m, b)

and by Lemma 2.11 the inequality above is valid for K.

We can now give the mixed-integer extension of the previous result.

Theorem 7.6 Let f be a facet-interpolated function derived from a facet of K(n, r). Consider the

set

Q =

{

(s, w) ∈ R
q
+ × Z

p
+ :

q
∑

i=1

cisi +

p
∑

i=1

aiwi = b

}

,

where the coefficients of the knapsack constraint defining Q are rational numbers. Let t be such

that tai, tb ∈ [−n, n] and tb > 0. Then the inequality

f(1)

q
∑

i=1

(tci)
+si + f(−1)

q
∑

i=1

(−tci)
+si +

p
∑

i=1

f(tai)wi ≥ f(tb),

where (α)+ = max(α, 0), is valid for Q.

8 Conclusion

We studied a generalization of the Master Cyclic Group Polyhedron and presented an explicit

characterization of the polar of its nontrivial facet-defining inequalities. We also showed that one

can obtain valid inequalities for a general MIP that cannot be obtained from facets of the Master
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Cyclic Group Polyhedron. In addition, for mixed-integer knapsack sets with rational data and

nonnegative variables without upper bounds, our results yield a pseudo-polynomial time algorithm

to separate and therefore optimize over their convex hull. This can be done by scaling their data and

aggregating variables to fit into the Master Equality Polyhedron framework. Our characterization

of the MEP can also be used to find violated Homogeneous Extended Capacity Cuts efficiently.

These cuts were proposed in [15] for solving Capacitated Minimum Spanning Tree problems and

Capacitated Vehicle Routing problems.

An interesting topic for further study is the derivation of “interesting” classes of facets for

the MEP, i.e., facets which cannot be derived trivially from facets of the MCGP or as rank one

mixed-integer rounding inequalities.
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