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Abstract

We describe a self-adaptive and self-regulating system
for fair sharing of resources in a multi-site grid environ-
ment. In such an environment, each site has a set of re-
sources and has internal demand which it manages using
internal policies and rules. To manage periodic fluctuations
in the local demand and potential shortfall of resources to
meet the local demand, the participants borrow and lend
resources to one another. This resource sharing among the
participants is regulated by a distributed, peer-to-peer re-
source brokering algorithm that is scalable and fair in its al-
location of the shared resources. The self-regulating mecha-
nism enables discovery of shared resources and the possible
extent of the donated or borrowed resources. The regulating
mechanism automatically clusters participants with similar
borrowing and donating properties. We present both an-
alytical and empirical evidence to prove the properties of
such a system. In particular, we prove that the system is fair
– that is, participants who contribute more resources to the
shared pool get to borrow proportionately more resources
from others. Such a resource brokering mechanism allows
participants in a multi-site grid environment to meet their
peak demands by provisioning resources only for average
demand.

1 Introduction

Fluctuations in workload and resource demand are com-
mon to data center and other IT environments. Neither pro-
visioning for peak demand nor for average demand are de-
sirable solutions. Today this dilemma is handled mostly by
provisioning more resources than required to meet the aver-
age workload, but not provisioning enough to meet the peak
workload. However, any such compromise is far from being
satisfactory. Ideally, organizations like to provision and pay
for just enough resources to meet the demand and, at the
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same time, to remain competitive they like to have access to
resources on demand to meet any business situation.

Using the emerging concepts such as utility computing,
it is possible for organizations to rent external resources
when local demand exceeds locally provisioned resources.
Apart from the premium that an organization has to pay
to acquire resources on demand from the utility, this ap-
proach does not address the resource under utilization prob-
lem. Grid computing is another emerging approach to har-
ness and share a large number of resources among commer-
cial organizations [1]. However, traditional grid based ap-
proaches are centralized, not scalable, and are not suitable
for on-demand acquisition of resources [3].

In this paper, we describe a grid based system that en-
ables organizations to participate and exchange resources
with one another to meet their internal demands and mean-
ingfully increase the resource utilization when their internal
demands are declining. A novelty of the system described
here is that, unlike traditional grid systems, the resource
brokering mechanisms are based on peer-to-peer interac-
tions among the participants and are completely distributed.
Grid participants achieve resource flexibility by borrowing
resources when needed from external sources and by lend-
ing the excess capacity to other organizations when they are
not needed locally.

Resource exchanges can be of two flavors: (a) exchange
one type of resource for another at the same time and (b)
exchange similar resources at different time periods; i.e.,
for borrowing a resource now, a similar resource is lent out
to others for a similar period of time in the future. The
system we describe here accommodates both types of ex-
changes. In this paper, we concentrate on the latter type of
exchange. A resource exchange, such as the one outlined
above, needs to address the following issues: finding the
matches between borrowers and lenders, ensuring fairness,
and ensuring that participants fulfill their obligations when
they enter into a barter.

In the absence of independent monitoring and enforce-
ment, for the grid system to succeed,fairnessin resource
sharing – defined as the measure of balance between the



contributions of own resources and the consumptions of the
resources of the others – needs to be preserved. The system
must provide built-in fairness enforcement mechanisms to
prevent possibilities of system abuses by non-cooperative
parties, so calledfreeriders[5].

The grid system described here differs from other tra-
ditional grid systems in another important aspect. In this
system, the participants play the role of both the resource
providers and resource consumers. In traditional grid sys-
tems, typically these roles not interchangeable; a grid user
does not normally contribute resources to the grid. In the
system described here, the resources are provided and con-
sumed by the participants. The grid system only enables the
resource exchange across organizational boundaries such
that the net flow in and out of any one organization is close
to zero over a long enough period of time.

The main contributions of our work are: (a) Formulation
of a new resource sharing concept for grid environments
that allows for resource exchanges among anonymous orga-
nizations, while preserving fairness in their resource contri-
butions. (b) Design of an intuitive and formally provable re-
source sharing mechanism based on the new concept. Orga-
nizations using this sharing mechanism make all decisions
locally and independent of each other. No central compo-
nents are required. (c) Experimental evaluation of the re-
source sharing mechanism using a real-world performance
data.

The rest of the paper is organized as follows. In the next
section, we describe the design of the system for enabling
multi-site resource sharing and the neighborhood forming
algorithm used by the participants. In Section 3, we analyze
the sharing mechanisms and, using this analysis, character-
ize the system. In Section 4, we describe an experimental
setup and evaluate the sharing mechanisms described in this
paper. The results of the evaluation are also presented in that
section. Finally we conclude the paper in Section 5.

2 Sharing mechanism design

In this section we present design of a resource sharing
mechanism in grid environments. We start with introducing
some basic terminology.

2.1 Terminology

A party involved in the resource sharing is called anor-
ganization. We shall denote the set of all organizations in
the system byD. Organizations in the system maintain
limited-size sets ofneighbors, i.e., other organizations they
share resources with. Neighbor set of organizationd ∈ D
is denoted byNd. Neighborhood is an asymmetric relation
meaning that organizationd can be a neighbor of organi-
zation d̂ even if d̂ is not a neighbor ofd. Organizations

give their neighbors access to their currently idle resources.
The set of neighbors is not fixed but it evolves to reflect the
changes in the demand and local resource sharing policies.
The allowed size of the neighbor set is, however, bounded
by a constantn.

In addition to the neighbor set, each organizationd ∈ D
maintains alocal view of the system denotedVd. New
neighbors are selected from among the organizations in the
local view. It is important that the size of the view is suffi-
ciently large to guarantee enough selection options. More-
over, local views should be updated frequently in order to
efficiently propagate information about organizations that
recently joined the system. Details of the local view update
process are presented further in this paper.

2.2 Neighborhood formation

In this section, we describe the neighborhood formation
algorithm that selects for each organization a set of neigh-
bors optimal in its local context. The presented algorithm
is fully distributed and it is executed independently by each
organization.

Following a rational strategy of locally optimal choices,
each organization tries to find a set of neighbors that offer
the most capacity during time periods when the organiza-
tion is in demand. The neighborhood formation algorithm,
presented in Algorithm 1, consists of two phases: the explo-
ration phase and the selection phase, repeated periodically,
but independent of each other.

Algorithm 1: Neighborhood formation algorithm.

explore(d : organization):1

begin
while |Nd| < n and Vd\Nd 6= Ø do2

select randomly an organization̂d from Vd\Nd3

addd̂ to Nd4

if |N
d̂
| < n then5

addd to N
d̂

6

end
Vd ← Vd ∪ V

d̂
7

end
end

select(d : organization):8

begin
sort organizations inNd according to their9

decreasing contributions
while |Nd| > n− r do10

remove fromNd next organization with the11

lowest contribution rank
end

end
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During theexploration phase(line 1), organizationd ex-
pands its neighbor set up to the predefined capacity limit
(line 2). New neighbors are selected randomly from the
local view of organizationd, excluding organizations that
have been already selected as neighbors (line 3). Ifd adds
organizationd̂ to its neighbor set (line 4), and the neighbor
set ofd̂ has not yet reached its capacity limit (line 5), then
alsod̂ addsd as a neighbor (line 6). New neighbors update
their local views by merging their content (line 7).

Theselection phase(line 8) starts with sorting of neigh-
bors in decreasing order of their resource contribution
(line 9). The selection algorithm removes up tor lowest
ranked resource contributors from the neighbor set (lines 10
and 11). Note that the neighbor list could be sorted using a
variety of criteria. Some example criteria are: (i) amount of
resources made available for borrowing by a neighbor, (ii)
the quality of the resources made available, (iii) the proxim-
ity of the resources, (iv) resource availability weighted by
the time when they are available (e.g., availability at peak
demand is ranked higher than availability at low demands),
an so on.

The impact of parameterr on the neighborhood forma-
tion process is twofold. First, parameterr controls the dy-
namism of the neighbor set modification. Largerr will re-
sult in more neighbors removed in the selection phase and
replaced with randomly chosen organizations in the explo-
ration phase. In an environment where organizations fre-
quently change their sharing behavior, higher level of neigh-
bor set modification dynamism will result in faster adjust-
ment to the changing conditions. On the other hand, larger
r implies also that the neighbor set will contain more orga-
nizations that have just been added to the neighbor set and
have not been evaluated yet.

Second, parameterr impacts the probability that a bidi-
rectional neighborhood relation will be formed between two
organizationsd andd̂, i.e.,d will add d̂ as its neighbor and
alsod̂ will acceptd as a neighbor. The larger the value ofr
the higher the chance that the conditional statement in line5
will evaluate to true forming a bidirectional neighborhood
relation betweend andd̂.

Note that the exploration and selection phases are com-
plementary in a sense that while exploration extends the
neighbor set opening opportunities for resource exchanges
between anonymous organizations and the selection op-
eration contracts the neighbor set by removing the least
promising selections.

The randomness involved in the exploration phase gives
all organizations equal chance of becoming neighbors. This
property is very important for bootstrapping as it allows
newcomers to establish relationships with the existing or-
ganizations.

2.3 Sharing resources between neighbors

The mechanism of resource sharing between neighbors
is independent of the neighborhood formation protocol. In
particular, advanced techniques of policy-based resource
management [2, 3] can be employed to compute the re-
source sharing strategy among neighbors that is optimal ac-
cording to a set of customizable policies. As it has been
shown in [2], computing of an optimal sharing strategy is
an expensive operation. Restricting the sharing to a small
set of neighbors resolves the scalability limitations of such
systems, allowing them to be deployed on a wider scale.

Complex resource sharing strategies between neighbors
render additional cost that has to be taken into account while
deciding on the properties of the neighbor set. E.g., the re-
source sharing mechanisms presented in [2] and [3] incur a
sharing strategy computation cost that grows exponentially
with the size of the neighbor set. The complexity of the
sharing strategy computation implies, thus, restrictionson
the neighbor set size, which in turn limits the number of
possibilities for resource exchange.

The properties of the neighborhood formation protocol
that forms the neighbor set from organizations contribut-
ing most resources allows to employ simple strategies for
sharing resources between neighbors. The sharing strate-
gies may either give each neighbor an equal fraction of the
shared resource or divide the shared resource among the
neighbors proportionally to their contributions. Some ex-
amples of strategies that treats all neighbors equally are:(i)
allocate for each of the neighbors currently in demand an
equal fraction of resource, (ii) allocate the resource exclu-
sively to one of the neighbors in demand selected according
to a fair strategy, e.g., round-robin, for a certain amount of
time. Strategies that take into account neighbor contribu-
tions would determine the amount of shared capacity as-
signed to the neighbor or the allocation time based on the
amount of contributed resources.

3 Analysis of the sharing mechanism

In this section we study analytically the properties of the
resource sharing mechanism presented in Section 2. After
introducing a model of the grid environment, we use this
model to investigate the structure of the neighbor set found
by Algorithm 1.

3.1 System model

We model a grid system that consists of organizations
sharing resources of certain capacities. The capacity of the
shared resource can differ between organizations.

For the purpose of the analysis we assume that the shar-
ing strategy treats every neighbor in demand equally when
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disposing the shared resource. Namely, the shared capac-
ity is distributed evenly among the neighbors currently in
demand. Furthermore, we assume that an organization in
demand is able to consume any amount of the shared ca-
pacity.

We assume that the frequency of entering the demand
and the duration of the demand phase are the same for all
organizations. Organizations demand resources according
to a Poisson process with rateλ. The durations of the de-
mand phases are distributed exponentially. We denote byµ
the inverse of the average duration of the demand phase.

According to Algorithm 1, neighbors are selected based
on the incomplete information maintained by each organi-
zation in the form of local view and the record of the re-
source contributions. To simplify the analysis, in our system
model we assume that every organization has a complete in-
formation about the resources shared by other organizations
as well as the sets of their neighbors. We believe that this
simplification does not affect the credibility of our analy-
sis because the continuous exchanges of the local views be-
tween interacting organizations and the random selection of
new neighbors will let each organization to finally discover
properties of all other organizations.

3.2 Neighbor set formation

In this section we investigate the properties of the neigh-
bor set formed by Algorithm 1.

We denote bycd the contributionof organizationd de-
fined as the average amount of resources owned byd con-
sumed by a single neighbor. Combining the assumption that
the shared capacity is distributed evenly among neighbors
in demand with the fact that all organizations demand re-
sources with the same frequency and for (on average) equal
periods of time leads to the observation that the amount of
consumed shared capacity is (on average) equal across the
neighbors.

Let all organizations be ordered according to decreasing
values of their contributions. Organizations that contribute
the same amount of resources are ordered randomly among
themselves. We further use notationdi to indicate that or-
ganizationd ∈ D is assigned positioni in this order.

Under the assumption of global system knowledge, we
can rewrite neighborhood formation algorithm in a form
presented in Algorithm 2. The algorithm executes in iter-
ations. In iterationi organizationdi selects its neighbors
(line 1). Neighbors selection is performed by organizations
in the order determined by their contributions. Organiza-
tions contributing more resources are always preferred as
neighbors, and thus they can be given priority while con-
structing the neighbor sets. The neighbor set ofdi is ex-
panded until it reaches maximal allowed size (line 2). In
a single iteration of the loop in line 2, a new neighbor is

Algorithm 2: Equivalent of the neighborhood forma-
tion algorithm assuming that each organization has a
global system knowledge.

for i in 1, . . . , |D| do1

while |Ndi
| < n do2

D1 ← {d ∈ D : |Nd| < n andd /∈ Ndi
}3

if D1 = Ø then4

continue thefor loop5

end
D2 ← {d ∈ D1 : cd is maximal among6

organizations inD1}
select fromD2 an organizationdj with the7

minimal value of|Ndj
|; if many such

organizations exist, select one of them
randomly
adddi to Ndj

8

adddj to Ndi
9

end
end

added to the neighbor set ofdi. Selection of the new neigh-
bor is performed in three steps. In the first step, setD1 of
organizations that can still accept new neighbors and are not
already present in neighbor set ofdi is identified (line 3). If
D1 is empty, the algorithm continues with the next iteration
of the outer loop (line 5). In the second step, subsetD2 of
organizations with maximal contributions is selected from
among the organizations inD1 (line 6). This step guaran-
tees that the neighbor selection objective of Algorithm 1 is
preserved. According to this selection objective, any or-
ganizations inD2 could be potentially selected as a neigh-
bor of di. However, to simplify further analysis we assume
thatdi selects an organizationdj from D2 with the smallest
number of neighbors (line 7). The neighborhood relation
betweendi anddj is formed by addingdi to neighbor set of
dj (line 8) anddj to the neighbor set ofdi (line 9).

According to Algorithm 2, it is possible that after the al-
gorithm finishes, there are some organizations with neigh-
bor sets of size lower thann. This is due to the fact that set
D1 computed in line 3 can be empty. Letk be the first itera-
tion that results in empty setD1. The way setD1 is defined
implies that in iterationk there are less thann organizations
with neighbor set sizes lower thann. Since during consec-
utive iterations the neighbor set of any organization can be
only expanded, at the end of the algorithm execution there
are at mostn organizations with neighbor set sizes lower
thann. In Section 3.4 we motivate whyn should be kept
small. Following this motivation, we can simply ignore the
few possible outliers and assume that at the end of Algo-
rithm 2 each organization is assigned exactlyn neighbors.
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One more subtlety related to the neighbor set size dif-
ferentiates Algorithm 1 from Algorithm 2. Algorithm 1
reservesr positions in the neighbor set for random explo-
ration. We could introducer in Algorithm 2 by assuming
that the size of the neighbor set considered by Algorithm 2
equalsn− r instead ofn. However, sincer is significantly
smaller thann and the conversion betweenn − r andr is
straightforward, introducingr in Algorithm 2 would only
make the notation more complex without bringing a clear
benefit. Therefore, we will continue to use symboln to de-
note the neighbor set size in Algorithm 2.

3.3 Incentives for resource contributions

We will provide evidence that organizations in our sys-
tem are given incentives to contribute resources by showing
that the amount of resources acquired from the neighbors
depends on the amount of the contributed resources.

Note, that all neighborhood relationships formed in Al-
gorithm 2 are bidirectional — organizationdi addsdj to its
neighbor set only ifdj acceptsdi as a neighbor. In other
words, organizationdi will not share its resources withdj ,
unlessdj givesdi access to its own resources.

Let gdi
denote the sharinggain of organizationdi, de-

fined as the aggregated amount of resources acquired by
di from its neighbors, or using a symbolic expressiongdi

equals
∑

d∈Ndi

cd. The following observation characterizes
the correlation between the amount of resources contributed
to and gained from the neighbors.

Observation 3.1. If cdi−1
> cdi

= cdi+1
= . . . = cdj

>
cdj+1

andj − i > n + 1 thengdi
> gdj+1

andgdk
≥ gdj+1

for i ≤ k ≤ j.

Proof. If organizationdi has been selected as a neighbor
by n organizations prior to iterationi of Algorithm 2, then
gdi

> ncdi
. Otherwise,di will select remaining neigh-

bors from among organizationsdi+1, . . . , dj . In both cases
gdi
≥ ncdi

.
Let A be the set{di, di+1, . . . , dj}. If no organization

from A selectsdj+1 as a neighbor then obviouslygdi
>

gdj+1
. Otherwise, let’s assume thatdl, wherei ≤ l ≤ j,

is the first organization that selectsdj+1. Let’s assume that
dl was selected as a neighbor bym organizations prior to
iterationl of Algorithm 2. Let’s denote byB the organiza-
tions fromA that are assigned less thann neighbors prior to
stepl. Organizationdl will selectdj+1 as a neighbor only
if |B| is lower than or equal ton −m (there is not enough
organizations inA that can be selected as neighbors). Since
among the organizations inA only the organizations inB
can selectdj+1 as a neighbor,dj+1 will be selected by at
mostn − m organizations inA. If m is greater than zero
thendj+1 can be selected by at mostn − 1 organizations
from A. If m equals to zero the properties of Algorithm 2

guarantee that at least one organizationsdk ∈ B will be
assigned all neighbors prior to iterationk. Organizationdk

will then not selectdj+1 as a neighbor, which also implies
thatdj+1 can be selected by at mostn− 1 organizations in
A. Consequently,gdj+1

≤ (n−1)cdi
+cdj+1

< ncdi
≤ gdi

.
The inequalitygdk

≥ gdj+1
for i ≤ k ≤ j can be shown

using an analogous argumentation. Organizationdj+1 will
be selected as a neighbor by organizationdl, l > j + 1
only if there are no organizations inA that can be selected.
Since organizations inA are preferred as neighbors,dk will
have neighbors contributing at least as much resources as
the neighbors ofdj+1.

Observation 3.1 shows a certain property of a group of
organizations contributing the same amount of resources
to their neighbors assuming a certain minimal size of this
group. In a general case, each organizations could con-
tribute a different amount of resources, preventing such
groups from forming. We should, however, take into ac-
count that in the real environment the amounts of resources
contributed by the neighbors of an organization are esti-
mated based on the past experiences of this organization.
Since the estimates can be inaccurate, it seems to be rea-
sonable to divide the organizations into a number of groups
based on the observed resource contributions. Groups
should be defined such that the contributions of the organi-
zations inside a group do not vary much. Estimating orga-
nization contribution by taking an average of contributions
in its group can be used to mask the estimate inaccuracies.

The neighbor sets computed by Algorithm 2 and con-
sequently also the value of the sharing gain depend not
only on the amount of resources contributed to the neigh-
bors but also on the ordering among organizations with
the same contributions. To eliminate this equivocalness,
instead of analyzing the sharing gain of a single organi-
zation we rather study the average sharing gain of all or-
ganizations with the same contributions. Ifdi, . . . , dj are
all organizations contributing a certain amount of resources
then theaverage sharing gainof di, . . . , dj is defined as
(gdi

+ . . . + gdj
)/(j − i + 1). We make the following ob-

servation.

Observation 3.2. If cdi−1
> cdi

= cdi+1
= . . . = cdj

>
cdj+1

and j − i > n + 1 then average sharing gain of
di, . . . , dj is higher thangdj+1

.

Proof. Direct conclusion from the definition of the average
sharing gain and Observation 3.1.

Observation 3.2 says that by contributing more resources
organizations can increase their gain. We conclude that the
neighborhood formation algorithm provides incentives for
resource contributions. Organizations that contribute more
experience higher payoffs.
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Figure 1. Evolution of the number of neigh-
bors in demand.

3.4 Neighbor set size

The size of the neighbor set is an important parameter
of our resource sharing mechanism. In this section we in-
vestigate the impact of the neighbor set size on the sharing
performance.

We have shown in Section 3.3 that the gain of sharing
expressed as the amount of resources acquired from the oth-
ers depends on the own contribution of each organization.
The information about the amount of resources contributed
by an organization is computed by each neighbor based on
the amount of consumed resources. In this respect, the to-
tal amount of resources consumed by all neighbors, rather
than the amount of local resources intended for sharing de-
termines the value of the sharing gain. It is, thus, in the best
interest of an organization to maximize the utilization of the
shared resources. Theutilization of the shared resource is
defined as the fraction of time when the resource is used by
at least one neighbor. It is obvious that the utilization de-
pends on the size of the neighbor set. We denote byun the
value of utilization for the neighbor set sizen.

We will investigate how the value of the neighbor set im-
pacts the shared resource utilization. Resource utilization
depends on the probability that a certain number of neigh-
bors are in demand at a given time. The evolution of the
number of neighbors in demand can be modeled as a birth-
death process represented by a Markov chain, as depicted
in Figure 1. The state of this process represents the number
of neighbors that request the shared resource.

The transition rates from statei to j, qi,j , of the birth-
death process are given by the following formulas

qi,j =







(n− i)λ whenj = i + 1,
iµ whenj = i− 1,
0 otherwise.

In order to compute the equilibrium probabilities of the
state transitions we use the method of a cut by applying
the global balance condition to the set of states0, . . . , n.
In equilibrium the probability flows across the cut are bal-
anced. Ifπi is the probability of being in statei then the
balanced cut condition translates to

(n− i)λπi = (i + 1)µπi+1.

We obtain the recursion

πi+1 =
(n− i)λ

(i + 1)µ
πi.

Solving the recursion, all the state probabilities can be ex-
pressed in terms of that of the state0, π0

πi =

(

n

i

) (

λ

µ

)i

π0.

The probabilityπ0 is determined by the normalization con-
dition

∑n

i=0
πi = 1

π0 =

(

1 +
λ

µ

)−n

. (1)

Since we assume that the resource is fully utilized as long
as there is at least one neighbor in demand, the resource uti-
lization is determined by the probabilityπ0 of none of the
neighbors being in the demand state. The resource utiliza-
tion un can be, thus, expressed as

un = (1 − π0).

Substituting forπ0 the value computed in Eq. 1 we get

un = 1−

(

1 +
λ

µ

)−n

. (2)

According to Eq. 2, the shared resource utilization con-
verges to 1 exponentially withn. Hence, even small values
of n result in high utilization. Keeping the value ofn small
has also a practical reason. Every new neighbor increases
the overhead of resource sharing. The sharing overhead
comes from several sources. First, the total amount of infor-
mation that has to be maintained by each organization de-
pends onn. Second, execution of multiple workloads at the
same set of resources requires some mechanisms to match
resources with workloads and isolate workloads from inter-
fering with each other, e.g., in a form of virtual machines.
The cost of resource matching and isolation increases with
the number of workloads [8, 9, 10].

4 Experimental evaluation

4.1 Experimental setup

We evaluate our resource sharing mechanism on a re-
source model derived from real-world traces. We have col-
lected statistics about the server resources used by IBM cus-
tomers. These statistics have been extracted from the Server
Resource Management (SRM) [11] system that reports his-
torical and near real time trends of resources serviced by
IBM.
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The SRM data set provides for each resource information
about the organization that owns the resource and average
resource utilization in a designated time period. The data
used in our experiments contains resource statistics for 1153
organizations collected during the period from 21 Septem-
ber 2006 until 28 September 2006.

We perform a discrete time simulation of a system com-
posed of organizations sharing resources with characteris-
tics described by the SRM traces. The particular type of
resource that we are looking at is the CPU power measured
in MHz. The functionality offered by the SRM system is
limited to generation of reports summarizing resource usage
over a time period of at least one day. SRM does not give
access to fine grained statistics which are required to extract
characteristics of individual workloads determining organi-
zation’s demand periods. In our experiments we assume
that an organization arrives to the demand state according
to a Poisson process with a rate equal to the utilization of
the resources owned by the organization. The demand du-
rations are distributed exponentially with average equal to a
single time unit.

In one of the experiments, we investigate the impact of
the neighbor set size on the sharing performance. In the re-
maining experiments the size of the neighbor set is equal to
10. The value of parameterr of the neighborhood forma-
tion algorithm is set to 1. Initially, the local view of each
organization contains 10 randomly selected organizations.

As a measure of the duration of the simulation, we use
the average number of the neighborhood formation algo-
rithm invocations. The exploration and selection phases of
Algorithm 1 are executed one after another in constant time
intervals. The duration of the time interval between subse-
quent invocations of the neighborhood formation algorithm
in all experiments is equal to ten times the average interval
between consecutive arrivals of an organization to the de-
mand state. We stop the simulation after each organization
invoked the neighborhood formation algorithm at least 100
times. Selection of this particular number is based on the
fact that we did not observe a significant change in the ob-
tained statistics for larger number of iterations of the neigh-
borhood formation algorithm.

4.2 Results and discussion

4.2.1 Fairness

The first experiment targets at investigating the preserva-
tion of the fairness in resource contributions by our resource
sharing algorithm. Figure 2 illustrates the correlation be-
tween the average amount of external resources consumed
by an organization when it is in demand and the average
amount of resources it contributes to its neighbors. Organi-
zations in Figure 2 are ordered according to the increasing
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Figure 2. Average amount of resources con-
sumed by each organization during the de-
mand phase compared with the contribution.
Organizations are ranked according to in-
creasing contributions.

values of their contributions. In that figure, for each orga-
nization, two data points are shown: consumed resources
(plus sign) and contributed resources (triangles). The dark
curve is formed by plotting of many data points within a
small region indicating the predominant trend.

The results presented in Figure 2 allow us to assess the
fairness of the proposed resource sharing mechanism. Anal-
ysis of the experimental results indicate that, on an average,
the absolute difference between the amount of consumed
and contributed resources equals 4149, which is around
16% of the average amount of the shared resources (24896).
This result indicates that those contributing less get to con-
sume less resources and those contributing more get to con-
sume correspondingly higher amounts of resources. Thus,
the system provides self regulation and prevents formation
of freeriders.

4.2.2 Contributing neighbors

In the second experiment, we measure the fraction of bidi-
rectional sharing relationships between organizations. This
is a measure of cluster formation amoung organizations of
similar resource lending and borrowing characteristics. In
Figure 3, for each organization, we present the fraction of
neighbors that are sharing resources with this organization
(have this organization in their neighbor sets). The organi-
zations in Figure 3 are ordered according to the increasing
number of the contributing neighbors.

The maximal size of the neighbor set is equal to 10.
Hence, the number of contributing neighbors vary between
0 and 10. The average number of contributing neighbors
among all organizations is 7.9. Thus, on an average, 79bor-
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Figure 3. The number of neighbors that also
contribute resources for the maximal neigh-
bor set size equal to 10. Organizations are
ranked according to the increasing number
of contributing neighbors.

rowers) of a given organization are also lenders of resources
to that organization. In other words, large fraction of orga-
nizations have borrower and lender relations among each
other. This shows that bidirectional interactions are very
strong among organizations and clustering of similar orga-
nizations is taking place. Note also that organizations con-
tributing to a small number of other organizations tend to
have fewer ”friends in need”.

The exceptionally small number of organizations with
all 10 neighbors contributing resources comes from the fact
that r (in our case equal to 1) neighbors are selected ran-
domly regardless of their contributions.

4.2.3 Neighbor set size

In the third experiment we evaluate the impact of the neigh-
bor set size on the average imbalance between the contribu-
tions and the consumptions of an organization. The imbal-
ance is formally defined as the absolute difference between
the amount of contributed and consumed resources. Fig-
ure 4 presents the value of the imbalance averaged over all
organizations as it changes with the size of the neighbor set.

This set of experiments indicate that, as the neighbor set
size (n) is increased, an organization has a better chance
of recovering (i.e., borrowing when it is in demand) all the
resources it shared with other organizations. This is less
likely at small values ofn. However, since there is a cost
associated with the size of the neighbor set, there is size
beyond which the diminishing returns makes it unattractive
to use such large neighbor sets. In fact, the sweet spot is at
the knee of the curve. This motivated our choice ofn being
around 10 for other experiments.
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Figure 4. The correlation between the size of
the neighbor set and the average imbalance
(absolute difference) between the contribu-
tion and the consumption.

The experimental results confirm the conclusions of the
analytical study presented in Section 3.4. Note from Fig-
ure 4 that at the knee of the curve, the utilization of the
shared resources approaches its maximum, increasing the
chances of an organization to find neighbors with similar
contributions.

5 Conclusions

In this paper, we describe strategies suitable for multi-
site resource sharing among autonomous organizations.
The strategies presented here allow participants to exchange
resources with one another, with the assurance that when
an organization shares a local resource with other organi-
zations in the grid, it stands to gain back use of a similar
resource when it is in need of such a resource in the future.
We describe mechanisms enabling these sharing strategies
and present analytical and experimental results to show that
our strategies ensure fairness (i.e., amount of resources con-
tributed by an organization roughly equals the resources
borrowed by that organization), scalability, and low over-
heads.

The approach presented in this paper tries to address the
perennial resource management problem experienced by
many organizations: the problem of determining the right
level of investment in IT resources so that the organization
is neither over-provisioning nor under-serving the local de-
mand. Using the approach presented in this paper, organi-
zations can invest and provision resources to meet the aver-
age demand over a time period. The peaks and troughs in
demand around the average are handled by a grid based re-
source sharing mechanism. This grid based system allows
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participants to borrow resources from others, when they are
experiencing higher than average local demands and lend
local resources to others, when they are experiencing a de-
cline in local demand. The system described here ensures
fairness so that a participant roughly gets to borrow what it
lends to others over a period of time. The system described
here is self-adaptive and scalable. It does not incorporate
any centralized resource broker which makes it robust and
extendable to thousands of participants.

Finally, we note that efficient and secure use of shared
resources across organizations require further architectural
and design considerations. First of all, today IT environ-
ments exhibit a high level of heterogeneity in both the
hardware and software configurations. At the same time,
grid applications usually lack the sophistication required
to dynamically reconfigure to a particular execution envi-
ronment. However, the problem of heterogeneity can be
overcome by introducing a layer of indirection between the
original resource configuration and the application execu-
tion environment, in the form of virtual machines (VMs).

Resource virtualization masks the heterogeneity of the
resource instance specific configuration allowing the ser-
vice to execute on practically any resource. Virtualiza-
tion has also implications on security aspects of the re-
source sharing in untrusted environments. In addition, VMs
are easier to control and monitor for policy conformance
than arbitrary services running directly on the resources.
E.g., virtualization technology offers out-of-the-box sup-
port for service migration and checkpointing. Disjoining
the execution environment of different services by placing
them inside separate VMs prevents the services from in-
terfering with each other. We have developed a realiza-
tion of VM based concepts in the Harmony architecture —
a platform for delivery of customized services on grid re-
sources [10, 12]. By adopting a system such as Harmony
for their local computing environment, organizations can ef-
ficiently share underlying resources with one another using
the mechanisms described in this paper.
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