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ON THE COMPUTATIONAL COMPLEXITY OF
MCMC-BASED ESTIMATORS IN LARGE SAMPLES

By Alexandre Belloni∗

IBM T.J. Watson Research Center and MIT Operations Research Center
and

By Victor Chernozhukov†

MIT Department of Economics and Operations Research Center

This paper studies the computational complexity of Bayesian and
quasi-Bayesian estimation in large samples carried out using a basic
Metropolis random walk. The framework covers cases where the un-
derlying likelihood or extremum criterion function is possibly non-
concave, discontinuous, and of increasing dimension. Using a central
limit framework to provide structural restrictions for the problem, it
is shown that the algorithm is computationally efficient. Specifically,
it is shown that the running time of the algorithm in large samples is
bounded in probability by a polynomial in the parameter dimension
d, and in particular is of stochastic order d2 in the leading cases af-
ter the burn-in period. The reason is that, in large samples, a central
limit theorem implies that the posterior or quasi-posterior approaches
a normal density, which restricts the deviations from continuity and
concavity in a specific manner, so that the computational complexity
is polynomial. An application to exponential and curved exponential
families of increasing dimension is given.

1. Introduction. Markov Chain Monte Carlo (MCMC) algorithms have
dramatically increased the use of Bayesian and quasi-Bayesian methods for
practical estimation and inference.(See e.g. books of Casella and Robert [6],
Chib [9], Geweke [16], Liu [31] for detailed treatments of the MCMC meth-
ods and their applications in various areas of statistics, econometrics, and
biometrics.) Bayesian methods rely on a likelihood formulation, while quasi-
Bayesian methods replace likelihood by other criterion functions. This paper
studies the computational complexity of a basic MCMC algorithm as both
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2 BELLONI AND CHERNOZHUKOV

the sample and parameter dimension grow to infinity at appropriate rates.
The paper shows how and when the large sample asymptotics places suf-
ficient restrictions on the likelihood and criterion functions that guarantee
the efficient – that is, polynomial time – computational complexity of these
algorithms. These results suggest that at least in large samples, Bayesian
and Quasi-Bayesian estimators can be computationally efficient alternatives
to maximum likelihood and extremum estimators, most of all in cases where
likelihoods and criterion functions are non-concave and possibly non-smooth
in parameters of interest.

To motivate our analysis, consider the M-estimation problem, which is a
common method of estimating various kinds of regression models. The idea
behind this approach is to maximize some criterion function:

Qn (θ) = −
n∑

i=1

m(Yi − qi(Xi, θ)), θ ∈ Θ ⊂ IRd,(1.1)

where Yi is the response variable, Xi is a vector of regressors, and qi is a
regression function. In many examples, the problem is nonlinear and non-
concave, implying that the argmax estimator may be difficult or impossible
to obtain. For instance, in risk management a major problem is that of
constructing the estimates of Conditional Value-at-Risk. In particular, the
problem is to predict the α-quantile of a portfolio’s return Yi tomorrow, given
today’s and past available information (Xi, Xi−1, . . .). This problem fits in
the M-estimation framework by taking function m(·) to be the asymmetric
absolute deviation function, see Koenker and Bassett [28],

m(u) = (α− 1(u < 0))u.

To reflect dependence on all past data and accurately capture GARCH-
like dependencies, leading research in this area (see Engle and Maganelli
[13]) considers recursive models of the form qi = f(Xi, qi−1, qi−2, ...; θ), for
instance, f(Xi, qi−1, qi−2, ...; θ) = X ′

iγ+ρ1qi−1+ρ2qi−2. This implies a highly
non-linear, recursive specification for the regression function qi(·; θ), which
in turn implies that the criterion function used in M-estimation defined in
(1.1) is generally non-concave. Furthermore, in this example, the function
Qn(θ) is non-smooth. As a consequence the argmax estimator

θ̃ ∈ arg max
θ∈Θ

Qn(θ)(1.2)

may be very hard to obtain. Figure 1 in Section 2 illustrates other kinds of
examples where the argmax computation becomes intractable.
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As an alternative to argmax estimation, consider the Quasi-Bayesian es-
timator obtained by integration in place of optimization:

(1.3) θ̂ =

∫

Θ
θ exp{Qn(θ)}dθ

∫

Θ
exp{Qn(θ′)}dθ′

.

This estimator may be recognized as a quasi-posterior mean of the quasi-
posterior density πn(θ) ∝ expQn(θ). (Of course, when Qn is a log-likelihood,
the term “quasi” becomes redundant.) This estimator is not affected by local
discontinuities and non-concavities and is often much easier to compute in
practice than the argmax estimator; see, for example, the discussion in Liu,
Tian, and Wei [30] and Chernozhukov and Hong [8].

This paper will show that if the sample size n grows to infinity and the
dimension of the problem d does not grow too quickly relative to the sample
size, the quasi-posterior

exp{Qn(θ)}∫

Θ
exp{Qn(θ′)}dθ′

(1.4)

will be approximately normal. This result in turn leads to the main claim:
the estimator (1.3) can be computed using Markov Chain Monte Carlo in
polynomial time, provided the starting point is drawn from the approxi-
mate support of the quasi-posterior (1.4). As is standard in the literature,
we measure running time in the number of evaluations of the numerator of
the quasi-posterior function (1.4) since this accounts for most of the com-
putational burden.

In other words, when the central limit theorem (CLT) for the quasi-
posterior holds, the above estimator is computationally tractable. The rea-
son is that the CLT, in addition to implying the approximate normality and
attractive estimation properties of the estimator θ̂, bounds non-concavities
and discontinuities of Qn(θ) in a specific manner that implies that the com-
putational time is polynomial in the parameter dimension d. In particular,
the bound on the running time of the algorithm is Op(d2) in the leading
cases after the so-called burn-in period. Thus, our main insight is to bring
the structure implied by the CLT into the computational complexity anal-
ysis of the MCMC algorithm for computation of (1.3) and sampling from
(1.4).

Our analysis of computational complexity builds on several fundamental
papers studying the computational complexity of Metropolis procedures, es-
pecially Applegate and Kannan [1], Frieze, Kannan and Polson [15], Polson
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[36], Kannan, Lovász and Simonovits [25], Kannan and Li [24], Lovász and
Simonovits [32], and Lovász and Vempala [33, 34, 35]. Many of our results
and proofs rely upon and extend the mathematical tools previously devel-
oped in these works. We extend the complexity analysis of the previous lit-
erature, which has focused on the case of an arbitrary concave log-likelihood
function, to nonconcave and nonsmooth cases. The motivation is that from
a statistical point of view, in concave settings it is typically easier to com-
pute a maximum likelihood or extremum estimate than a Bayesian or quasi-
Bayesian estimate, so the latter do not necessarily have practical appeal.
In contrast, when the log-likelihood or quasi-likelihood is either nonsmooth,
nonconcave, or both, Bayesian and quasi-Bayesian estimates defined by in-
tegration are relatively attractive computationally, compared to maximum
likelihood or extremum estimators defined by optimization.

Our analysis also relies on statistical large sample theory. We invoke limit
theorems for posteriors and quasi-posteriors for large samples as n → ∞.
These theorems are necessary to support our principal task – the analy-
sis of computational complexity under the restrictions of the CLT. As a
preliminary step of our computational analysis, we obtain a new CLT for
quasi-posteriors and posteriors which generalizes the CLT previously derived
in the literature for posteriors and quasi-posteriors for fixed dimension. In
particular, Laplace c. 1809, Bickel and Yahav [4], Ibragimov and Hasminskii
[20], and Bunke and Milhaud [5] provided CLTs theorems for posteriors.
Chernozhukov and Hong [8] and Liu, Tian, and Wei [30] provided CLTs
for quasi-posteriors formed using various non-likelihood criterion functions.
In contrast to these previous results, we allow for increasing dimensions.
Ghosal [18] also previously derived a CLT for posteriors with increasing
dimension, but only for concave exponential families. We go beyond such
canonical setup and establish the CLT for non-concave and discontinuous
cases. We also allow for general criterion functions in place of likelihood
functions. The paper also illustrates the plausibility of the approach using
exponential and curved exponential families. The curved families arise for
example when the data must satisfy additional moment restrictions, as e.g.
in Hansen and Singleton [19], Chamberlain [7], and Imbens [21]. The curved
families fall outside the log-concave framework.

The rest of the paper is organized as follows. In Section 2, we estab-
lish a generalized version of the Central Limit Theorem for Bayesian and
Quasi-Bayesian estimators. This result may be seen as a generalization of
the classical Bernstein-Von-Mises theorem, in that it allows the parameter
dimension to grow as the sample size grows, i.e. d → ∞ as n → ∞. In
Section 2, we also formulate the main problem, which is to characterize the
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complexity of MCMC sampling and integration as a function of the key pa-
rameters that describe the deviations of the quasi-posterior from the normal
density. Section 3 explores the structure set forth in Section 2 to find bounds
on conductance and mixing time of the MCMC algorithm. Section 4 derives
bounds on the integration time of the MCMC algorithm. Section 5 consid-
ers an application to a broad class of curved exponential families, which are
possibly non-concave and discontinuous, and verifies that our results apply
to this class of statistical models. We verify that high-level conditions of
Section 2 follow from primitive conditions for these models.

2. The Setup and The Problem. Our analysis is motivated by the
problems of estimation and inference in large samples. We consider a “reduced-
form” setup formulated in terms of parameters that characterize local devia-
tions from the true statistical parameter. 1 The local parameter λ describes
contiguous deviations from the true parameter and we shift it by a first
order approximation of the extremum estimator s. That is, for θ denoting
a parameter vector, θ0 the true value, and s =

√
n(θ̃ − θ0) the normalized

extremum estimator (or a first order approximation to it), we have the local
parameter λ defined as

λ =
√

n(θ − θ0)− s.

The parameter space for θ is Θ, and the parameter space for λ is therefore
Λ =

√
n(Θ− θ0)− s.

The corresponding localized likelihood (or localized criterion) function is
denoted by `(λ). For example, suppose Ln(θ) is the original likelihood func-
tion in the likelihood framework or, more generally, Ln(θ) is exp{nQn(θ)}
where Qn(θ) is the criterion function in extremum framework, then

`(λ) = Ln(θ0 + (λ + s)/
√

n)/Ln(θ0).

The assumptions below will be stated directly in terms of `(λ). (Section
5 provides more primitive conditions within the exponential and curved
exponential family framework.)

Then, the posterior or quasi-posterior density for λ takes the form (im-
plicitly indexed by the sample size n)

f(λ) =
`(λ)∫

Λ `(ω)dω
,(2.5)

1Examples in Section 5 further illustrate the connection between the localized set-up
and the non-localized set-ups.



6 BELLONI AND CHERNOZHUKOV

and we impose conditions that force the posterior to satisfy a CLT in the
sense of approaching the normal density

φ(λ) =
1

(2π)d/2 det (J−1)1/2
exp

(
−1

2
λ′Jλ

)
.

More formally, the following conditions are assumed to hold for `(λ) as the
sample size n →∞. These conditions, which in the following we will call the
“CLT conditions,” explicitly allow for an increasing parameter dimension d
(d →∞):

C1. The local parameter λ belongs to the local parameter space λ ∈ Λ ⊂
Rd. The vector s is a zero mean vector with variance Ω, whose eigenval-
ues are bounded above as n →∞, and Λ = K∪Kc, where K is a closed
ball B(0, ‖K‖) with ‖K‖ = C

√
d such that

∫
K f(λ)dλ ≥ 1− op(1) and∫

K φ(λ)dλ ≥ 1− o(1).2

C2. The lower semi-continuous posterior or quasi-posterior function `(λ)
approaches a quadratic form in logs, uniformly in K, i.e., there exist
positive approximation errors ε1 and ε2 such that for every λ ∈ K,

∣∣∣∣ln `(λ)−
(
−1

2
λ′Jλ

)∣∣∣∣ ≤ ε1 + ε2 · λ′Jλ/2,(2.6)

where J is a symmetric positive definite matrix with eigenvalues bounded
away from zero and from above. Also, we denote the ellipsoidal norm
induced by J as ‖v‖J := ‖J1/2v‖.

C3. The approximation errors ε1 and ε2 satisfy ε1 = op(1), and ε2 · ‖K‖2
J =

op(1).

These conditions imply that

`(λ) = g(λ) ·m(λ)

over the approximate support set K where

(2.7) ln g(λ) = −1
2
λ′Jλ,

(2.8) −ε1 − ε2λ
′Jλ/2 ≤ ln m(λ) ≤ ε1 + ε2λ

′Jλ/2.

Figure 1 illustrates the kinds of deviations of ln `(λ) from the quadratic
curve captured by the parameters ε1 and ε2, and also shows the types of
discontinuities and non-convexities permitted in our framework. Parameter
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Fig 1. This figure illustrates how ln `(λ) can deviate from ln g(λ) including possible dis-
continuities on ln `(λ).

ε1 controls the size of local discontinuities and parameter ε2 controls the
global tilting away from the quadratic shape of the normal log-density.

Theorem 1 [Generalized CLT for Quasi-Posteriors] Under the conditions
stated above, the density of interest

f(λ) =
`(λ)∫

Λ `(ω)dω
(2.9)

approaches a normal density φ(λ) with variance matrix J in the following
sense:

∫

Λ
|f(λ)− φ(λ)|dλ =

∫

K
|f(λ)− φ(λ)|dλ + op(1) = op(1).(2.10)

Proof. See Appendix A.
Theorem 1 is a simple preliminary result. However, the result is essen-

tial for defining the environment in which main results of this paper – the
computational complexity results – will be developed. The theorem shows
that in large samples, provided some regularity conditions hold, Bayesian
and Quasi-Bayesian inference has good large sample properties. The main
part of the paper, namely Section 3, develops the computational implications
of the CLT conditions. In particular, Section 3 shows that polynomial time
computing of Bayesian and Quasi-Bayesian estimators by MCMC is in fact
implied by the CLT conditions.

2Note that ‖K‖ := sup{‖a‖ : a ∈ K}. The constant C need not grow due to the
phenomenon of concentration of measure under d →∞ asymptotics.
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By allowing increasing dimension (d → ∞) Theorem 1 extends the CLT
previously derived in the literature for posteriors in the likelihood framework
(Bickel and Yahav [4], Ibragimov and Hasminskii [20], Bunke and Milhadu
[5], Ghosal [18]) and for quasi-posteriors in the general extremum framework,
when the likelihood is replaced by general criterion functions (Chernozhukov
and Hong [8], Liu, Tian, and Wei [30]). The theorem is more general than the
results in Ghosal [18], who also considered increasing dimensions but lim-
ited his analysis to the exponential likelihood family framework. In contrast,
Theorem 1 allows for non-exponential families and allows quasi-posteriors
in place of posteriors. Recall that quasi-posteriors result from using quasi-
likelihoods and other criterion functions in place of the likelihood. This ex-
pands substantially the scope of the applications of the result. Importantly,
Theorem 1 allows for non-smoothness and even discontinuities in the likeli-
hood and criterion functions, which are pertinent in a number of applications
listed in the introduction.

The Problem of the Paper. Our problem is to characterize the com-
plexity of obtaining draws from f(λ) and of Monte Carlo integration

∫
g(λ)f(λ)dλ,

where f(λ) is restricted to the approximate support K. The procedure used
to obtain the basic draws as well as to carry out Monte Carlo integration is a
Metropolis (Gaussian) random walk, which is a standard MCMC algorithm
used in practice. The tasks are thus:

I. Characterize the complexity of sampling from f(λ) as a function of
(d, n, ε1, ε2,K);

II. Characterize the complexity of calculating
∫

g(λ)f(λ)dλ as a function
of (d, n, ε1, ε2,K);

III. Characterize the complexity of sampling from f(λ) and performing
integrations with f(λ) in large samples as d, n → ∞ by invoking the
bounds on (d, n, ε1, ε2,K) imposed by the CLT;

IV. Verify that the CLT conditions are applicable in a variety of statistical
problems.

This paper formulates and answers this problem. Thus, the paper brings
the CLT restrictions into the complexity analysis and develops complexity
bounds for sampling and integrating from f(λ) under these restrictions.
These CLT restrictions, arising by using large sample theory and imposing
certain regularity conditions, limit the behavior of f(λ) over the approximate
support set K in a specific manner that allows us to establish polynomial
computing time for sampling and integration. Because the conditions for



COMPLEXITY OF MCMC 9

the CLT do not provide strong restrictions on the tail behavior of f(λ)
outside K other than C1, our analysis of complexity is limited entirely to
the approximate support set K defined in C1-C3.

By solving the above problem, this paper contributes to the recent litera-
ture on the computational complexity of Metropolis procedures. Early work
was primary concerned with the question of approximating the volume of
high dimensional convex sets where uniform densities play a fundamental
role (Lovász and Simonovits [32], Kannan, Lovász and Simonovits [25, 26]).
Later the approach was generalized for the cases where the log-likelihood is
concave (Frieze, Kannan and Polson [15], Polson [36], and Lovász and Vem-
pala [33, 34, 35]). However, under log-concavity the maximum likelihood
estimators are usually preferred over Bayesian or quasi-Bayesian estimator
from a computational point of view. In the absence of concavity, exactly
the settings where there is a great practical appeal for using Bayesian and
quasi-Bayesian estimates, there has been relatively less, if any, analysis. One
important exception is the paper of Applegate and Kannan [1], which covers
nearly-concave but smooth densities using a discrete Metropolis algorithm.
3 In contrast to Applegate and Kannan [1], our approach allows for both
discontinuous and non-concave densities that are permitted to deviate from
the normal density (not from an arbitrary log-concave density, like in Ap-
plegate and Kannan [1]) in a specific manner. The manner in which they
deviate from the normal is motivated by the CLT and controlled by param-
eters ε1 and ε2, which are in turn restricted by the CLT conditions. The
CLT restrictions provide a congenial analytical framework that allows us to
treat a basic non-discrete sampling algorithm frequently used in practice.
In fact, it is known that the basic Metropolis walk analyzed here does not
have good complexity properties (rapidly mixing) for arbitrary log-concave
density functions, in opposition to other random walks like hit-and-run4.
Nonetheless, the CLT conditions imply enough structure that the random
walk is in fact rapidly mixing. Moreover, only Subsection 3.2 depends on
the particular form of the walk while all the remaining results are valid in
a considerably more general setting. This suggests that the same CLT ap-
proach can be used to establish polynomial bounds for more sophisticated
schemes. As is standard in the literature, we assume that the starting point
of the algorithm is in the approximate support of the posterior. Indeed, the
polynomial time bound that we derive applies only in this case because this
is the domain where the CLT provides enough structure on the problem.

3The discrete Metropolis algorithm facilitates the analysis, but they are are not fre-
quently used in practice.

4See Lovász and Vempala [35] for a discussion.
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Our analysis does not apply outside this domain.

3. Sampling from f using a Random Walk.

3.1. Set-Up and Main Result. In this section we bound the computa-
tional complexity of obtaining a draw from a random variable approximately
distributed according to a density function f as defined in (2.5). (Section
4 builds upon these results to study the associated integration problem.)
By invoking Assumption C1, we restrict our attention entirely to the ap-
proximate support set K and the accuracy of sampling will be defined over
this set. Consider a measurable space (K,A). Our task is to draw a ran-
dom variable according to a measurable density function f restricted to K
(this density induces a probability distribution on K denoted by Q, i.e.,
Q(A) =

∫
A f(x)dx/

∫
K f(x)dx for all A ∈ A). Asymptotically, it is well-

known that random walks combined with a Metropolis filter are capable
of performing such task. In order to prove our complexity bounds, we will
concentrate on a commonly used random walk induced by a Gaussian distri-
bution. Such random walk is completely characterized by an initial point u0

and a fixed standard deviation σ > 0, and its one-step move. The latter is
defined as the procedure of drawing a point y according to a Gaussian distri-
bution centered on the current point u with covariance matrix σ2I and then,
with probability min{f(y)/f(u), 1} = min{`(y)/`(u), 1} move to y; other-
wise stay at u (see Casella and Robert [6] and Vempala [41] for details). In
the complexity analysis of this algorithm we are interested in bounding the
number of steps of the random walk required to draw a random variable
from f with a given precision. Equivalently, we are interested in bounding
the number of evaluations of the local likelihood function ` required for this
purpose.

Next we review definitions of important concepts relevant for our anal-
ysis. The definitions of these concepts follow Lovász and Simonovits [32]
and Vempala [41]. Let q(x|u) denote the density function associated with a
random variable N(u, σ2I), and 1u(A) be the indicator function of the set
A. For each u ∈ K the one-step distribution Pu, the probability distribution
after one step of the random walk starting from u, is defined as

(3.11) Pu(A) =
∫

K∩A
min

{
f(x)
f(u)

, 1
}

q(x|u)dx + θ1u(A)

where

(3.12) θ = 1−
∫

K
min

{
f(x)
f(u)

, 1
}

q(x|u)dx
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is the probability of staying at u after one step of the ball walk from u. A
step of the random walk is said to be proper if the next point is different
from the current point (which happens with probability 1− θ).

The triple (K,A, {Pu : u ∈ K}), along with a starting distribution Q0,
defines a Markov chain in K. We denote by Qt the probability distribu-
tion obtained after t steps of the random walk. A distribution Q is called
stationary on (K,A) if for any A ∈ A,

(3.13)
∫

K
Pu(A)dQ(u) = Q(A).

Given the random walk described earlier, the unique stationary probability
distribution Q is induced by the function f , Q(A) =

∫
A f(x)dx/

∫
K f(x)dx

for all A ∈ A, see e.g. Casella and Roberts [6]. This is the main motivation
for most of the MCMC studies found in the literature since it provides an
asymptotic method to approximate the density of interest. As mentioned
before, our goal is to properly quantify this convergence and for that we
need to review additional concepts.

The ergodic flow of a set A with respect to a distribution Q is defined as

Φ(A) =
∫

A
Pu(K\A)dQ(u).

It measures the probability of the event {u ∈ A, u′ /∈ A} where u is dis-
tributed according to Q and u′ is obtained after one step of the random
walk starting from u; it captures the average flow of points leaving A in one
step of the random walk. It follows that Q is a stationary measure if and
only if Φ(A) = Φ(K\A) for all A ∈ A since

Φ(A) =
∫

A
Pu(K \A)dQ(u) =

∫

A
(1− Pu(A)) dQ(u)

= Q(A)−
∫

A
Pu(A)dQ(u) =

∫

K
Pu(A)dQ(u)−

∫

A
Pu(A)dQ(u)

= Φ(K \A).

A Markov chain is said to be ergodic if Φ(A) > 0 for every A with 0 <
Q(A) < 1, which is the case for the Markov chain induced by the random
walk described earlier due to the assumptions on f .

In order to compare two probability distributions P and Q we use the
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total variation distance5

(3.14) ‖P −Q‖TV = sup
A⊆K

|P (A)−Q(A)|.

Moreover, P is said to be a M -warm start with respect to Q if

(3.15) sup
A∈A:Q(A)>0

P (A)
Q(A)

≤ M.

The key concepts in the analysis are the conductance of a set A, which is
defined as

φ(A) =
Φ(A)

min{Q(A), Q(K\A)} ,

and the global conductance, defined as

φ = min
A

φ(A) = min
0<Q(A)≤1/2

Φ(A)
Q(A)

= min
0<Q(A)≤1/2

∫
A Pu(K\A)dQ(u)

Q(A)
.

Lovász and Simonovits [32] proved the connection between conductance and
convergence for the continuous space setting. This result extended an ear-
lier result of Jerome and Sinclair [22, 23], who connected convergence and
conductance for discrete state spaces. Lovász and Simonovits’ result can be
re-stated as follows.

Theorem 2 Let Q0 be a M -warm start with respect to the stationary dis-
tribution Q. Then,

‖Qt −Q‖TV ≤
√

M

(
1− φ2

2

)t

Proof. See Lovász and Simonovits [32].
The main result of this paper provides a lower bound for the global con-

ductance of the Markov chain φ under the CLT conditions. In particular,
we show that 1/φ is bounded by a fixed polynomial in the dimension of the
parameter space.

Theorem 3 (Main Result) Under Assumptions C1, C2, C3, and setting the
parameter σ for the random walk as defined in (3.17), the global conductance
of the induced Markov chain satisfies

1/φ = O
(
d e4ε1+4ε2‖K‖2J

)
.

5This distance is equivalent to the L1(K) distance between the density functions asso-
ciated with P and Q since supA⊆K |P (A)−Q(A)| = 1

2

∫
K
|dP − dQ|.
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In particular, the random walk requires at most

Nε = Op

(
e8ε1+8ε2‖K‖2J

(
1
σ

)2

ln(M/ε)

)

steps to achieve ‖QNε−Q‖TV ≤ ε. Invoking the CLT restrictions, ε1 = o(1),
ε2 · ‖K‖J = o(1), we have that 1/φ = Op(d) and the number of steps Nε is
bounded by

Op

(
d2 ln(M/ε)

)
.

Proof. See Section 3.2.

Comment 3.1 In general, the dependence on ε1 and ε2 is exponential and
this bound does not imply polynomial time (“efficient”) computing. However,
the CLT framework implies that ε1 = o(1) and ε2 · ‖K‖J = o(1), which by
Theorem 3 in turn implies polynomial time computing.

Next we discuss and bound the dependence on M , the “distance” of the
initial distribution Q0 from the stationary distribution Q as defined in (3.15).
A natural candidate for a starting distribution Q0 is the one-step distribution
conditional on a proper move from an arbitrary point u ∈ K. We empha-
size that, in general, such choice of Q0 could lead to values of M that are
arbitrary large. In fact, this could happen even in the case of the stationary
density being a uniform distribution on a convex set (see [35]). Fortunately,
this is not the case under the CLT framework as shown by the following
lemma.

Lemma 1 Let u ∈ K and Pu be the associated one-step distribution. With
probability at least 1/3 the random walk makes a proper move. Conditioned
on performing a proper move, the one-step distribution is a M -warm start
start for f , where

ln M = O(d ln(
√

d‖K‖) + ‖K‖2
J + ε1 + ε2‖K‖2

J).

Under the CLT restrictions, ε2‖K‖J = o(1) and ‖K‖J = O(
√

d), so that

lnM = O(d ln d).

Proof. See Appendix A.
Combining this result with Theorem 3 yields the overall (burn-in plus

post burn-in) running time
Op(d3 ln d).
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3.2. Proof of the Main Result. The proof of Theorem 3 uses two aux-
iliary results: an iso-perimetric inequality and a geometric property of the
particular random walk. The first is an analytical result and is of indepen-
dent mathematical interest. After the connection between the iso-perimetric
inequality and the ergodic flow is established, the second result allows us to
use the first result to bound the conductance from below. In what follows
we provide an outline of the proof, auxiliary results, and, finally, the formal
proof.

3.2.1. Outline of the Proof. The proof follows the arguments in Lovász
and Vempala [33]. In order to bound the ergodic flow of A ∈ A, consider the
particular disjoint partition K = S̃1 ∪ S̃2 ∪ S̃3 where S̃1 ⊂ A, S̃2 ⊂ K \ A,
and S̃3 consists of points in A or K \ A for which the one-step probability
of going to the other set is at least a fixed constant c (to be defined later).
Therefore we have

Φ(A) =
∫
A Pu(K \A)dQ(u) = 1

2

∫
A Pu(K \A)dQ(u) + 1

2

∫
K\A Pu(A)dQ(u)

≥ 1
2

∫
S̃1

Pu(K \A)dQ(u) + 1
2

∫
S̃2

Pu(A)dQ(u) + c
2Q(S̃3).

where the second equality holds because Φ(A) = Φ(K \A).
Since the first two terms could be arbitrarily small, the result will follow

by bounding the last term from below. This will be achieved by an iso-
perimetric inequality which is tailored to the CLT framework and is derived
in Section 3.2.2. This result will provide a lower bound on Q(S̃3), which is
decreasing in the distance between S̃1 and S̃2. Therefore one still needs to
bound the distance between these sets.

Given two points u ∈ S̃1 and v ∈ S̃2, we have Pu(K\A) ≤ c and Pv(A) ≤ c.
Therefore, the total variation distance between their one-step distributions
‖Pu − Pv‖ ≥ |Pu(A) − Pv(A)| ≥ 1 − 2c. The geometric properties of the
random walk are used to ensure that this condition implies that ‖u− v‖ is
also bounded from below (see Section 3.2.3). Since u and v were arbitrary
points, the sets S̃1 and S̃2 are “far” apart. Therefore S̃3 cannot be arbitrarily
small, i.e., Q(S̃3) is bounded from below.

This leads to a lower bound for the global conductance. After bounding
the global conductance from below, Theorem 3 follows by invoking CLT
conditions and Theorem 2.

3.2.2. An Iso-perimetric Inequality. We start by defining a notion of ap-
proximate log-concavity. A function f : IRn → IR is said to be log-β-concave
if for every α ∈ [0, 1], x, y ∈ IRn, we have

f (αx + (1− α)y) ≥ βf(x)αf(y)1−α
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for some β ∈ (0, 1]. f is said to be logconcave if β can be taken equal to one.
The class of log-β-concave functions is rather broad, for example, including
various non-smooth and discontinuous functions.

Together, the relations (2.7) and (2.8) imply that we can write the func-
tions f and ` as the product of e−

1
2
λ′Jλ and a log-β-concave function:

Lemma 2 Over the set K the functions f(λ) := `(λ)/
∫
Λ `(λ)dλ and `(λ)

are the product of a Gaussian function, e−
1
2
λ′Jλ, and a β-log-concave func-

tion whose parameter β satisfies

lnβ ≥ 2 ·
(
−ε1 − ε2 · ‖K‖2

J

)
.

Proof. It follows from (2.8).
In our case, the larger is the support set K, the larger is the deviation from

log-concavity. That is appropriate since the CLT does not impose strong
restrictions on the tail of the probability densities. Nonetheless, this gives a
convenient structure to prove an iso-perimetric inequality which covers even
non-continuous cases permitted in the framework described in the previous
sections.

Lemma 3 Consider any measurable partition of the form K = S1∪S2∪S3

such that the distance between S1 and S2 is at least t, i.e. d(S1, S2) ≥ t.
Let Q(S) =

∫
S fdx/

∫
K fdx. Then for any lower semi-continuous function

f(x) = e−‖x‖2m(x), where m is a log-β-concave function, we have

Q(S3) ≥ β
2te−t2/4

√
π

min {Q(S1), Q(S2)} .

Proof. See Appendix A.

Comment 3.2 This new iso-perimetric inequality extends the iso-perimetric
inequality in Kannan and Li [24], Theorem 2.1. The proof builds on their
proof as well as on the ideas in Applegate and Kannan [1]. Unlike the inequal-
ity in [24], Lemma 3 removes smoothness assumptions on f , for example,
covering both non-log-concave and discontinuous cases.

The iso-perimetric inequality of Lemma 3 states that, under suitable con-
ditions, if two subsets of K are far apart, the measure of the remaining
subset should be comparable to the measure of at least one of the original
subsets. The following corollary extends the previous theorem to cover cases
with an arbitrary covariance matrix J .

Corollary 1 Consider any measurable partition of the form K = S1∪S3∪S2

such that d(S1, S2) ≥ t, and let Q(S) =
∫
S fdx/

∫
K fdx. Then for any lower
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semi-continuous function f(x) = e−
1
2
x′Jxm(x), where m is a log-β-concave

function, we have

Q(S3) ≥ β te−λmint2/8

√
2λmin

π
min {Q(S1), Q(S2)} ,

where λmin denotes the minimum eigenvalue of the positive definite matrix
J .

Proof. See Appendix A.

3.2.3. Bounds on the Difference of One-step Distributions. Next we re-
late the total variation distance between two one-step distributions with the
Euclidean distance between the points that induce them. Although this ap-
proach follows the one in Lovász and Vempala [33, 34, 35] there are two
important differences which call for a new proof. First, we no longer rely on
log-concavity of f . Second, we use a different random walk. We start with
the following auxiliary result.

Lemma 4 Let g : IRn → IR be a function such that ln g is Lipschitz with
constant L over compact set K. Then, for every x ∈ K and r > 0,

inf
y∈B(x,r)∩K

[g(y)/g(x)] ≥ e−Lr.

Proof. The result is obvious.
Given a compact set K, we can bound the Lipschitz constant of the con-

cave function ln g defined in (2.7) by

L ≤ sup
λ∈K

‖∇ ln g(λ)‖ ≤ sup
λ∈K

‖Jλ‖ ≤ λmax‖K‖ = O
(√

d
)

.(3.16)

Lemma 5 Let u, v ∈ K := B(0, ‖K‖), σ2 ≤ 1
16dL2 , and suppose that σ

‖K‖ ≤
1

120d and ‖u − v‖ < σ
8 where L is the Lipschitz constant of ln g on the

set K. Under our assumptions on f as defined in (2.5), we have

‖Pu − Pv‖TV ≤ 1− β

3e
.

Proof. See Appendix A.
The converse of Lemma 5 states that if two points induce one-step prob-

ability distributions that are far apart in the total variation norm, these
points must also be far apart in the Euclidean norm. This geometric result
provides a key ingredient in the application of the iso-perimetric inequality
as discussed earlier.
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3.2.4. Proof of Theorem 3. . Consider the compact support for f as
K = B(0, ‖K‖), where ‖K‖ = O(

√
d/λmin) from Assumption C1. We define

σ = min
{
1/4

√
dL, ‖K‖/120d

}
.(3.17)

Therefore the assumptions of Lemma 5 are satisfied. Moreover, under the
assumptions of the theorem, using (3.16) it follows that

σ ≥ 1
120λmax

√
d‖K‖ .(3.18)

Fix an arbitrary set A ∈ A and denote by Ac = K \A the complement of
A with respect to K. We will prove that

(3.19) Φ(A) =
∫

A
Pu(Ac)dQ(u) ≥ β2

600
σ
√

λmin min{Q(A), Q(Ac)},

which implies the desired bound on the global conductance φ. Note that this
is equivalent to bounding Φ(Ac) since Q is stationary on (K,A).

Consider the following auxiliary definitions:

S̃1 =
{

u ∈ A : Pu(Ac) <
β

6e

}
, S̃2 =

{
v ∈ Ac : Pv(A) <

β

6e

}
, S̃3 = K\(S̃1∪S̃2).

First assume that Q(S̃1) ≤ Q(A)/2 (a similar argument can be made for S̃2

and Ac). In this case, we have

Φ(A) =
∫

A
Pu(Ac)dQ(u) ≥

∫

A\S̃1

Pu(Ac)dQ(u) ≥
∫

A\S̃1

β

6e
dQ(u)

≥ β

6e
Q(A\S̃1) ≥ β

12e
Q(A),

and the inequality (3.19) follows.
Next assume that Q(S̃1) ≥ Q(A)/2 and Q(S̃2) ≥ Q(Ac)/2. Since Φ(A) =

Φ(Ac) we have that

Φ(A) =
∫

A
Pu(Ac)dQ(u) = 1

2

∫
A Pu(Ac)dQ(u) + 1

2

∫
Ac Pv(A)dQ(v)

≥ 1
2

∫
A\S̃1

Pu(Ac)dQ(u) + 1
2

∫
Ac\S̃2

Pv(A)dQ(v)

≥ 1
2

∫
S̃3

β
6edQ(u) = β

12eQ(S̃3),

where we used that S̃3 = K \ (S̃1 ∪ S̃2) = (A \ S̃1) ∪ (Ac \ S̃2). Given the
definitions of the sets S̃1 and S̃2, for every u ∈ S̃1 and v ∈ S̃2 we have

‖Pu − Pv‖TV ≥ Pu(A)− Pv(A) = 1− Pu(Ac)− Pv(A) ≥ 1− β

3e
.
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In such case, by Lemma 5, we have that ‖u− v‖ > σ
8 for every u ∈ S̃1 and

v ∈ S̃2. Thus, we can apply the iso-perimetric inequality of Corollary 1, with
d(S̃1, S̃2) ≥ σ/8, to bound Q(S̃3). We obtain

∫

A
Pu(Ac)dQ(u) ≥ β2

12e
σ
8 e−

1
8
λminσ2/64

√
2λmin

π min{Q(S̃1), Q(S̃2)}
≥ β2σ

√
λmin

600 min{Q(A), Q(Ac)}.

where the second inequality also used that λminσ2 ≤ λmin
‖K‖2

(120d)2
≤ 1/d un-

der our definitions. Therefore, using relation (3.18) and ‖K‖ = O(
√

d/λmin),
we obtain

1/φ = O

(
β−2 λmax

λmin
d

)
= O

(
d e4ε1+4ε2‖K‖J

)

since the eigenvalues are assumed to be uniformly bounded from above and
away from zero.

The remaining results in Theorem 3 follow by invoking the CLT conditions
and applying Theorem 2 with the above bound on the conductance.

4. Complexity of Monte Carlo Integration. This section consid-
ers our second problem of interest – that of computing a high dimensional
integral of a bounded real valued function g:

(4.20) µg =
∫

K
g(λ)f(λ)dλ.

The integral is computed by simulating a dependent (Markovian) sequence
of random points λ1, λ2, . . ., which has f as the stationary distribution, and
taking

(4.21) µ̂g =
1
N

N∑

i=1

g(λi)

as an approximation to (4.20). The dependent nature of the sample in-
creases the sample size needed to achieve a desired precision compared to
the (infeasible) case of independent draws from f . It turns out that as in the
preceding analysis, the global conductance of the the Markov chain sample
will be crucial in determining the appropriate sample size.

The starting point of our analysis is a central limit theorem for reversible
Markov chains due to Kipnis and Varadhan [27] which is restated here for
convenience. Consider a reversible Markov chain on K with stationary distri-
bution f . The lag k autocovariance of the stationary time series

{
g(λi)

}∞
i=1,
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obtained by starting the Markov chain with the stationary distribution f is
defined as

γk = Covf

(
g(λi), g(λi+k)

)
.

Let us recall a characterization of γk via spectral theory following Kipnis
and Varadhan [27]: Let T denote the transition operator of the Markov chain
induced by the random walk. In our case, since the chain is reversible, T
is a linear bounded self-adjoint operator in the Hilbert space L2(K,A, Q),
see [32]. Let Eg denote the measure on Borel sets of (−1, 1) induced by the
spectral measure of T applied to g, as in [17]. With these definitions, one
has that for any k

γk =
∫

w|k|dEg(w).

We are prepared to restate the central limit theorem of Kipnis and Varadhan
[27] needed for our analysis.

Theorem 4 For a stationary, irreducible, reversible Markov chain with µ̂g

and µg defined as (4.21) and (4.20),

NVar(µ̂g) → σ2
g =

+∞∑

k=−∞
γk =

∫ 1 + w

1− w
dEg(w)

almost surely. If σ2
g is finite, then

√
N(µ̂g − µg) converges in distribution to

N(0, σ2
g).

Proof. See Kipnis and Varadhan [27].
In our case, γ0 is finite since g is bounded. The next result, which builds

upon Theorem 2, states that σ2
g can be bounded using the global conductance

of the Markov chain.

Corollary 2 Let g be a square integrable function with respect to the sta-
tionary measure Q. Under the assumptions of Theorem 4, we have that

γk ≤
(

1− φ2

2

)|k|
γ0 and σ2

g ≤ γ0

(
4
φ2

)
.

Proof. See Lovaász and Simonovits [32].
We will use the mean square error as the measure of closeness for a con-

sistent estimator:
MSE(µ̂g) = E[µ̂g − µg]2.

Many approaches are possible for constructing the sequence of draws in
(4.21); we refer to [17] for a detailed discussion. Here, we will analyze three
common schemes:
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• long run (lr),
• subsample (ss),
• multi-start (ms).

Denote the sample sizes corresponding to each method as Nlr, Nss, and Nms.
The long run scheme consists of generating the first point using the start-
ing distribution and, after the burn-in period, selecting the Nlr subsequent
points to compute the sample average (4.21). The subsample method also
uses only one sample path, but the Nss draws used in the sample average
(4.21) are spaced out by S steps of the chain. Finally, the multi-start scheme
uses Nms different sample paths, initializing each one independently from
the starting distribution f0 and picking the last draw in each sample path
after the burn-in period to be used in (4.21).

There is another issue that must be addressed. All schemes require that
the initial points are drawn from the stationary distribution f . We therefore
need to compute the so called “burn-in” period B, that is, the number
of iterations required to reach the stationary distribution f with a desired
precision, beginning at the starting distribution f0.

Theorem 5 Let f0 be a M -warm start with respect to f , and let ḡ :=
supλ∈K |g(λ)|. Using the notation introduced in this section, to obtain

MSE(µ̂g) < ε

it is sufficient to use the following lengths of the burn-in sample, B, and
post-burn in samples, Nlr, Nss,Mms:

B =
(

2
φ2

)
ln

(
6
√

Mḡ2

ε

)

and

Nlr =
γ0

ε

6
φ2

, Nss =
3γ0

ε
(with S = (2/φ2) ln (6γ0/ε)), Nms =

2γ0

3ε
.

The overall complexities of lr, ss, and ms methods are thus B+Nlr, B+SNss,
and B ×Nms.

Proof. See Appendix A.
For convenience Table 1 tabulates the bounds for the three different

schemes. Note that the dependence on M and ḡ is only via log terms. Al-
though the optimal choice of the method depends on the particular values of
the constants, when ε ↘ 0, the long-run algorithm has the smallest (best)
bound, while the the multi-start algorithm has the largest (worst) bound
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Table 1
Burn-in and Post Burn-in Complexities

Method Quantities Complexity

Long Run B + Nlr
2

φ2

(
ln

(
6
√

Mḡ2

ε

))
+ 2

φ2

(
3γ0
ε

)

Subsample B + Nss · S 2
φ2

(
ln

(
6
√

Mḡ2

ε

))
+ 2

φ2

(
3γ0
ε ln

(
6γ0
ε

))

Multi-start B ×Nms
2

φ2 ln
((

6
√

Mḡ2

ε

))
× 2γ0

3ε

Table 2
Burn-in and Post Burn-in Complexities under the CLT.

Method Burn-in Complexity Post-burn-in Complexity

Long Run Op(d3 ln d · ln ε−1) + Op(d2 · ε−1)
Subsample Op(d3 ln d · ln ε−1) + Op(d2 · ε−1 · ln ε−1)
Multi-start Op(d3 ln d · ln ε−1) × Op(ε−1)

on the number of iterations. Table 2 presents complexities implied by the
CLT conditions, namely ‖K‖ = O(

√
d), ε1 → 0, and ε2‖K‖2 → 0. The table

assumes γ0 and ḡ are constant, though it is straightforward to tabulate the
results for the case where γ0 and ḡ grow at polynomial speed with d. Finally,
note that the bounds apply under a slightly weaker condition than the CLT
requires, namely that ε1 = Op(1) and ε2‖K‖2 = Op(1).

5. Application to Exponential and Curved-Exponential Fami-
lies. In this section we verify that our conditions and analysis apply to a
variety of statistical problems. We begin the discussion with the canonical
log-concave cases within the exponential family. Then we drop the concav-
ity and smoothness assumptions to illustrate the full applicability of the
approach developed in this paper.

5.1. Concave Cases. Exponential families play a very important role
in statistical estimation, cf. Lehmann and Casella [29], especially in high-
dimensional contexts, cf. Portnoy [37], Ghosal [18], and Stone et al. [39].
For example, the high-dimensional situations arise in modern data sets in
technometric and econometric applications. Moreover, exponential familes
have excellent approximation properties and are useful for approximation of
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densities that are not necessarily of the exponential form, cf. Stone et al.
[39].

Our discussion is based on the asymptotic analysis of Ghosal [18]. In order
to simplify exposition, we invoke the more canonical assumptions similar to
those given in Portnoy [37].

E1. Let x1, . . . , xn be iid observations from a d-dimensional canonical
exponential family with density

f(x; θ) = exp
(
x′θ − ψn(θ)

)
,

where θ ∈ Θ is an open subset of IRd, and d → ∞ as n → ∞. Fix a
sequence of parameter points θ0 ∈ Θ. Set µ = ψ′(θ0) and F = ψ′′(θ0),
the mean and covariance of the observations, respectively. Following
Portnoy [37], we implicitly re-parameterize the problem, so that the
Fisher information matrix F = I.

For a given prior π on Θ, the posterior density of θ over Θ conditioned
on the data takes the form

πn(θ) ∝ π(θ) ·
n∏

i=1

f(xi; θ) = π(θ) · exp
(
nx̄′θ − nψ(θ)

)
.

The local parameter space is
√

n(Θ− θ0). It will be convenient to associate
every point θ in the parameter space Θ with an element of Λ, a translation
of the local parameter space,

λ =
√

n(θ − θ0)− s,

where s =
√

n(x̄− µ) is a first order approximation to the normalized max-
imum likelihood/extremum estimate. By design, we have that E[s] = 0
and E [ss′] = Id. Moreover, by Chebyshev’s inequality, the norm of s can
be bounded in probability, ‖s‖ = Op(

√
d). Finally, the posterior density

of λ over Λ =
√

n(Θ − θ0) − s is given by f(λ) = `(λ)∫
Λ

`(λ)dλ
, where, for

x̄ =
∑n

i=1 xi/n,

`(λ) = exp
(

x̄′(
√

n(λ + s)) + n

(
ψ

(
θ0 +

λ + s√
n

)
− ψ(θ0)

))
·π

(
θ0 +

λ + s√
n

)
.

We impose the following regularity conditions, following Ghosal [18] and
Portnoy [37]:
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E2. Consider the following quantities associated with higher moments
in a neighborhood of the true parameter θ0:

B1n(c) := sup
θ,a
{Eθ|a′(xi − µ)|3 : a ∈ IRd, ‖a‖ = 1, ‖θ − θ0‖2 ≤ cd/n},

B2n(c) := sup
θ,a
{Eθ|a′(xi − µ)|4 : a ∈ IRd, ‖a‖ = 1, ‖θ − θ0‖2 ≤ cd/n}.

For any c > 0 and all n there are p > 0 and c0 > 0 such that

B1n(c) < c0 + cp and B2n(c) < c0 + cp.

E3. The prior density π is proper and satisfies a positivity requirement
at the true parameter

sup
θ∈Θ

ln [π(θ)/π(θ0)] = O(d)

where θ0 is the true parameter. Moreover, the prior π also satisfies the
following local Lipschitz condition

| ln π(θ)− ln π(θ0)| ≤ V (c)
√

d‖θ − θ0‖

for all θ such that ‖θ− θ0‖2 ≤ cd/n, and some V (c) such that V (c) <
c0 + cp, the latter holding for all c > 0.

E4 The following condition on the growth rate of the dimension of the
parameter space is assumed to hold:

d3/n → 0.

Comment 5.1 Condition E2 strengthens an analogous assumption of Ghosal
[18]. Both assumption are implied by the analogous assumption made by
Portnoy [37]. Condition E3 is similar to the assumption on the prior in
Ghosal [18]. For further discussion of this assumption, see [3]. Condition
E4 states that the parameter dimension should not grow too quickly relative
to the sample size.

Theorem 6 Conditions E1-E4 imply conditions C1-C3.

Proof. See Appendix A.
Combining Theorems 1 and 6, we have the asymptotic normality of the

posterior,
∫

Λ
|f(λ)− φ(λ)|dλ =

∫

K
|f(λ)− φ(λ)|dλ + op(1) = op(1).
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Furthermore, we can apply Theorem 3 to the posterior density f to bound
the convergence time (number of steps) of the Metropolis walk needed to
obtain a draw from f (with a fixed level of accuracy): The convergence time
is at most

Op(d2)

after the burn-in period; together with the burn-in, the convergence time is

Op(d3 ln d).

Finally, the integration bounds stated in the previous section also apply to
the posterior f .

5.2. Non-Concave and Discontinuous Cases. Next we consider the case
of a d-dimensional curved exponential family. Being a generalization of the
canonical exponential family, its analysis has many similarities with the pre-
vious example. Nonetheless, it is general enough to allow for non-concavities
and even various kinds of non-smoothness in the log-likelihood function.

NE1. Let x1, . . . , xn be iid observations from a d-dimensional curved
exponential family with density

f(x; θ) = exp
(
x′θ(η)− ψn(θ(η))

)
,

where θ ∈ Θ, an open subset of IRd, and d →∞ as n →∞.
NE2. The parameter of interest is η, whose true value η0 lies in the
interior of a convex compact set Ψ ⊂ IRd1 . The true value of θ induced
by η0 is given by θ0 = θ(η0). The mapping η 7→ θ(η) takes values
from IRd1 to IRd where c · d ≤ d1 ≤ d, for some c > 0. Moreover,
assume that η0 is the unique solution to the system θ(η) = θ0 and
that ‖θ(η)− η(θ0)‖ ≥ ε0‖η − η0‖ for some ε0 > 0 and all η ∈ Ψ.

Thus, the parameter θ corresponds to a high-dimensional linear parametriza-
tion of the log-density, and η describes the lower-dimensional parametriza-
tion of the density of interest. There are many classical examples of curved
exponential families; see for example Efron [12], Lehmann and Casella [29],
and Bandorff-Nielsen [2]. An example of the condition that puts a curved
structure onto an exponential family is a moment restriction of the type:

∫
m(x, α)f(x, θ)dx = 0.

This condition restricts θ to lie on a curve that can be parameterized as
{θ(η), η ∈ Ψ}, where component η = (α, β) contains α as well as other
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Fig 2. This figure illustrates the mapping θ(·). The (discontinuous) solid line is the map-
ping while the dash line represents the linear map induced by G. The dash-dot line repre-
sents the deviation band controlled by r1n and r2n.

parameters β. In econometric applications, often moment restrictions rep-
resent Euler equations that result from the data x being an outcome of
an optimization by rational decision-makers; see e.g. Hansen and Singleton
[19], Chamberlain [7], Imbens [21], and Donald, Imbens and Newey [10].
Thus, the curved exponential framework is a fundamental complement of
the exponential framework, at least in certain fields of data analysis.

We require the following additional regularity conditions on the mapping
θ(·).

NE3. For every κ, and uniformly in γ ∈ B(0, κ
√

d), there exists a
linear operator G : IRd1 → IRd such that G′G has eigenvalues bounded
from above and away from zero, and for every n

√
n

(
θ(η0 + γ/

√
n)− θ(η0)

)
= r1n + (Id + R2n)Gγ,

where ‖r1n‖ ≤ δ1n and ‖R2n‖ ≤ δ2n. Moreover, those coefficients are
such that

δ1n

√
d → 0 and δ2nd → 0.

Thus the mapping η 7→ θ(η) is allowed to be nonlinear and discontinuous.
For example, the additional condition of δ1n = 0 implies the continuity of the
mapping in a neighborhood of η0. More generally, condition NE3 does impose
that the map admits an approximate linearization in the neighborhood of
η0 whose quality is controlled by the errors δ1n and δ2n. An example of a
kind of map allowed in this framework is given in the figure.
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Again, given a prior π on Θ, the posterior of η given the data is denoted
by

πn(η) ∝ π(θ(η)) ·
n∏

i=1

f(xi; η) = π(θ(η)) · exp
(
nx̄′θ(η)− nψ(θ(η))

)
.

In this framework, we also define the local parameters to describe contiguous
deviations from the true parameter as

γ =
√

n(η − η0)− s, s = (G′G)−1G′√n(x̄− µ),

where s is a first order approximation to the normalized maximum like-
lihood/extremum estimate. Again, similar bounds hold for s: E[s] = 0,
E[ss′] = (G′G)−1, and ‖s‖ = Op(

√
d). The posterior density of γ over Γ,

where Γ =
√

n(Ψ− η0)− s, is f(γ) = `(γ)∫
Γ

`(γ)dγ
, where

`(γ) = exp
(
nx̄′(θ(η0 + (γ + s)/

√
n)− θ(η0))

)

× exp
(
nψ(θ(η0 + (γ + s)/

√
n))− nψ(θ(η0))

)

× π(θ(η0 + (γ + s)/
√

n)).
(5.22)

The condition on the prior is the following:

NE4 The prior π(η) ∝ π(θ(η)), where π(θ) satisfies condition E3.

Theorem 7 Conditions E2-E4 and NE1-NE4 imply conditions C1-C3.

Proof. See Appendix A.
As before, Theorems 1 and 7 prove the asymptotic normality of the pos-

terior,
∫

Λ
|f(γ)− φ(γ)|dγ =

∫

K
|f(γ)− φ(γ)|dγ + op(1) = op(1),

where
φ(γ) =

1

(2π)d/2 det ((G′G)−1)1/2
exp

(
−1

2
γ′(G′G)γ

)
.

Theorem 3 implies further that the main results of the paper on the polyno-
mial time sampling and integration apply to this curved exponential family.

6. Conclusion. This paper studies the computational complexity of
Bayesian and quasi-Bayesian estimation in large samples carried out using
a basic Metropolis random walk. Our framework permits the parameter
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dimension of the problem to grow to infinity and allows the underlying log-
likelihood or extremum criterion function to be discontinuous and/or non-
concave. We establish polynomial complexity by exploiting a central limit
theorem framework which provides structural restrictions for the problem,
i.e., the posterior or quasi-posterior density approaches a normal density in
large samples.

The analysis of this paper focused on a basic random walk. Although it
is widely used for its simplicity, it is not the most sophisticated algorithm
available. Thus, in principle further improvements could be obtained by
considering different kinds of random walks (or variance reduction schemes).
As mentioned before, essentially only one lemma of our analysis relies on
the particular choice of the random walk. This suggests that most of the
analysis is applicable to a variety of different implementations.
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APPENDIX A: PROOFS OF OTHER RESULTS

Proof of Theorem 1. From C1 it follows that
∫

Λ
|f(λ)− φ(λ)|dλ ≤

∫

K
|f(λ)− φ(λ)|dλ +

∫

Kc
(f(λ) + φ(λ)) dλ

=
∫

K
|f(λ)− φ(λ)|dλ + op(1)

where the last equality follows from Assumption C1.6

Now, denote Cn =
(2π)d/2 det (J−1)1/2

∫
K `(ω)dω

and write

∫

K

∣∣∣∣
f(λ)
φ(λ)

− 1
∣∣∣∣ φ(λ)dλ =

∫

K

∣∣∣∣Cn · exp
(

ln `(λ)−
(
−1

2
λ′Jλ

))
− 1

∣∣∣∣ φ(λ)dλ

6For the case of φ, it follows from the standard concentration of measure arguments
for Gaussian densities, see Lovász and Vempala [33].
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Combining the expansion in C2 with conditions imposed in C3,
∫

Λ

∣∣∣∣
f(λ)
φ(λ)

− 1
∣∣∣∣ φ(λ)dλ ≤ ∫

K |Cn · exp (ε1 + ε2λ
′Jλ)− 1|φ(λ)dλ

+
∫
K |Cn · exp (−ε1 − ε2λ

′Jλ)− 1|φ(λ)dλ

≤ 2
∫

K

∣∣∣Cn · eop(1) − 1
∣∣∣ φ(λ)dλ

≤ 2|Cneop(1) − 1|
The proof then follows by showing that Cn → 1. We have that R = ‖K‖ =
O(
√

d), and by assumption C1

1
Cn

≥

∫

‖λ‖≤R
`(λ)dλ

(1 + o(1))
∫

‖λ‖≤R
g(λ)dλ

≥

∫

‖λ‖≤R
e−

1
2
λ′Jλe−ε1− ε2

2
(λ′Jλ)dλ

(1 + o(1))
∫

‖λ‖≤R
e−

1
2
λ′Jλdλ

=
e−2ε1

(1 + o(1))

√
det(J)

det(J + ε2J)

∫

‖λ‖≤R

e−
1
2
λ′(J+ε2J)λ

(2π)d/2 det((J + ε2J)−1)1/2
dλ

∫

‖λ‖≤R

e−
1
2
λ′Jλ

(2π)d/2 det(J−1)1/2
dλ

Since ε2 < 1/2, we can define W ∼ N(0, (1 + ε2)−1J−1) and V ∼ N(0, J−1)
and rewrite our bounds as

1
1 + o(1)

∫
‖λ‖≤R `(λ)dλ

∫
‖λ‖≤R g(λ)dλ

≥ e−2ε1

(1 + o(1))

(
1

1 + ε2

)d/2 P (‖W‖ ≤ R)
P (‖V ‖ ≤ R)

≥ e−2ε1

(1 + o(1))

(
1

1 + ε2

)d/2

where the last inequality follows from P (‖W‖ ≤ R) ≥ P (‖√1 + ε2W‖ ≤
R) = P (‖V ‖ ≤ R). Likewise,

1
Cn

≤
∫
‖λ‖≤R `(λ)dλ

∫
‖λ‖≤R g(λ)dλ

≤ e2ε1

(
1

1− ε2

)d/2

Therefore Cn → 1 since ε1 → 0, ε2 · d → 0.
Proof of Lemma 2. The result follows immediately from equations (2.7)-
(2.8).

Proof of Lemma 3. Let M := β 2te−t2/4√
π

. We will prove the lemma by
contradiction. Assume that there exists a partition of K = S1 ∪ S2 ∪ S3,
with d(S1, S2) ≥ t such that

∫
(M1Si(x)− 1S3(x)) f(x)dx > 0, for i = 1, 2.
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We will use the Localization Lemma of Kannan, Lovász, and Simonovits [25]
in order to reduce a high-dimensional integral to a low-dimensional integral.

Lemma 6 (Localization Lemma) Let g and h be two lower semi-continuous
Lebesgue integrable functions on IRd such that

∫

IRd
g(x)dx > 0 and

∫

IRd
h(x)dx > 0.

Then there exist two points a, b ∈ IRd, and a linear function γ̃ : [0, 1] → IR+

such that
∫ 1

0
γ̃d−1(t)g((1− t)a + tb)dt > 0 and

∫ 1

0
γ̃d−1(t)h((1− t)a + tb)dt > 0,

where ([a, b], γ̃) is said to form a needle.

Proof. See Kannan, Lovász, and Simonovits [25].
By the Localization Lemma, there exists a needle (a, b, γ̃) such that

∫ 1

0
γ̃d−1(u)f((1−u)a+ub) (M1Si((1− u)a + ub)− 1S3((1− u)a + ub)) du > 0,

for i = 1, 2. Equivalently, using γ(u) = γ̃(u/‖b−a‖) and v := (b−a)/‖b−a‖
where ‖b− a‖ ≥ t, we have

∫ ‖b−a‖

0
γd−1(u)f(a + uv) (M1Si(a + uv)− 1S3(a + uv)) du > 0,

for i = 1, 2. In turn, this last expression can be rewritten as, for i = 1, 2,
(A.23)

M

∫ ‖b−a‖

0
γd−1(u)f(a+uv)1Si(a+uv)du >

∫
γd−1(u)1S3(a+uv)f(a+uv)du.

In order for the left hand side of (A.23) be positive for i = 1 and i = 2,
the line segment [a, b] must contain points in S1 and S2. Since d(S1, S2) ≥ t,
we have that S3 ∩ [a, b] contains an interval whose length is at least t. We
will prove that for every w ∈ IR

(A.24)

∫ w+t

w

γd−1(u)f(a + uv)du ≥ M min
{∫ w

0

γd−1(u)f(a + uv)du,

∫ ‖b−a‖

w+t

γd−1(u)f(a + uv)du

}

which contradicts relation (A.23) and proves the lemma.
First, note that f(a+ uv) = e−‖a+uv‖2m(a+uv) = e−u2+r1u+r0m(a+ uv)

where r1 := 2a′v and r0 := −‖a‖2.
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Next, recall that m(a+uv)γd−1(u) is still a unidimensional log-β-concave
function on u. By Lemma 7 presented in Appendix B, there exists a unidi-
mensional logconcave function m̂ such that βm̂(u) ≤ m(a + uv)γd−1(u) ≤
m̂(u) for every u. Moreover, there exists numbers s0 and s1 such that
m̂(w) = s0e

s1w and m̂(w + t) = s0e
s1(w+t). Due to the log-concavity of

m̂, this implies that

m̂(u) ≥ s0e
s1u for u ∈ (w, w + t) and m̂(u) ≤ s0e

s1u otherwise.

Thus, we can replace m(a + uv)γd−1(u) by s0e
s1u on the right hand side

of (A.24) and replace m(a + uv)γd−1(u) by βs0e
s1u on the left hand side of

(A.24). After defining r̂1 = r1 + s1 and r̂0 := r0 + ln s0, we have

β

∫ w+t

w

e−u2+r̂1u+r̂0du ≥ M min

{∫ w

0

e−u2+r̂1u+r̂0du,

∫ ‖b−a‖

w+t

e−u2+r̂1u+r̂0du

}

which is equivalent to

(A.25)
β

∫ w+t

w

e−(u− r̂1
2 )2+r̂0+

r̂2
1
4 du ≥ M min

{∫ w

0

e−(u− r̂1
2 )2+r̂0+

r̂2
1
4 du,

∫ ‖b−a‖

w+t

e−(u− r̂1
2 )2+r̂0+

r̂2
1
4 du

}
.

Now, cancel the term er̂0+r̂2
1/4 on both sides and; since we want the inequal-

ity (A.25) holding for any w, (A.25) is implied by

(A.26)
∫ w+t

w
e−u2

du ≥ 2te−t2/4

√
π

min
{∫ w

−∞
e−u2

du,

∫ ∞

w+t
e−u2

du

}

holding for any w. This inequality is Lemma 2.2 in Kannan and Li [24]. For
brevity, we will not reproduce the proof.
Proof of Corollary 2. Consider the change of variables x̃ = J1/2x√

2
. Then, in

x̃ coordinates, f(x̃) = ex̃′x̃m(
√

2J−1/2x̃) satisfies the assumption of Lemma
3 and d(S1, S2) ≥ t

√
λmin/2. The result follows by applying Lemma 3 with

x̃ coordinates.
Proof of Lemma 5. Define K := B(0, R), so that R is the radius of K; also
let r := 4

√
dσ (where σ2 ≤ 1

16dL2 ), and let q(x|u) denote the normal density
function centered at u with covariance matrix σ2I. We use the following
notation: Bu = B(u, r), Bv = B(v, r), and Au,v = Bu∩Bv∩K. By definition
of r, we have that

∫
Bu

q(x|u)dx =
∫
Bv

q(x|v)dx > 1− 1
e3 .

Define the direction w = (v − u)/‖v − u‖. Let H1 = {x ∈ Bu ∩ Bv :
w′(x − u) ≥ ‖v − u‖/2}, H2 = {x ∈ Bu ∩ Bv : w′(x − u) ≤ ‖v − u‖/2}.
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Consider the one-step distributions from u and v. We have that

‖Pu − Pv‖TV ≤ 1−
∫

Au,v

min{dPu, dPv}

= 1−
∫

Au,v

min
{

q(x|u) min
{

f(x)
f(u)

, 1
}

, q(x|v)min
{

f(x)
f(v)

, 1
}}

dx

≤ 1− βe−Lr

∫

Au,v

min {q(x|u), q(x|v)} dx

≤ 1− βe−Lr

(∫

H1∩K

q(x|u)dx +
∫

H2∩K

q(x|v)dx

)

where ‖u − v‖ < σ/8. Next we will bound from below the last sum of
integrals for an arbitrary u ∈ K.

We first bound the integrals over the possibly larger sets, respectively H1

and H2. Let h denote the density function of a univariate random variable
distributed as N(0, σ2). It is easy to see that h(t) =

∫
w′(x−u)=t q(x|u)dx, i.e. h

is the marginal density of q(.|u) along the direction w (up to a translation).
Let H3 = {x : −‖u − v‖/2 < w′(x − u) < ‖v − u‖/2}. Note that Bu ⊂
H1 ∪ (H2 − ‖u− v‖w) ∪H3 where the union is disjoint. Armed with these
observations, we have

∫

H1

q(x|u)dx +
∫

H2

q(x|v)dx =
∫

H1

q(x|u)dx +
∫

H2−‖u−v‖w
q(x|u)dx

≥
∫

Bu

q(x|u)dx−
∫

H3

q(x|u)dx

=
∫

Bu

q(x|u)dx−
∫ ‖u−v‖/2

−‖u−v‖/2

h(t)dt

≥ 1− 1
e3
−

∫ ‖u−v‖/2

−‖u−v‖/2

e−t2/2σ2

√
2πσ

dt

≥ 1− 1
e3
− ‖u− v‖ 1√

2πσ

≥ 1− 1
e3
− 1

8
√

2π
≥ 9

10
,(A.27)

where we used that ‖u− v‖ < σ/8 by the hypothesis of the lemma.
In order to take the support K into account, we can assume that u, v ∈

∂K, i.e. ‖u‖ = ‖v‖ = R (otherwise the integral will be larger). Let z = (v +
u)/2 and define the half space Hz = {x : z′x ≤ z′z} whose boundary passes
through u and v (Using ‖u‖ = ‖v‖ = R it follows that z′v = z′u = z′z/2).

By the symmetry of the normal density, we have
∫

H1∩Hz

q(x|u)dx =
1
2

∫

H1

q(x|u)dx.
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Although H1∩Hz does not lie in K in general, simple arithmetic shows that
H1 ∩

(
Hz − r2z

R‖z‖
)
⊆ K.7

Using that
∫
Hz\(Hz− r2z

R‖z‖ )
q(x|u) =

∫ r2/R
0 h(t)dt, we have

∫

H1∩K

q(x|u)dx ≥
∫

H1∩
(
Hz− r2z

R‖z‖
) q(x|u)dx ≥

∫

H1∩Hz

q(x|u)dx−
∫ r2/R

0

h(t)dt

≥ 1
2

∫

H1

q(x|u)dx−
∫ r2/R

0

e−t2/2σ2

√
2πσ

dt

≥ 1
2

∫

H1

q(x|u)dx− 4
√

dσ
1

30
√

d

1√
2πσ

,

where we used that r
R < 1

30
√

d
since r = 4

√
dσ and σ

R < 1
120d .

By symmetry, the same inequality holds when u and H1 are replaced by
v and H2 respectively. Adding these inequalities and using (A.27), we have

(∫

H1∩K
q(x|u)dx +

∫

H2∩K
q(x|v)dx

)
≥ 9

20
− 4

15
√

2π
≥ 1/3.

Thus, we have

‖Pu − Pv‖ < 1− β

3
e−Lr

and the result follows since Lr ≤ 1.
Proof of Lemma 1. Starting from an arbitrary point in K, assume that
the random walk makes a proper move. If this is the case note that

max
A:Q(A)>0,A∈A

P (A)
Q(A)

≤ max
x∈K

e−
1

2σ2 ‖x‖2

(2π)d/2σd
(2π)d/2 det(J−1)e

1
2 x′Jxe2ε1+2ε2x′Jx

≤ O
(
(4
√

dλmax‖K‖/λmin)deλmax‖K‖2+2ε1+2ε2‖K‖2λmax

)
.

The result follows by invoking the CLT restrictions.
Next we show that the probability p of making a proper move is at least

a positive constant. We will use the notation defined in the proof of Lemma
5. Let u be an arbitrary point in K. We have that

p =
∫
K min

{
f(x)
f(u) , 1

}
q(x|u)dx ≥ βe−Lr

∫
Bu∩K q(x|u)dx

≥ βe−Lr
∫
Bu∩Hu

q(x|u)dx− ∫ r2/R
0 h(t)dt ≥ 1

3 .

7Indeed, take y ∈ H1 ∩
(
Hz − r2

R
z
‖z‖

)
. We can write y = z

‖z‖

(
y′z
‖z‖

)
+ s, where ‖s‖ ≤ r

(since

∥∥∥y − z
‖z‖

(
y′z
‖z‖

)∥∥∥ ≤ ‖y − z‖ = ‖y − u+v
2
‖ ≤ 1

2
‖y − u‖+ 1

2
‖y − v‖ ≤ r) and s is also

orthogonal to z. Since y ∈
(
Hz − r2

R
z
‖z‖

)
, we have y′z

‖z‖ ≤ z′z
‖z‖ − r2

R
= ‖z‖ − r2

R
≤ R− r2

R
.

Therefore, ‖y‖ =

√(
y′z
‖z‖

)2

+ ‖s‖2 ≤
√

(R− r2

R
)2 + r2 =

√
R2 − 2R r2

R
+ r4

R2 + r2 ≤ R.
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Proof of Theorem 5. Consider the sample mean defined by

µ̂B,N =
1
N

N∑

i=1

g(λi,B)

with the underlying sequence (λ1,B, λ2,B, ..., λN,B) produced by one of the
schemes (lr, ss, ms) as follows:

• for lr, λi,B = λi+B, where λi+B is produced by iterating the chain
B + i times starting with an initial draw from f0. Define the density
after B steps of the chain starting with f0 by TBf0. Thus λB has the
distribution TBf0, and λi+B has the distribution T i+Bf0.

• for ss, λi,B = λiS+B, where S is the number of draws that are “skipped”.
• for ms, λi,B are i.i.d. draws from TBf0, i.e. each i-th draw is obtained

by sampling an initial point from f0 and iterating the chain B times.

We have that

MSE(µ̂B,N ) = ET Bf0

[
MSE(µ̂B,N |λB = λ)

]

= Ef

[
MSE(µ̂B,N |λB = λ)

TBf0(λ)
f(λ)

]

= Ef

[
MSE(µ̂B,N |λB = λ)

]
+

+Ef

[
MSE(µ̂B,N |λB = λ)

(
T Bf0(λ)

f(λ) − 1
)]

≤ Ef

[
MSE(µ̂B,N |λB = λ)

]
+ ḡ2Ef

[∣∣∣∣
TBf0(λ)

f(λ)
− 1

∣∣∣∣
]

= (σ2
g,N/N) + 2ḡ2‖TBf0 − f‖TV ,

where σ2
g,N is the variance of the sample average under the assumption

that λB is distributed exactly according to f . (We also used the fact that
‖TBf0 − f‖TV = 1

2‖TBf0 − f‖L1 .)
The bound on σ2

g,N will depend on the particular scheme, as discussed
below.

We require that the second term is smaller than ε/3, which is equivalent to
imposing that ‖TBf0−f‖TV < ε

6ḡ2 . Using Theorem 2, since f0 is a M -warm
start for f ,

√
M

(
1− φ2

2

)B
<

√
Me−B φ2

2 <
ε

6ḡ2

−B φ2

2 < ln

(
ε

6
√

Mḡ2

)

B ≥
(

2
φ2

)
ln

(
6
√

Mḡ2

ε

)
.
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Next we bound σ2
g,N . Specifically, we determine the number of post-burn

iterations Nlr, Nss, or Nms needed to set the overall mean square error less
than ε.

To bound Nlr, note that σ2
g,N ≤ σ2

g ≤ γ0
4
φ2 where the last inequality

follows from Corollary 2. Thus, Nlr = γ0

ε
6
φ2 and B set above suffice to

obtain MSE(µ̂B,N ) ≤ ε.
To bound Nss, we first must choose a spacing S to ensure that the auto-

covariances γk are sufficiently small. We start by bounding σ2
g,N ,

σ2
g,N ≤ γ0 + 2Nγ1 ≤ γ0 + 2Nγ0

(
1− φ2

2

)S

where we used Corollary 2 and that λi,B and λi+1,B are spaced by S steps
of the chain. By choosing the spacing S as

(
1− φ2

2

)S

≤ e−S φ2

2 ≤ ε

6γ0
, i.e. S ≥ 2

φ2
ln

(
6γ0

ε

)
,

and using Nss =
3γ0

ε
, the mean square error for the ss method can be

bounded as

MSE(µ̂B,N ) ≤ 1
Nss

(γ0 + 2Nssγ1) + 2ḡ2‖TBf0 − f‖TV

≤ ε

3γ0

(
γ0 + 2

3γ0

ε
γ0

ε

6γ0

)
+ ḡ2 ε

3ḡ2

≤ ε

3γ0
(γ0 + γ0) +

ε

3
≤ ε

To bound Nms, we observed that γk = 0 for all k 6= 0 implying that
MSE(µ̂B,N ) ≤ γ0

Nms
+ ε/3 ≤ ε provided that Nms ≥ 2γ0/(3ε).

Proof of Theorem 6. Given

K = B(0, ‖K‖) where ‖K‖2 = cd,

our condition C1 is satisfied by the argument given in proof of Ghosal’s
Lemma 4. Further, our condition C2 is satisfied by the argument given in
the proof of Ghosal’s Lemma 1 with ε1 = 0 and

ε2 =
1
3




√
cd

n
B1n(0) +

cd

n
B2n(c)


 ,

and our condition C3 is satisfied since by E3 and E4

ε2‖K‖2 → 0.
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Comment A.1 Ghosal [18] proves his results for the support set K ′ =
B(0, C

√
d log d). His arguments actually go through for the support set K =

B(0, C
√

d) due to the concentration of normal measure under d →∞ asymp-
totics. For details, see [3].

Proof of Theorem 7. Take K = B(0, ‖K‖), where ‖K‖2 = Cd1 for some
C sufficiently large independent of d (see [3] for details). Then condition C1
is satisfied by the argument given in the proof of Ghosal’s Lemma 4 and
NE3. Further, condition C2 is satisfied by the argument given in the proof
of Ghosal’s Lemma 1 and NE3 with

ε1 = Op

(
δ2
1n + (1 + δ2n)δ1n

√
d
)

,

ε2 = Op


δ2n + δ2

2n +




√
cd

n
B1n(0) +

Cd

n
B2n(C)





 ,

and condition C3 is satisfied since by E3, E4, NE3, and NE4,

ε2‖K‖2 → 0.

Comment A.2 For further details and discussion, see [3].

APPENDIX B: BOUNDING LOG-β-CONCAVE FUNCTIONS

Lemma 7 Let f : IR → IR be a unidimensional log-β-concave function.
Then there exists a logconcave function g : IR → IR such that

βg(x) ≤ f(x) ≤ g(x) for every x ∈ IR.

Proof. Consider h(x) = ln f(x) a (lnβ)-concave function. Now, let m be
the smallest concave function greater than h(x) for every x, that is,

m(x) = sup

{
k∑

i=1

λih(yi) : k ∈ N, λ ∈ IRk, λ ≥ 0,
k∑

i=1

λi = 1,
k∑

i=1

λiyi = x

}
.

Recall that the epigraph of a function w is defined as epiw = {(x, t) : t ≤
w(x)}. Using our definitions, we have that epim = conv(epih) (the convex
hull of epih), where both sets lie in IR2. In fact, the values of m are defined
only by points in the boundary of conv(epih). Consider (x,m(x)) ∈ epim,
since the epigraph is convex and this point is on the boundary, there exists
a supporting hyperplane H on (x, m(x)). Moreover, (x, m(x)) ∈ conv(epih∩
H). Since H is one dimensional, (x,m(x)) can be written as convex combi-
nation of at most 2 points of epih.
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Furthermore, by definition of log-β-concavity, we have that

ln 1/β ≥ sup
λ∈[0,1],y,z

λh(y) + (1− λ)h(z)− h (λy + (1− λ)z) .

Thus, h(x) ≤ m(x) ≤ h(x) + ln(1/β). Exponentiating gives f(x) ≤ g(x) ≤
1
β f(x), where g(x) = em(x) is a logconcave function.
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