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ABSTRACT
We present a parallel counting algorithm for estimating fre-
quencies of items from data streams where a stream is in-
gested and queried in parallel by partitioning data over mul-
tiple processing cores of a multi-core processor. We demon-
strate that current probabilistic counting algorithms are ill-
suited to be used as the sequential kernel in the parallel algo-
rithm due to space limitations, inaccuracies in approximat-
ing counts of low frequency items, and inability to identify
the absent items in a stream. To address these concerns, we
have devised a new sequential counting algorithm, called the
Frequency-aware Counting Algorithm (FCM). FCM is re-
lated to the Cormode-Muthukrishnan Count-Min algorithm
and incorporates novel capabilities for improving accuracy
in estimating low-frequency items by dynamically capturing
frequency changes of items in the stream, and using a vari-
able number of hash functions per item as determined by an
item’s current frequency. FCM also uses an auxiliary space-
efficient data structure to reduce the errors due to absent
items.

We have implemented the parallel counting algorithm on
the multi-core Cell processor using the FCM algorithm as
the sequential kernel. We experimentally and analytically
demonstrate that with similar space consumption, FCM com-
putes better frequency estimates of both the low- and high-
frequency items than the Count-Min algorithm by reducing
collisions with high-frequency items. FCM also significantly
reduces the errors in identifying absent items. In the paral-
lel scenario, as the number of processing cores is increased,
using a hash-based data partitioning approach, our parallel
algorithm is able to scale the overall performance linearly
as well as improve the estimate accuracy.

1. INTRODUCTION
Recent technological advances have led to a proliferation

of applications which can generate and process data streams.

∗Work done at IBM T. J. Watson Research Center.

Data streams are sequences of data items that can be gener-
ated continuously at dynamically varying rates and need to
be processed at equivalent rates as soon as they are received
by the processing elements. Such data streaming applica-
tions often process large quantities of data that can poten-
tially grow without limit at a rapid rate, putting enormous
burden on the computational and memory resources of the
underlying system [25].

One of the key data streaming applications involves deter-
mining frequency statistics of the stream items in real-time.
Examples of such statistics include frequency moments, de-
termining heavy hitters, and order statistics. In this pa-
per, we explore the problem of frequency querying of data
streams. In particular, one can query a stream to calcu-
late the number of occurrences or the frequency of items in
the section of the stream observed so far. Formally, this
stream frequency counting problem can be defined as
follows: Let stream S = (s1, . . . , sN ) be a sequence of items,
where each si is a member of a domain D = (1, . . . , d).
Estimate the frequency of an unique item sj in the sub-
sequence S(t) = (s1, . . . , st), where t ≤ N (This type of
query is also referred to as the point query). Clearly, the val-
ues of N and d can be very large and the item frequency can
vary over time. For example, in web click streams or phone
call streams, the number of possible unique items (i.e., web
pages or phone numbers) could easily range in the order of
hundreds of millions or even billions. In many cases, the
processing of data collected in large sensor networks is per-
formed on the sensor nodes which have limited memory and
power consumption [26]. Obviously, to satisfy the memory
and real-time execution constraints, the input stream data
can not be stored in its entirety. Therefore, the counting
applications employ algorithms that strive to maximize the
computational performance while minimizing the memory
usage.

A well-known memory-efficient technique for counting items
from data streams uses probabilistic data structures [15,
12], e.g., sketches [2]. The sketch method is essentially a
random projection based approach which uses either linear
projections [2] or hash functions [4, 5] to condense the input
stream data into a summary. The results for a point query
can then be extracted from these condensed summaries.
While the sketch-based approach reduces the space com-
plexity of the counting process, additional modifications are
needed to improve their computational performance. A tra-
ditional approach for improving computational performance
involves partitioning the work across multiple processing en-
tities and executing them in parallel. In recent times, such



parallel approaches have become even more practical due
to availability of systems that use multi-core processors [8,
7, 18]. The multi-core processors support multiple, poten-
tially heterogeneous, on-chip processing cores connected via
high-bandwidth, low-latency interconnection fabric. Such
features enable the multi-core processors to provide very
high computational performance at relatively low power con-
sumption. These capabilities make the multi-core processors
potentially suitable platforms for streaming data processing.

In this paper, we describe a new parallel algorithm for
the stream counting problem using a probabilistic sketch
data structure. The parallel algorithm uses data partition-
ing to distribute stream ingestion and querying across multi-
ple processor cores. While designing the parallel algorithm,
we identify two key problems with the existing probabilistic
counting algorithms: (1) Under limited memory, the esti-
mates for infrequent (low-frequency) items are inaccurate,
and (2) It is not possible to detect if an item was absent
in the data stream analyzed so far. Hence, the estimates
for zero-frequency items (i.e., items absent from the input
stream) are also inaccurate. These problems gain impor-
tance in the parallel execution model as the data partition-
ing strategy can lead to an uneven distribution of items
across the processing cores. Therefore, items with even
modestly high frequencies can sometimes have low or zero-
frequencies on particular processors. To address these is-
sues, we propose a new sequential counting algorithm, called
the Frequency-aware Counting (FCM) algorithm. The FCM
algorithm is related to the Cormode-Muthukrishnan Count-
Min (CM) algorithm and incorporates a number of novel fea-
tures to address the estimation problems for low-frequency
and zero-frequency items in the parallel setting. Our par-
allel algorithm uses the FCM algorithm as the sequential
counting kernel.

We experimentally evaluate the parallel algorithm on a
modern heterogeneous multi-core processor: the 9-core Cell
processor. Although the Cell was initially designed as a
game processor, it is being increasingly used in blade servers
for developing commercial and scientific applications [19].
Cell’s high single-precision floating point performance (204
GFLOPS at 3.2 GHz) along with high memory (25.6 GB/s
peak) and I/O (76.8 GB/s peak) bandwidths make it ideal
for stream processing [22].

The main contributions of our work are the design and
analysis of new parallel and sequential stream counting al-
gorithms, and backing it by experimental performance eval-
uation on a commercial multi-core processor. Specifically,
this work makes the following key contributions:

1. Frequency-aware Counting Algorithm (FCM):
The FCM algorithm uses three novel ideas to address
the estimation issues with low- and high-frequency items.
First, it uses a space-conserving data structure to dy-

namically capture the relative frequency phase of items
from an incoming data stream. Second, the FCM uses
a variable number of hash functions for each item as
per its current frequency phase (i.e., “high” or “low”).
A high-frequency item uses fewer hash functions, whereas
a low-frequency item uses more hash functions to up-
date the sketch. Finally, the FCM algorithm uses
an additional sketch data structure called the Zero-
frequency table to reduce estimation errors due to ab-
sent items. We have analytically evaluated these fea-
tures and computed error bounds for the frequency-

aware counting algorithm.

2. Scalable Parallel Algorithm: Our parallel algo-
rithm partitions the work across multiple processing
cores of a multi-core processor. The algorithm uses
two different data partitioning strategies: block-based
and hash-based distribution. Each processing core exe-
cutes the FCM algorithm as the sequential kernel and
computes its local count. The local counts are then
aggregated to compute the final result.

3. Implementation on the Cell Processor: We have
implemented the parallel algorithm and the FCM al-
gorithm on the multi-core Cell processor. We have
optimized the code to exploit Cell’s architectural and
programming capabilities (e.g., data and work parti-
tioning, computational strip-mining, and short-vector
data parallelization). We have evaluated our imple-
mentation using Zipf and Normal datasets and demon-
strated that our FCM algorithm improves the estima-
tion quality over the CM algorithm for the entire fre-
quency range of the input data, in both sequential and
parallel scenarios. Our experiments illustrate that sim-
ply partitioning data across multiple processors does
not lead to an improvement in estimation quality as
the number of processors is increased. Our parallel
algorithm achieves linear performance scalability and
estimation improvement, using hash-based data parti-
tioning, along with the zero-frequency table.

This paper is organized as follows: Section 2 examines a
number of issues in parallelizing the sketch-based counting
algorithms and discusses our proposed parallel sketch-based
counting algorithm. In Section 3, we experimentally and
analytically compare three existing sketch-based counting
algorithms. Section 4 discusses the FCM, new frequency-
aware sketch-based counting algorithm. In Section 5, we
overview the Cell processor and present details of our im-
plementation on the Cell processor. Section 6 presents the
experimental evaluation results. We discuss related work in
Section 7. The conclusions are summarized in Section 8.

2. PARALLEL STREAM PROCESSING
Sketch-based probabilistic counting algorithms can be eval-

uated using three criteria: (1) Quality of results, (2) Space
utilization, and (3) Time to store and query the stream data-
sets. The key goals of parallelizing such algorithms are to
improve both the result quality, and times for stream inges-
tion and processing, while maintaining the space utilization.

For devising a parallel algorithm, we assume an abstract
parallel machine consisting of p processing units sharing the
main memory. In addition, each processing unit has private
local memory. The per-processor local memory is usually
substantially smaller than the shared main memory. These
processors can communicate either using shared data struc-
tures or via explicit messages. One of the processors can
act as the coordinator and manage tasks for the remaining
processors. This abstract model captures the architecture
of most current multi-core processors designed for stream
data processing (such as the Cell [8] and the Network pro-
cessors [7, 18]) and standard multi-threaded programming
models like the Pthreads. Thus, our algorithm can be imple-
mented on a wide variety of available software and hardware
platforms.



Stream Ingestion Phase

1. Partition the stream across multiple processing units

2. Each processing unit initiates and fills its local sketch

Query Processing Phase

1. Send the query to the participating processing units

2. Each processing unit computes local counts

3. A processing unit sums up the local counts to generate

the final result

Figure 1: Outline of the Parallel Stream Counting
Algorithm

As the item counting problem is commutative in nature, it
can be easily parallelized via partitioning items over partic-
ipating processors. Figure 1 presents an outline of the par-
allel counting algorithm. Conceptually, this algorithm has
two phases: In the stream ingestion phase, the coordinat-
ing processor distributes the incoming stream over multiple
processing units. Each processing unit initializes a private
sketch in its local memory and populates it using a tradi-
tional (sequential) counting algorithm over the part of the
stream assigned to it. In the querying phase, depending on
the type of the query (point or range query), the coordina-
tor sends one or more items to the participating processors.
Each processor, in turn, uses its private sketch to calculate
the local count. The local counts are added by the coor-
dinator and the resultant sum is returned as the approxi-
mate result of the query. The two phases can overlap, i.e.,
a stream can be queried as it is being processed.

The performance of the parallel algorithm depends on: (1)
Stream data partitioning strategies and (2) The sequential
algorithm. The data partitioning strategies divide the work
across multiple cores by distributing the stream data. The
data partitioning modifies statistical characteristics of the
input data stream. As a consequence, a frequent stream item
may appear as a low frequency item to some processors and
some processors may not even view the item (i.e., it will ap-
pear as an absent – zero-frequency – item). As we illustrate
in the following sections, such behavior leads to increased er-
rors in computing per-processor local counts, in particular,
when using limited memory. As the final result is computed
by adding local counts, the data partitioning strategies also
affect the extent of the error in the final result. The sequen-
tial counting kernel used by each processor determines the
quality of local results, per-processor space consumption,
and the stream ingestion time. The ideal sequential count-
ing kernel should compute accurate results while consuming
as little memory as possible.

There are two ways of partitioning data streams: block-
based and hash-based partitioning.

• Hash-based partitioning: This approach uses a value-
based partitioning strategy in which the coordinating
processor hashes the input stream values into p buck-
ets. The buckets are then distributed over different
processor groups (e.g., 8 processors can be partitioned
as 4 processor groups, each containing 2 processors,
or 8 processor groups, each with an individual proces-
sor). Each processor within a processor group reads
disjoint sections of a bucket and populates its local
sketch. During the querying phase, the coordinating
processor hashes the query item into a bucket. Only

those processors that are associated with this bucket
are queried and their estimates are aggregated as the
estimated count of the query item.

The value-based partitioning may lead to unequal dis-
tribution of data across the processor groups which can
cause load imbalance. This is generally not an issue
when the number of processors is small (Section 6). On
the other hand, this method of partitioning groups to-
gether all occurrences of items with a particular value.
Thus, the relative frequency of items observed by a
processor group is higher than in the input stream.

• Block-based partitioning: In this method, no pre-processing
is performed on the input stream. As the stream is
read by the coordinating processor, it is divided into
equal disjoint chunks. Each chunk is sent to a proces-
sor in a round-robin fashion. In the querying phase,
the coordinating processor forwards the query item to
all the processing units. Each processor returns an es-
timate for the count of the item. The coordinating
processor sums up the individual local counts and re-
turns the result as the answer to the query.

Unlike the hash-based partitioning, block-based parti-
tioning distributes work equally among the processors.
Also, the coordinator needs to do less work as there is
no need to compute hash values per item in the input
stream.

However, unlike hash-based partitioning, all proces-
sors are queried for each query. When the coordinat-
ing processor sums up the estimates from each unit, it
also sums up the error returned by each unit. Hence
the final error bound of this method is p times the er-
ror of a single processor, where p is the total number
of processors. In the case of hash-based partitioning,
the final error bound is p′ times the error of a single
processor, where p′ is the number of processors in the
processor group.

3. CHOOSING THE SEQUENTIAL COUNT-
ING KERNEL

As our target multi-core processors have limited per-core
memory (e.g., 256 KB for the Cell, 32 KB for the Intel
IXP2800), it is necessary to select a sequential counting algo-
rithm with the lowest space consumption. For selecting the
sequential counting kernel, we evaluated three well-known
counting algorithms: AMS [2], Count Sketch (CCFC) [4],
and Count-Min (CM) [6]. All of these algorithms use some
form of the probabilistic sketch data structure which gets
updated using random values generated via multiple hash
functions. However, they differ in the number of hash func-
tions used, the size of the sketch and the way the sketch is
updated (see Section 7 for more detailed comparison).

Table 1 presents an analytical comparison of the total
space usage, the number of hash functions used, and the
hash function ranges, between the AMS, CCFC, and CM
algorithms. For comparison purposes, we use a pair of user-
specified parameters, error bound, ε, and probability bound,
δ. For the CCFC and AMS algorithms, the error is within
a factor of ε with the probability of 1 − δ, and for the CM
algorithm, the error is within a factor of ε times the L1-norm
of the sketch with the probability of 1− δ. As Table 1 illus-
trates, for a given ε and δ, for CM and CCFC algorithms,



Algorithm Hash range # Hash Functions Space
w d

AMS 1 2log( 1

δ
) 16

ε2d

CCFC 8

ε2
log(n

δ
) wd

CM e
ε

log( 1

δ
) wd

Table 1: Comparing Algorithmic Characteristics
of the three selected Stream Counting Algorithms:
AMS, CCFC, and CM.

the space utilization is determined by the number of hash
functions and the hash function range. Among the three al-
gorithms, the CM algorithm is the most space-efficient and
the space complexity of the other two algorithms is worse
by an order of magnitude.

To experimentally compare these algorithms, we analyzed
the implementations of these three algorithms from the Mass-
DAL Public Codebank1 against 16 MB (4M Integers) of Zipf
(λ = 1.1) and Normal (σ = 20) data. We ran a point query
using ε = 0.1 and δ = 0.001, to compute the frequency
of a stream item against every member of the dataset and
compared the results computed by the algorithms with the
actual frequency. Figures 2 and 3 illustrate the results for
the Normal (σ = 20) and Zipf (λ = 1.1) datasets. The X-
axis represents the input data set sorted using the actual
frequency and Y-axis represents the frequency calculated by
various algorithms.
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Figure 2: Evaluation of the three selected Counting
Algorithms on a 16 MB Normal (σ = 20) dataset.

As these Figures illustrate, for both datasets, for the entire
frequency range, the CCFC algorithm computes the best ap-
proximations while the AMS algorithm performs the worst.
The quality of approximation by the CM algorithm improves
as the item frequency increases. However, the CCFC algo-
rithm requires far more space (log n

δ
8

ε2
) than the CM algo-

rithm (log 1

δ
e
ε
) and its space consumption increases quadrat-

ically (O( 1

ε2
)) as the error parameter ε is reduced. In our ex-

periments, the CM sketch required only 1536 bytes whereas
the CCFC sketch used 51816 bytes and the AMS sketch used
83816 bytes. Furthermore, the CCFC performance degraded

1www.cs.rutgers.edu/∼muthu/massdal.html.

substantially when run with space comparable to the CM al-
gorithm (for the Normal (σ = 20) data, the average error
per unique items increased from 0 to 30693, and for the Zipf
(λ = 1.1) data, from 150 to 7100). Among the three algo-
rithms, the CM algorithm provides the best accuracy while
consuming the lowest space and its space consumption in-
creases linearly as the error parameter ε is reduced (unlike
CCFC, where the space consumption increased quadrati-
cally). Therefore, we decided to use the Count-Min (CM)
algorithm as the basis of our sequential kernel.
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Figure 3: Evaluation of the three selected Counting
Algorithms on a 16 MB Zipf (λ = 1.1) dataset.

4. FCM: A FREQUENCY-AWARE COUNT-
ING ALGORITHM

As noted in the previous section, the Count-Min (CM)
algorithm is more accurate for approximating frequencies
of high-frequency (heavy hitter) items. The CM algorithm
uses a sketch with d hash functions of range w (it can be
viewed as a table with d rows and w columns), and for every
item to be inserted, uses every hash function to select a po-
sition in the corresponding row and increments its value by
1. At query time, the count estimate of an item is computed
as the minimum of values stored in the corresponding posi-
tions in all d rows. This approach causes the low-frequency
counts being tainted due to the collisions between the low-
and high-frequency items. The Count Sketch (CCFC) algo-
rithm addresses this problem by considering additional hash
functions to partition the d hash functions into two disjoint
subsets and updating them differently. As we have observed
in the previous section, the CCFC sketches are at least a
factor 1

ε
· log(n) larger than the CM sketches. Hence, we

need a different strategy for reducing collisions.

4.1 Frequency-aware Sketch Processing
Given an error bound ε and a probability bound δ, FCM

uses the same sized sketch data structure as the CM al-
gorithm. The FCM sketch is a set of d uniform pairwise
independent hash functions (Figure 4), each with the range
w . We use the universal hash functions for computing hash
values (i.e., hash(x)= (a · x + b)mod(P ), where a and b are
constants and P can be either 231 − 1 or a large number).



In contrast to CCFC, the FCM sketch uses variable number
of hash functions for an item based on its current frequency

phase. An item, when deemed as a high-frequency item, uses
fewer hash functions than a low-frequency item. To reduce
the number of collisions further, a subset of the d hash func-
tions is updated per item. The subset is chosen as a hash
value of the item using two additional hash functions: first
one is used to compute an initial offset into the d rows and
the other computes a gap between consecutive hash tables,
and the subset is chosen in a round-robin fashion. This ap-
proach differs from the CM sketch where every item updates
all rows of the sketch beginning with the first row. For ex-
ample, Figure 4 illustrates the ingestion of a high-frequency
item ih and a low-frequency item il into the FCM sketch.
Both ih and il have different initial offsets and gaps. The
low-frequency item il uses more hash functions (6) than the
item high-frequency ih (3). Even with these schemes, there
may be a collision between the two items, as illustrated in
Figure 4.
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Figure 4: Frequency-aware updating of the FCM
sketch. High-frequency items update fewer hash ta-
bles than the low-frequency items.

4.1.1 Misra-Gries Frequency Counter
As the frequency of a stream item can dynamically change

over time, FCM determines the frequency phase (i.e., high
or low) of a stream item over the section of the stream pro-
cessed so far. For dynamically detecting relative frequency
phase of a stream item, we employ a space-efficient counter
based on the Misra-Gries (MG) algorithm [23]. The MG
algorithm approximates the set of k heavy hitter items from
an online stream using k · log(k) space. At any point in the
stream, the algorithm tracks those items whose frequency
is more than 1/k for some constant k, and returns an over-
approximation of the set of items that satisfies this condi-
tion.

In our implementation, we use a list of < item, count >
pairs, called the MG counter, to keep track of counts of
unique items (Figure 5). The input stream is divided into

k (log k)

Stream

Item

Count

Window(i) of size kwindow(i−1) window(i+1)

Figure 5: Dynamic Frequency-phase Detection us-
ing the Misra-Greis(MG) Counter.

(Stream Ingestion Phase) For every item i in a stream:

I1. Update the MG Counter to determine its frequency phase

I2. Calculate the offset, gap, and # of hash functions, dh or dl

I3. Use dh or dl hash functions to increment the buckets in

the sketch. Update davg.

I4. Use d hash functions to increment the buckets in the

zero-frequency table (used only in the parallel scenario)

(Query Processing Phase) For the item i in a point query:

Q1. Calculate the offset, gap

Q2. Compute an estimate from the FCM sketch by minimizing

values over davg buckets

Q3. Compute an estimate from the zero-frequency table by

minimizing values over d buckets

Q4. Compute the final result as the minimum of estimates

from the sketch and the zero-frequency table.

Figure 6: Frequency-aware Counting Algorithm.

windows of size k. When an item is being processed, we
first check if it is in the counter. If the item is in the list,
its count is incremented. Otherwise, a new entry is inserted
with an initial count depending on the index i of the window
being read. After i · k items have been processed, that is,
after the ith window, any item with count less than (i + 1)
has frequency less than 1/k and so is deleted from the list.
While processing the (i + 1)th window, if a new entry is
observed then its initial count is set at i, which is the maxi-
mum number of occurrences of the item, after which it could
have been deleted from the list. This initial count ensures
that an entry whose frequency is greater than 1/k is not
missed. However, this approach may introduce false posi-
tives. The efficacy of the MG counter depends on the input
distribution and the constant k. FCM classifies an item as
an high-frequency item if it is present in the MG counter.
We set a threshold value for the number of items being pro-
cessed to prevent items from early sections of the stream
being classified as high-frequency items. This classification
is then used to differentially fill in the FCM sketch.

4.1.2 FCM Sketch Updating and Querying
Figure 6 presents the FCM algorithm. Given an item q,

we first check if q is present in the MG counter (Step I1). If
the item is in the counter, we treat it as an high frequency
item and choose a fraction, dh, of the d hash tables to fill in.
Otherwise, if the item is not in the counter we choose a larger
fraction, dl (dl ≥ dh), of the d hash tables to fill in. We use
the value of the item to be inserted for computing the offset
and gap (Step I2). These values are computed using uniform
and pairwise independent hash functions, each with range
[1...d]. Given an item, we first calculate its offset and gap,
and in a round robin fashion, identify dh or dl hash tables
to fill in. To minimize self-collisions during the round-robin
updating of the hash tables, we choose a prime value for d.
For each chosen hash table, the item is hashed into a bucket
i, 0 < i < w, and the count in the bucket is incremented
by 1 (Step I3). Since the frequency phase of a stream item
can vary dynamically during the stream ingestion process,
we also keep track of the average number of hash functions
used by the unique items ingested so far in the sketch, davg.

Once the data stream has been analyzed and a sketch
has been constructed, we query the sketch to answer point
query estimates. Given a query item q, using the same hash



functions, we compute its offset and gap, and using the same
round robin fashion, davg hash tables are chosen from the
computed offset(Step Q1). For each table, the appropriate
bucket i is selected using the corresponding hash function
employed during ingestion. The value in the bucket i is then
returned as an estimate of the count of the item. Among
the davg counts obtained, we return the minimum value as
the final count estimate for the item q from the sketch (Step
Q2). This approach differs from the CM sketch where the
final result is computed as the minimum of d counts.

4.1.3 Error Analysis
Let H = {hi|1 ≤ i ≤ d} be the set of the d hash functions

of the sketch, each with range w. Consider a data stream
with n distinct items, say {1, . . . , n}. Let items 1 ≤ i ≤ h
be the high frequency items and h + 1 ≤ i ≤ n be the low
frequency items. We refer to the set of high frequency items
as Xh and the set of low frequency items as Xl, where ‖Xl‖+
‖Xh‖ = n. Let ai be the exact count of occurrences of item
i. Let A = (a1, a2, . . . an) be a vector of counts of all distinct
items in the stream. Let Ah = (a1, a2, . . . ah) be a vector of
counts of distinct items in Xh. Let Al = (ah+1, ah+2, . . . an)
be a vector of counts of distinct items in Xl. Let Si ⊆ H
denote the set of hash functions chosen for item i. dh denotes
the number of hash functions from H chosen to fill in the
sketch for items in Xh. The notation dl denotes the number
of hash functions from H chosen to fill in the sketch for items
in Xl. We visualize the sketch as a d × w table where rows
correspond to the hash functions and columns correspond
to the bucket number. Let count[j, hj(i)] be the value in
the sketch in cell (j, hj(i)). Xi,j is a random variable which
denotes the error in count[j, hj(i)] for estimating ai. Ii,j,k

is an indicator function defined as follows:

Ii,j,k =

{

1 if i 6= k, hj(i) = hj(k) and j ∈ Si and j ∈ Sk;
0 otherwise.

Thus Ii,j,k is an indicator function for collision between
items i and k on hash function hj . Ii,j,k = 1 depends on
three independent events as follows:

1. j ∈ Si. This event denotes that hj is chosen for item
i. Choosing the elements of the subset Si uniformly
from the set H , this probability is equal to |Si|/|H |.

2. j ∈ Sk. This event denotes that hj is chosen for item
k. Choosing the elements of the subset Sk uniformly
from the set H , this probability is equal to |Sk|/|H |.

3. hj(i) = hj(k). This is the event that item i and k
collide on hash function hj . Since we consider uniform
hash functions with range w, the probability of this
event is 1/w.

By definition, Xi,j = Σk=n
k=1 ak.Ii,j,k. E(Xi,j) = E(Σk=n

k=1 ak.Ii,j,k)
≤ Σk=n

k=1 ak.E(Ii,j,k). If k is a low frequency item |Sk| = dl;
and if k is a high frequency item |Sk| = dh. Therefore,

E(Ii,j,k) =







1/w.( dl

d
)2 if i ∈ Xl and k ∈ Xl;

1/w.( dh

d
)2 if i ∈ Xh and k ∈ Xh;

1/w.( dl

d
. dh

d
) otherwise.

Let âi be the estimate for ai derived from the sketch. Let
w = e

ε
. For a vector A = (a1, . . . , an), we denote its L1-

norm as |A|1, and define it as |A|1 = Σi=n
i=1 |ai|. For i ∈ Xl,

E(Xi,j) ≤ 1/w.(( dl

d
)2.|Al|1+ dl

d
. dh

d
.|Ah|1) = e

ε
.(( dl

d
)2.|Al|1+

dl

d
. dh

d
.|Ah|1). Similarly for i ∈ Xh, E(Xi,j) ≤= e

ε
.(( dh

d
)2.|Ah|1+

dl

d
. dh

d
.|Al|1). Let C1 = (( dl

d
)2.|Al|1 + dl

d
. dh

d
.|Ah|1) and C2 =

(( dh

d
)2.|Ah|1 + dl

d
. dh

d
.|Al|1).

Let Di ⊆ H be the set of davg hash functions used to
query the count of item i. By Markov inequality, for i ∈ Xl,
Pr[âi > ai + ε.C1] = Pr[∀j ∈ Di.count[j, hj(i)] > ai + ε.C1]
= Pr[∀j ∈ Di.ai + Xi,j > ai + ε.C1]

= Pr[∀j ∈ Di.Xi,j > e.E(Xi,j)] < e−|Di| = e−davg . Hence

for i ∈ Xl, we have Pr[âi > ai+ε.( dl

d
)2.|Al|1+

dl

d
. dh

d
.|Ah|1)] <

e−davg . Similarly for i ∈ Xh, Pr[âi > ai + ε.( dh

d
)2.|Ah|1 +

dl

d
. dh

d
|Al|1)] < e−davg .

In CM sketch, there is no differential filling of the sketch
for high and low frequency items. Hence dl = dh = d, davg =
d and C1 = C2 = |Al|1 + |Ah|1 = |A|1. Hence Pr[âi >
ai + ε.(|Al|1 + |Ah|1)] < e−d. From the above equations, we
observe that the error bound in FCM has fractional weight
assigned to the terms |Al|1 and |Ah|1, which makes it a
tighter bound compared to that for the CM sketch. Further,
the weight assigned to the count of high frequency terms,
i.e., |Ah|1, is smaller as dh < dl < d. Hence, the effect
of high-frequency items polluting the sketch estimates for
other items is reduced.

4.2 Reducing errors in estimating counts of
absent items

One of the fundamental problems in all existing proba-
bilistic counting algorithms is their lack of preserving precise
history of the processed stream items. This results in their
inability to identify absent (zero-frequency) items, irrespec-

tive of the size of the sketch being used, and leads to signifi-
cant errors while estimating counts for such items. Existing
approaches for detecting absent items use probabilistic data
structures like the Bloom Filters [24]. While Bloom filters
are fairly accurate, they consume far more space than the
FCM sketch. (A well-implemented Bloom filter with 1%
false positive rate requires on average 9.6 bits per item)

Given limited memory availability, the FCM algorithm
aims to reduce the magnitude and frequency of errors in
estimating counts of zero-frequency items. For this purpose,
the FCM algorithm uses an additional sketch data structure
called the Zero-frequency Table (Figure 7). The key idea is
to ensure that a hash table collision between two items in
the FCM sketch does not repeat in the zero-frequency table.
For example, if items x and y map to the same hash bucket i
using a hash function hj in the FCM sketch, they don’t map
to the same bucket when using a different hash function hk

in the zero-frequency table.
The zero-frequency table is also a sketch with d uniform

pairwise independent hash functions, each with the range
w′, where w′ = w + δ. Let the ith hash function in the FCM
sketch be hi(x) = ((ai.x + bi)mod(P ))mod(w). Then the
ith hash function in the zero-frequency table is chosen as
h′

i(x) = ((ai.x + bi)mod(P ))mod(w′). δ is chosen as O(w),
and δ and w are co-prime. This implies w and w′ = w+δ are
relatively prime as well. While ingesting a stream, the FCM
algorithm updates both the sketch and zero-frequency table.
However, unlike in the sketch, irrespective of its frequency
phase, all d hash functions of the zero-frequency table are
used. For every row j, 0 < j ≤ d, the item is hashed into
a bucket i, 0 < i < w + δ, and the count in the bucket
is incremented by 1 (Step I4 in Figure 6). Now consider
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Figure 7: Reducing estimation errors due to absent
items using the Zero-frequency Table.

a hash function h1(x) = ((a1x + b1) mod w) for the data
points x1 and x2 in the FCM sketch. A collision occurs in
the sketch only if a1 · (x1 − x2) is divisible by w. For the
same data points, a collision occurs in the zero-frequency
table only if a1 · (x1 − x2) is divisible by w′. Since w and w′

are relatively prime, this implies that for a collision in both
tables, a1 · (x1 − x2) is divisible by w ·w′. For uniform hash
functions, this happens with probability 1/(w ·w′). We note
that we are using space proportional to w+w′ and instead of
collisions with probability 1/(w+w′), we are now getting at
least one table without a collision with probability 1/(w·w′).

During a point query, an estimate is computed from the
FCM sketch by minimizing over davg hash functions. Sim-
ilar estimate is computed from the zero-frequency table by
minimizing over d hash functions (Step Q3 in Figure 6). The
final estimate for the point query is computed as the mini-
mum of the FCM estimate and the zero-frequency estimate
(Step Q4 in Figure 6). As the final value is the smaller of
the two estimates, the result can be either 0 (i.e., there was
no conflict in either or both data structures) or the smaller
value (i.e., there was conflict in both data structures). How-
ever, in both cases, the error in estimating the count of
a zero-frequency item would be less than that for the CM
sketch.

Thus, using the frequency-aware sketch updating and the
zero-frequency table, the FCM algorithm improves the esti-
mate accuracy for both the low-frequency and zero-frequency
items.

5. OVERVIEW OF THE CELL PROCESSOR
The Cell processor is designed primarily for compute-

and data-intensive streaming applications. It is a 64-bit
single-chip heterogeneous multiprocessor with nine process-
ing cores: one general-purpose processor, called the PPE
and eight special purpose co-processors, called the SPEs.
Both the PPE and the SPEs run at the same clock frequency.
These processors are connected via a high-bandwidth inter-
nal bus and can access the shared, coherent main memory
(Figure 8). The PPE is a PowerPC-based RISC core and
runs the operating system to manage system resources of the
entire multiprocessor. It has 32 KB instruction and data L1
caches, and a 512 KB integrated L2 cache. Each SPE is
also a 64-bit RISC core natively supporting a short-vector
128-bit single-instruction multiple-data (SIMD) instruction
set. The Cell SPE is a dual-issue, statically scheduled SIMD
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Figure 8: Architecture of the Cell Processor.

processor. Each SPE holds a 128-entry 128-bit register file
to execute these SIMD instructions. The SPE SIMD in-
struction set can support multi-way (2,4,8, and 16) data
parallelism. The SPE control unit can issue 2 instructions
per cycle, in-order. Instead of caches, each SPE has a 256
KB private local store which is used to hold both instruc-
tions and data. The SPE load and store instructions man-
age the data transfer between the register file and the lo-
cal store. Each SPE has dedicated single-precision floating
point and integer vector units. Although designed primar-
ily as a SIMD processor, the SPE can also execute scalar
computations. However, as the SPEs lack branch prediction
hardware, execution of scalar SPE code with conditionals is
not optimal. Finally, there is no virtual-memory support on
the SPEs and the only way to access the main memory from
the SPEs is via explicit asynchronous direct memory access
(DMA) commands. The DMA is also used for communi-
cating among different SPE local stores [22]. The PPE and
SPEs have different instruction-set architectures (ISAs) and
the Cell compiler automatically generates the appropriately
optimized native code.

The Cell’s multi-core architecture can be exploited via a
variety of parallel programming models [8]. A Pthreads like
task-parallel programming model enables a host program
executing on the PPE to spawn multiple threads which can
execute different programs on different SPEs. Each SPE
program can then use the SIMD instructions to exploit Cell’s
data parallel facilities. The SPE code performance can be
further improved by using instruction-level parallelism via
SPE’s dual execution pipes. The Cell also supports a shared-
memory programming model where multiple SPEs can share
data from their local stores using DMAs over a distributed
shared address space. Other supported programming mod-
els include function offloading and computation acceleration
models [8].

5.1 Implementing the parallel counting algo-
rithm on the Cell

The Cell implementation of our parallel counting algo-
rithm uses the master-slave approach using the Cell’s task-
parallel programming model. This approach also used for
programming network processors [7, 18]. Our implemen-
tation divides the work between the PPE- and SPE-based
components. The sequential PPE code acts as the coordi-
nating processors. It loads the SPE code into individual
local stores and then invokes the sequential counting ker-
nels on one or more SPEs. The PPE code reads the stream
data and partitions it using either block- or hash-based par-
titioning schemes. At the query processing time, the PPE



propagates the query to the participating SPEs, collects the
results from these SPEs and returns the final result.

Each participating SPE code executes the core sequential
counting kernel (e.g., the FCM). The SPE implementation
of the FCM uses the native 128-bit SIMD instruction set to
accelerate a variety of key computational functions (e.g., the
hash functions). The SPE code also uses extensive loop un-
rolling to enable instruction-level parallelism. The SPE ker-
nel initializes key data structures in the 256 KB local store
(e.g., sketch, zero-frequency tables, buffers for memory ac-
cesses, etc.). Once initialized, each SPE instance fetches its
portion of the stream data via DMA from the main mem-
ory. The core ingestion algorithm (Figure 6) needs to be
strip-mined as a single DMA can fetch only 16 KB of data
at every invocation. The DMA memory-access calls use the
double-buffering approach to hide the memory latencies. All
operations on the data buffers are SIMDized as well. Dur-
ing the querying phase, the PPE multicasts a point query
to the participating SPEs. The SPEs access their local data
structures to compute local counts, and send them back to
the PPE. Our parallel counting algorithm does not require
any inter-SPE communication during stream ingestion or
querying.

6. EXPERIMENTAL EVALUATION
We have evaluated the parallel counting algorithm on the

Cell using two sequential counting kernels: FCM and CM.
We evaluated the implementations using 16 MB (4M inte-
gers) data with Zipf (λ = 1.1, 1.5) and Normal (σ = 10, 20)
distributions under the error bound ε = 0.087, and the prob-
ability bound δ = 0.0002. Based on these parameters, for
both the CM and FCM algorithms, we used a sketch with
17 hash functions (i.e., d = 17) with the range of 31 (i.e.,
w = 31). We used the same universal hash functions for up-
dating the FCM and CM sketches. For these experiments,
dh was set to d

2
and dl was set to 4

5
d.2 Each sketch required

2108 bytes and the zero-frequency table required 2356 bytes.
The FCM algorithm also used a MG frequency counter with
the stream window size k = 8 (corresponding number of en-
tries in the MG frequency counter was klogk = 24). Note
that the additional space required by the MG frequency
counter was substantially less than the CM or FCM sketch
and FCM used the zero-frequency table only in the paral-
lel scenario. For the FCM algorithm, the per SPE memory
consumption was around 110 KB, which included the space
of two data buffers, the sketch, zero-frequency table, the fre-
quency counter, etc. The CM algorithm consumed slightly
less SPE local space, as it did not use the MG frequency
counter and the zero-frequency table. We ran our exper-
iments on a 2.1 GHz Cell-based blade with a single Cell
Broadband Engine(BE) Processor, with a single PPE and 8
SPEs.

6.1 Evaluation of the FCM Algorithm
The first three experiments evaluate the FCM algorithm

against the CM algorithm using a single SPE. Figures 9 and
10 present the CM and FCM estimates for the low-frequency
range of the input datasets. As these graphs illustrate, while
consuming similar amounts of space as the CM algorithm

2To a priori determine optimal dh and dl for an input data
distribution is currently an open problem and is being in-
vestigated.
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Figure 9: Comparing the estimate quality of CM
and FCM algorithms for low-frequency items in a
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Figure 10: Comparing the estimate quality of CM
and FCM algorithms for low-frequency items in a
Zipf (λ = 1.1) dataset.

(FCM uses an additional 24-entry MG counter), the FCM
estimates are closer to the actual frequency counts. These
results validate our proposal of using frequency-aware sketch
updating to avoid collisions with high-frequency items. They
also validate the application of the Misra-Greis frequency
counter and the choices of dh and dl.

Figure 11 presents the behavior of the FCM and CM algo-
rithms while estimating counts of absent items. In this ex-
periment, the FCM and CM sketches were populated using
the 16 MB Zipf dataset and then queried using items absent
from the input dataset. Figure 11 represents the frequency
estimates of both algorithms calculated over the entire life-
time of the input stream. The graph demonstrates that the
errors in count estimates of the FCM algorithm are fewer

and smaller than the CM algorithm. In fact, the average
error per unique absent item for the CM algorithm was 13
times larger than that for the FCM algorithm. This result
provides an experimental validation of our approach of using
a space-efficient zero-frequency table along with the sketch
for reducing errors for absent items.

6.2 Evaluation of the Parallel Counting Algo-
rithm

The following experiments evaluated the parallel counting
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Figure 11: Evaluation of the zero-frequency table
using a Zipf (λ = 1.1) dataset. The average error per
unique items is calculated over the entire stream.
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Figure 12: Quality of estimating a Normal (σ = 20)
input data using 8 SPEs via block-based data parti-
tioning.

algorithm using the FCM and CM counting kernels. We
scaled the number of SPEs from 1 and 8, and partitioned
the data using block-based partitioning with 16 KB blocks
and hash-based partitioning over 8 processor groups (each
processor group had a single member). For the hash-based
partitioning, we used the last three bits of the item value
as the function for partitioning the input data set into 8
buckets. Each bucket was then assigned to a SPE. In this
section, for evaluation purposes, we use average error per
unique items normalized over a window of 1024 items.

Figures 12, 13, 14, and 15 illustrate the estimates for the
Normal and Zipf datasets using the parallel algorithm over
8 SPEs. Each experiment is run using the CM and FCM al-
gorithms as the sequential kernel with the block-based and
hash-based data partitioning. As these graphs demonstrate,
in most cases, the FCM algorithm substantially improves
the estimation quality over the CM algorithm for the entire

frequency range. The exception being the low-tailed Normal
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Figure 13: Quality of estimating a Zipf (λ = 1.1)
input data using 8 SPEs via block-based data parti-
tioning.

(σ = 10, 20) datasets (Figure 15), where FCM and CM esti-
mates are very accurate due to fewer collisions among low-
and high-frequency items. A key point to note is that both
CM and FCM algorithms are using the same space for stor-
ing their sketches. Therefore, the improvement is mainly due
to FCM’s better estimation of low-frequency items and zero-
frequency items. The reduced number of collisions among
high- and low-frequency items in the FCM algorithm also
improves the estimates of high-frequency items.

Further, for both algorithms, the overall quality of esti-
mation improves when the stream data is partitioned using
the hash-based partitioning scheme. There are three rea-
sons for this improvement. First, when the stream data is
partitioned using a hash-based partitioning scheme, all oc-
currences of a particular value are grouped together. Thus
the relative frequency of the items observed by a proces-
sor group increases. As the CM and FCM algorithms both
provide good estimation of high-frequency items, the per-
processor estimates improve substantially (This effect was
particularly prominent for the Normal datasets as displayed
in Figure 15). Second, as the data is partitioned only across
a subset of processors, the error in the final estimate is
bound by the number of processors in the processor group
(in our experiment, one processor). Finally, when the pro-
cessor group had only one processor, there were no errors
due to zero-frequency items (In the general case, when the
processor group has more than one processor, hash-based
partitioning would experience additional errors due to zero-
frequency items). The combination of improved local esti-
mates and aggregation over a smaller number of processors
leads to substantial improvement in the final estimate.

To further examine the effect of hash-based partitioning
on the estimation errors, we measured the normalized es-
timation error for both block- and hash-based partitioning
for both Zipf and Normal datasets while scaling the number
of SPEs from 1 to 8 (Figures 16 and 17). As Figure 16
illustrates, for the block-based partitioning, the normalized
estimation error does not decrease as the number of SPEs is
scaled up from 1 to 8. In fact, in one case, the error increases

as the number of SPEs is increased. On the contrary, while
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Figure 16: Comparison of errors in FCM and CM
using block-based data partitioning from Normal
(σ = 20) and Zipf (λ = 1.1) datasets. The number
of SPEs is increased from 1 to 8.
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Figure 17: Comparison of errors in FCM and CM
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for representation.

using hash-based partitioning (Figure 17), the normalized
error decreases significantly as the number of SPEs is in-
creased (for the Normal dataset, after 2 SPEs, the error is
too small to be represented on the graph.).

Unlike the hash-based partitioning, the block-based par-
titioning does not group together items of the same value.
Hence, the quality of local estimate is not as high as that for
the high-frequency items (i.e., local errors are high). Also,
the final result is calculated via aggregating local results over
all SPEs in the system. Therefore, the local errors get accu-
mulated, resulting in a significant degradation in estimation
quality. Finally, for block-based partitioning, as the number
of SPEs is increased, the impact of zero-frequency items on
the estimation error increases as each point query is broad-
cast to all SPEs. FCM’s ability to identify zero-frequency
items mitigates this impact and unlike the CM algorithm,
it’s estimate quality does not degrade as the number of SPEs
is increased (Figure 16).

Figures 18 and 19 compare the frequency estimation for
the hash-based data partitioning while using the FCM algo-
rithm on 1 SPE and 8 SPEs. In both cases, the frequency
estimation improves substantially as the number of SPEs is
increased to 8. These results experimentally demonstrate
the benefits of using hash-based data partitioning as our
sequential kernel.

Finally, Figure 20 illustrates the scalability of the par-
allel algorithm under different runtime configurations. We
use the execution time of the algorithm for ingesting 16 MB
data stream on a single SPE as a baseline and compute the
relative performance for 2, 4, and 8 SPEs. As shown in
Figure 20, in all cases, the parallel algorithm demonstrates
linear scalability as the number of SPEs was increased. The
hash-based data partitioning has very similar performance
to the block-based data partitioning. In both cases, the cost
of processing a point query was insignificant. We also did
not find any significant performance overheads due to the
additional PPE-side processing or unbalanced data parti-
tioning across the SPEs.

The results presented in this section conclusively demon-
strate that on a single processor, FCM’s key features, namely,
the frequency-aware sketch processing using the Misra-Gries
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Counter, improved the estimation quality for the entire fre-
quency range. These results also illustrate that simply par-
titioning data across multiple processors does not lead to
an improvement in estimation quality as the number of pro-
cessors is increased. To achieve performance scalability and
estimation improvement, one needs to use hash-based data
partitioning, along with the zero-frequency table.

7. RELATED WORK
The problem of synopsis construction has always been

considered an important one in the context of data streams.
Typical methods for stream synopsis construction include
reservoir sampling, histograms, wavelets and sketches. A
broad overview of synopsis construction methods in data
streams may be found in [14].

The sketch based method was first proposed in [2] as
an application of random projection techniques for space-
efficient determination of aggregate characteristics of the
stream such as frequency moments and frequent items. The
broad idea of the original sketch technique is that a stream
can be viewed as a very high dimensional vector whose di-
mensionality is determined by the number of items in the
stream, and a random projection [20] of this stream can be
used to determine aggregate functions of the frequencies of
the individual items. A pseudo-random number generator
is used to dynamically generate the components of the ran-
dom projection vector rather than explicitly storing them
[2]. The sketch based method is particularly useful for the
space-constrained scenario (such as a cell processor) since
its space-requirements are logarithmic in terms of the num-
ber of distinct items in the data stream. Subsequently a
variety of other sketch based methods were proposed which
vary from the random projection idea for sketch compu-
tation. These include hash-based structures such as that
proposed in [4] (Count Sketch), and the count-min sketch
[5]. Some the sketch based structures such as the count-
min sketch [5, 6] are particularly suited to tracking frequent
items in the streams, whereas others such as random projec-
tion based sketches [2] are more suited to aggregate compu-
tations such as determining the frequency moments. How-
ever, both sketch based structures are generally better suited
to estimating the behavior of items with high frequency, and
are not particularly well suited to lower frequency items
or determining the number of distinct elements. A differ-
ent kind of sketch based structure has been proposed [12]
for counting the number of distinct elements in the stream.
Subsequently, sketch based structures have been extended
to a variety of other problems such as join estimation [1]
and aggregate query estimation [10, 11, 16].

Metwally et al [13] also use a counter data structure to
identify top-k items from data streams. However, its space
complexity is a function of user-defined error ε and the range
of the input data, which is significantly larger than our MG
counter.

The problem of sketch based processing has also been used
for distributed mining of data streams. Sketch based pro-
cessing is especially useful in distributed sensor network pro-
cessing [26, 21], in which sensors have limited storage and
processing ability. In [26, 21], a number of techniques have
been discussed for aggregate computation of the sensor net-
work statistics with the use of sketch based methods. A
number of different techniques for distributed sketch based
processing have been proposed for effective query process-



ing. For example, the technique in [3] discusses the problem
of distributed top-k monitoring, in which the k largest val-
ues from a set of distributed data streams are continually
maintained. This method is able to achieve this to within
a user-specified tolerance. Similarly, the method in [9] dis-
cusses the problem of distributed set expression cardinality
estimation. In [17], the problem of power conserving com-
putation of order statistics in sensor networks is discussed.
One critical difference between the distributed algorithms on
sensor networks and that for the cell processor is that in the
case of sensor networks, power conservation is the primary
criterion for algorithm design, whereas in the case of the cell
processor, the algorithms need to be designed with storage
and processing methodology as the primary consideration.

8. CONCLUSIONS
In this paper, we investigated the problem of counting

items from data streams using multi-core processors that
have multiple processing engines with low on-chip memo-
ries. We evaluated existing stream counting algorithms and
found that they are not suitable for such processors due
to their inability to correctly estimate low-frequency and
zero-frequency items using low-memory probabilistic data
structures. We proposed a new stream counting algorithm
called Frequency-aware Counting (FCM) that improves over
the Count-Min algorithm using: (1) A space-conserving fre-
quency counter to dynamically predict relative frequency
phases, (2) A sketch data structure that is updated using
a frequency-aware approach, and (3) A zero-frequency data
structure that reduces the estimation errors due to absent
items. We used the FCM algorithm as the kernel in our
parallel counting algorithm and implemented it over a com-
mercial multi-core processor, the Cell processor. Our exper-
iments validate our key ideas and efficacy of our data struc-
tures. The results demonstrate that in a sequential mode,
the FCM kernel provides better quality estimates over the
CM algorithm both for the high- and low-frequency items.
Further, our parallel algorithm improves both performance
and quality as the number of processors is scaled up. Al-
though the FCM algorithm is evaluated using the Cell pro-
cessor, it can be implemented on similar multi-core proces-
sors [7, 18]) or using software libraries like Pthreads.

This work could be extended in many directions. It is an
open problem to determine the optimal values for dh and dl

for an input data distribution. Clearly, the hash-based data
partitioning used in this study is an example of a general-
ized value-based partitioning scheme. It will be interesting
to evaluate a value-based partitioning scheme which can ex-
ploit statistical characteristics of input data streams. It will
also be interesting to examine extensions to the Misra-Greis
counter to capture more fine-grained frequency phases for
computing top-k elements from data streams.
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