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Abstract

We describe a hybrid linear programming (LP) and evo-

lutionary algorithm (EA) based resource matcher suitable

for heterogeneous grid environments. The hybrid matcher

adopts the iterative approach of the EA methods to per-

form a goal oriented search over the solution space and,

within each iteration, uses the LP method to solve a partial

resource matching problem. By judiciously controlling the

partial problem size and its complexity, the hybrid matcher

balances the accuracy of the solution and the execution

time. We describe a grid management architecture that in-

corporates the hybrid resource matcher. Performance re-

sults indicate that the execution time of the hybrid matcher,

under a variety of conditions, is at least as good and often

significantly better than the execution time of LP and EA

based matchers. The hybrid matcher is found to scale well

with the complexity of the problem and to maintain sensitiv-

ity to the response time constraints of on-line environments.

1. Introduction

In this paper, we consider the resource matching prob-

lem arising in grid environments where resources tend to

be heterogeneous, requests call for multiple types of re-

sources, and system managers expect resource sharing,

load balancing, high resource utilization and/or throughput.

While the resource matching problem is known to be NP-

complete [6], for grid environments, efficient on-line re-

source matching algorithms that are sensitive to response

time constraints and can quickly adapt to changes in the

system are highly desirable.

In our earlier work, we modeled resource matching as an

optimization problem and solved it using linear program-

ming (LP) based methods [9]. While we found the LP-

based approach highly effective in providing optimal re-
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sults, we observed two drawbacks of this approach: (i) it

does not provide ability to externally control its response

time and (ii) modeling new constraints or objectives is non-

trivial. We also considered an Evolutionary Algorithm (EA)

based approach called evolutionary matching [8]. We found

this approach to be responsive to time constraints and intu-

itive to model a variety of problems. However, the evolu-

tionary matcher does not guarantee solution optimality and,

in some cases, the convergence rate can be too low.

In this paper, we propose a hybrid resource matcher that

retains the pros of the LP and EA based approaches, while

minimizing their shortcomings. The hybrid matcher adopts

the iterative focused random search techniques from the EA

approach and, within each iteration, adopts the direct solu-

tion technique from the LP approach.

The contributions of this paper are as follows. We de-

scribe the hybrid resource matcher in detail. To our knowl-

edge, this is the first attempt to combine an iterative search

technique such as the EA with a direct optimization method

such as the LP for on-line resource matching. We describe

an implementation of on-line resource matching service.

We provide extensive experimental results to compare the

performance of the hybrid matcher with those of LP and

EA based resource matchers.

This discussion is organized as follows. In the next sec-

tion, we formalize the resource matching problem consid-

ered here. In Section 3, we present a detailed description of

the hybrid resource matcher. A grid management architec-

ture incorporating the hybrid resource matcher is discussed

in Section 4. The experimental setup and performance re-

sults are presented in Section 5. Section 6 describes the

related work and Section 7 concludes the paper.

2. The problem of grid resource matching

Problem statement. We define the resource-matching

problem as the process of systematically matching re-

sources with requests to achieve specific global objectives

while conforming to request and resource specific require-

ments, constraints, preferences, and policies. The problem



considered here is general as a result of the models used to

define resources, resource requests, and the associated poli-

cies, which we explain in the following.

Resource model. Resources in the grid environment

are categorized by resource types. Examples of resource

types are servers, file systems, databases, etc. Each resource

type has one or more static attributes and zero or more dy-

namic attributes. For example, a resource type “server”

may have the following static attributes: host name, CPU

speed, number of CPUs, OS name, and so on. Examples of

dynamic attributes of a resource type “server” are: current

CPU load, memory usage, available disk space, etc. Dy-

namic attributes are associated with capacities that get con-

sumed by resource requests or jobs. Capacity consumption

by multiple requests results in resource sharing.

Request model. A job is a request for resources, which

are expressed as a set of dependencies on one or more re-

source types. Each dependency places one or more con-

straints on the attribute values of a specific resource type.

For example, a job may depend on a resource of type

“server” with CPU speed of at least 600MHz and memory

of at least 1GB. A job may also specify preferences. Prefer-

ences provide selection criteria when multiple resource sets

satisfy dependencies associated with a job. A job may spec-

ify its preferences either by providing a method of order-

ing qualifying resources or by simply identifying specific

resource instances by attribute value or by name. Finally,

each job defines the expected capacity usage values for the

dynamic attributes of the consumed resources. The depen-

dencies, constraints, preferences, and capacity usage values

together constitute the requirements of a job. Throughout

the paper we use the terms resource request and job inter-

changeably.

Policies. The overall use of resources by jobs and ar-

bitration among jobs competing for resources are governed

by system-wide policies or objectives set by site adminis-

trators. These system wide policies guide the selection of

resources for matching with jobs. Some examples of such

policies are: (i) maximize throughput, (ii) maximize priori-

tized throughput, (iii) load balance, (iv) minimize the num-

ber of resources matched, and (v) match high priority jobs

with high performance resources. A good resource matcher

matches jobs with resources so that an optimal value of the

objective function is achieved without violating any con-

straints.

Optimal solution. An assignment of jobs to resources is

a feasible solution if no job or resource specific constraints

are violated. In a feasible solution, not all jobs need to be

matched with required resources. Obviously, there usually

exist more than one feasible solution, but not all of them

are optimal. To determine the optimal solution, a resource

matcher needs to explicitly or implicitly compare the qual-

ity of the feasible solutions against one another. The quality

Algorithm 1: Hybrid resource matcher pseudocode.

initialize the population of solutions1

repeat2

begin

perturb the population3

construct a partial problem4

solve the partial problem using LP approach5

reconstruct the complete solution6

evaluate solution objective function values7

select solutions for the next generation8

end

until the termination condition is met9

return the best solution found so far10

of any two solutions can be compared by using their objec-

tive function values. The preferred solution is the one with

the higher value of the objective function. The resource

matching can be then defined as an optimization problem

of finding a feasible assignment of jobs to resources that

maximizes the value of an objective function.

3. Hybrid resource matcher

In this section, we describe a hybrid resource matcher

that combines two different resource matching techniques:

the linear programming (LP) based approach and the Evo-

lutionary Algorithm (EA) based approach. The hybrid

matcher employs an EA approach to divide the resource

matching problem into partial problems, then invokes LP to

solve these problems and reconstructs the complete solution

by combining selected solutions of the partial problems. In

the following, we describe the EA and LP components of

the hybrid matcher separately.

3.1. EA component

We build the skeleton of the hybrid matcher on an Evo-

lutionary Algorithm (EA) [3]. EAs are optimization meth-

ods inspired by the nature. EAs perform a focused random

search by simulating an evolution of a population of solu-

tions. As described in Section 2, a solution in the context

of the resource matching problem represents a feasible, but

not necessarily optimal, assignment of jobs to resources.

The high-level pseudocode of the hybrid resource

matcher is shown in Algorithm 1. The resource matcher

maintains a constant-size population of feasible solutions

that are computed taking into account job-, resource-, and

policy-specific constraints. The resource matching starts

with an initial population of solutions (line 1). In [8], we

discuss several alternative initialization methods. The hy-

brid matcher follows the iterative procedure of the evolu-

tionary resource matcher (line 2). In each iteration, the

population is perturbed by removing a fixed number of job-

to-resource assignments, effectively releasing the resource



capacities reserved for those assignments (line 3). This can

open up opportunities for new assignments that were not

possible before. In the normal EA based resource matcher,

after the perturbation step, a resource matching problem for

all unmatched jobs is constructed and solved. In the hy-

brid matcher, the complete resource matching problem is

divided into partial problems by randomly selecting a fixed

number of unmatched jobs and a number of available re-

sources (line 4). Each partial problem is then solved in

line 5 using an LP approach described in Section 3.2. The

partial solution is added back to construct a new feasible

solution in the current population (line 6).

The rest of the hybrid matcher follows similar structure

as a normal evolutionary matcher. First, the solutions in

the population are evaluated and the corresponding objec-

tive function values are computed (line 7). A subset of so-

lutions with objective function values above a cutoff value

is selected to form the next generation of solutions (line 8).

A small number of lower-quality solutions are also added

to the population to enable exploration capability. The iter-

ations are repeated until a termination criteria is met (line

9). Some examples of termination criteria are: (i) a prede-

fined number of iterations, (ii) no improvement in the ob-

jective value over a number of consecutive iterations, (iii)

a maximal execution time has elapsed. The matcher keeps

track of the best solution which is returned as the result of

the matching process (line 10).

3.2. LP component

Linear programming (LP) [12] is a popular technique of

solving optimization problems. LP models the optimization

problem as a set of linear expressions composed of input

parameters and output variables. The LP solver starts by

creating a problem instance of the model by assigning val-

ues to the input parameters. The problem instance is then

subjected to an objective function, which is also required to

be a linear expression. The values of the output variables,

which collectively represent the optimal solution, are deter-

mined by maximizing the value of the objective function.

We apply the linear programming technique to solve the

partial problems constructed in line 5 in Algorithm 1.

3.2.1. Notation. The linear program takes the following
input parameters describing jobs and grid resources:

J is the set of jobs,

R is the set of resources,

T is the set of resource types,

A is the set of dynamic resource attributes. Attributes are unique

across resource types — resources of different types are as-

signed distinct attributes,

Pj is the priority, the higher the better, of job j, j ∈ J ,

N(r,a) is the capacity of attribute a, a ∈ A of resource r, r ∈ R,

U(j,a) is the capacity of attribute a, a ∈ A consumed by job j,

j ∈ J ,

E(j,t) is the set of resources of type t, t ∈ T , with static attribute

values satisfying requirements of job j, j ∈ J .

The above set of parameters provides a formal descrip-

tion of the considered grid environment. In this environ-

ment the properties of grid resources are denoted by speci-

fying capacities of their attributes (N(.,.)). E.g., a resource

representing a server may define capacities for the attributes

describing available memory and CPU cycles. Jobs de-

scribe dependencies on resources by specifying the con-

sumptions of the attribute capacities (U(.,.)). In addition to

resource capacity consumptions, a job specifies the required

values of the static resource attributes. E.g., some jobs can

be executed only on a server located in a certain network

domain. Based on the observation that resources with re-

quired values of the static attributes can be identified in a

preprocessing step, we do not include the static-attributes-

related requirements in the set of input parameters. Instead,

we define for each job and dependent resource type a set of

resource instances of that type with required values of the

static attributes (E(.,.)).
In addition to the input parameters, we define a set of

output variables that store the solution of the matching prob-
lem:

X(j,r) is a 0/1 variable equal to 1 if job j, j ∈ J is matched to

resource r, r ∈ R, and equal to 0 otherwise,

Zj is a 0/1 variable equal to 1 if job j, j ∈ J is matched to its

required resources, and equal to 0 otherwise.

The value of variable X(.,.) indicates if a job is matched

to a resource, and the value of Z. indicates if a job gets

matched to all required resources.

3.2.2. Constraints. The feasibility of a particular assign-

ment of values to the output variables in the context of the

resource matching problem is determined by a set of con-

straints. All constraints in the linear program have to be

linear expressions.

Gang match constraints ensure that we either match a job

with all required resources or we do not match the job with

any resource at all. We formalize the gang match constraints

for each job j and dependent resource type t as a set of

linear equations:

∑

r∈E(j,t)

X(j,r) = Zj .

These equations guarantee that at most one resource is

matched per dependency and none are matched unless all

dependencies of a job are satisfied.

Resource capacity constraints guarantee that the con-

sumption of the resource capacities does not exceed the to-

tal available capacity declared by the resources for their dy-

namic attributes. Given a dynamic resource attribute a and a

job j, job j will consume U(j,a) of the capacity of attribute a



if this job is matched to the resource with this attribute and

consume 0 otherwise. Hence, the resource capacity con-

straints translate to the following set of linear expressions

defined for each resource r, r ∈ R and its dynamic attribute

a, a ∈ A: ∑

j∈J

U(j,a) ∗ X(j,r) ≤ N(r,a).

For a matching to be feasible, all the gang matching con-

straints and resource capacity constraints must be simulta-

neously satisfied.

3.2.3. Objective functions. The objective function defines

the quality of a matching when multiple feasible solutions

exist. LP uses the objective function to select the optimal

matching. We model three objective functions.

Throughput objective function is defined as the number

of jobs matched. Maximizing the value of this objection

function leads to a matching that satisfies as many jobs as

possible. We formalize the throughput as a linear expres-

sion
∑

j∈J Zj .

Prioritized throughput takes additionally into account

job priorities by assigning weights to the elements of the

throughput summation
∑

j∈J Pj ∗ Zj .

Load balance objective function is defined as the fraction

of the unused capacity on the most heavily loaded resources.

Trying to maximize the value of this objective function,

the matching process will move jobs from the most heavily

loaded resources to less loaded resources and reach some

kind of load balance. We define a new variable Ga for each

dynamic attribute a to represent the fraction of used capac-

ity of this attribute. We modify the linear inequalities for

resource capacity constraints introduced in Section 3.2.2 to

calculate the value of variable G.:

∑

j∈J

U(j,a) ∗ X(j,r) = N(r,a) ∗ Ga, Ga ≥ 0, Ga ≤ 1.

We then define another variable F to represent the fraction

of unused capacity on the most heavily loaded resources by

the following set of inequalities:

F ≤ 1 − Ga,

for each dynamic attribute a, a ∈ A. The load balance

objective is achieved when F is maximized.

3.3. Discussion

We have shown in our previous work [9, 8] that LP and

EA can be applied to the problem of on-line grid resource

matching as stand-alone matchers. By combining LP and

EA in the hybrid approach, we have built a resource matcher

that inherits their desired properties while reducing some

of their limitations. We discuss how the properties of the

hybrid matcher compare to the properties of stand-alone LP

and EA matchers†.

The deterministic nature of LP guarantees that the com-

puted solution always represents the optimal allocation of

jobs to resources. In contrast to LP, EA explores the solution

space using a goal oriented random search. Asymptotically,

EA can be shown to converges to the optimal solution [3].

However, it is impossible to determine if the best solution

found by EA is an optimal solution.

In case of the hybrid matcher, the optimality of the job-

to-resource assignment is a configuration issue. When the

partial problem solved by LP is equal to the complete prob-

lem, the hybrid matcher gives the optimal solution. Smaller

sizes of the partial problems may result in a suboptimal so-

lution.

The linear program solvers operate on an abstract level

of mathematical expressions. It is generally unlikely that an

arbitrary intermediate state of the linear solver represents

a feasible solution of the resource matching problem. The

only feasible solution produced by the LP matcher is the

optimal solution. Keeping in mind that the problem of re-

source matching is NP-hard, it may take LP an exponential

amount of time to compute the optimal solution. The EA

matcher explores the solution space by gradually improving

the quality of the current best solution. Therefore, the exe-

cution of EA can be stopped practically at any point and still

produce a feasible solution that approximates the optimal

resource matching. Thus, the EA matcher has the sensitiv-

ity to the response time constraints and provides the ability

to control the execution time of the matching process.

The hybrid matcher preserves the incremental solution

improvement property of the evolutionary matcher. The

partial problem is defined such that a solution of the partial

problem is automatically a feasible solution. Two elements

of the hybrid matcher design result in its scalability. First,

the partial problem size can be used to control the complex-

ity of the work delegated to the embedded LP matcher. The

larger the partial problem, the higher the complexity of each

invocation of the LP matcher. Second, keeping track of the

best solution found so far allows the matching process to

be stopped after any number of iterations and still get an

approximation of the optimal solution.

A well designed resource matcher should be flexible and

easy to extend. During the course of its deployment, the

business goals may change resulting in different objective

functions for the matcher. Similarly the workload and re-

source characteristics may change. Formulating a general

grid resource matching problem in terms of linear expres-

sions is not trivial. The level of abstraction of the linear

model makes it difficult to modify and extend. EA is much

more flexible in this respect. Alternative objective functions

†From now on while referring to LP or EA matcher we mean a stand-

alone resource matcher, not the LP or EA component of the hybrid matcher
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Figure 1. Architecture of the on-line matching

system supporting the LP, EA, and hybrid re-

source matching functionality.

can be implemented in a high-level programming language

or even plugged into the EA matcher in a form of external

black-boxes rating solutions in a population according to

some internally unknown criterion.

At first, it may seem that modifying the hybrid matcher

in response to changes in the resource matching model is at

least as difficult as modifying the stand-alone LP matcher.

However, in many cases the change in the resource match-

ing model can be addressed without altering the embedded

LP matcher. Minor changes in the objective function can

be usually handled by modifying only the solution evalu-

ation procedure in line 7 of Algorithm 1. It is quite com-

mon that the objective function (e.g., maximize the priori-

tized throughput) is composed of the major objective (max-

imize the number of matched jobs) and a minor objective

(maximize the sum of the priorities of the matched jobs).

A major objective can be then hard-coded in the embedded

LP matcher leaving the minor objective optimization for the

solution selection procedure. Introducing an alternative mi-

nor objective (e.g., consider job preferences on resources

instead of job priorities) can be done transparently to the

LP matcher core.

4. Architecture of the on-line Resource

Matcher

We have designed and implemented an on-line resource

matching system, referred to as the Resource Matcher, that

supports the stand-alone LP, the stand-alone EA, and the

hybrid resource matching approaches. Inputs to Resource

Matcher are: the resource requirements for a batch of jobs,

job priorities and preferences, current resource states, re-

source and site specific policies. Figure 1 shows the archi-

tecture of Resource Matcher. The components of Resource

Matcher can be divided into two functional layers: the Re-

source State Management Layer and the Resource Matching

Layer.

Resource State Management Layer. This layer keeps

track of the current state of each resource available for job

execution. Resource providers specify the static resource

attributes and the current values of dynamic attributes. An

example of a resource provider is a site administrator, who

may specify for a resource instance its resource type, static

attribute values, and sharing policies for that resource. The

available capacities of the dynamic attributes are updated

periodically to reflect the current resource usage. Usually

the update is performed by a resource usage monitor, which

may also act as a resource provider.

The resource attribute information is input to the Re-

source State Management Layer as XML documents by

making a Web service call to the Resource Repository In-

terface. Resource Repository Interface, which is a Web

service deployed on an IBM WebSphere application server,

translates the resource specific information from the XML

documents to the internal data format of the Resource State

Repository. Resource State Repository maintains the state

and other resource specific information for all resources

in the Resource Database running on an IBM DB2 en-

gine. In addition, Resource State Repository performs job

requirement-specific intelligent query parsing and query

optimization by caching information acquired from the

database.

Resource Matching Layer. The components in this

layer perform the actual matching of jobs with resources.

We have implemented all three resource matchers: the

stand-alone LP, the stand-alone EA, and the hybrid resource

matchers. The details of the stand-alone LP and EA imple-

mentations are presented in [9] and [8], respectively. The

EA component of the hybrid matcher has been written in the

Java programming language. The LP model is expressed in

GNU MathProg language, which is a subset of AMPL [5],

a well established standard among LP languages. The LP

solving functionality is provided by the open source GNU

Linear Programming Kit [1].

Job submitters send jobs asynchronously by invoking the

Matcher Interface, a Web service deployed on an IBM Web-

Sphere application server. The resource requirements, con-

sumptions and preferences of the submitted jobs are de-

scribed in XML. The Matcher Interface translates the job

descriptions to the internal Resource Matcher data struc-

tures and, after the matching is finished, performs a reverse

operation of creating and sending an XML document de-

scribing the matched resources to the job submitters.

Job Queue caches all arriving jobs if the resource

matcher is busy processing jobs that arrived earlier. De-

pending on the current system configuration, the LP, EA or

hybrid resource matcher is executed. The executed matcher

consults Resource State Repository to obtain the current

state of all resources relevant to the batch of jobs waiting

in the Job Queue.



Resource Type Static Attrs. Dynamic Attrs. Instances

server
CPU architecture, utilization,

50
# CPUs, domain memory

database vendor connections 50

network IP, protocol bandwidth 50

file storage filesystem size 50

Table 1. Resource model.

5. Performance evaluation

In this section we present results of an experimental

study evaluating the performance of the hybrid resource

matcher and comparing it with the performance of the

stand-alone LP and EA matchers.

5.1. Experimental setup

We used real-world traces from a deployed infrastructure

to represent the grid resources in our experiments. For this

we used the resource statistics provided by the Server Re-

source Management (SRM) [2] system which reports his-

torical and near real time trends of resources serviced by

IBM. Our experimental grid environment consists of 200

resources divided into four types: server, database, net-

work, and file storage. Each resource type is assigned one

or two dynamic attributes and one, two or three static at-

tributes. The detailed information on the resources and their

attributes is presented in Table 1.

The workload used in the evaluation is generated syn-

thetically. Job priorities are selected randomly and uni-

formly from the range 1, . . . , 10. For each job we select

the dependent resource types making sure that each job de-

pends on at least one resource type. The dependency of a

job on a resource type is determined by Bernoulli distribu-

tion with the probability of success equal to the value of

the complexity parameter that we vary throughout the ex-

periments. After the dependent resource types have been

chosen, a set of dependent attributes for each of these types

is selected. Each job selects one or more dynamic attributes

and one or more static attributes of the dependent resource

type. Also at this stage the selection is performed according

to a Bernoulli distribution with the probability of success

equal to the complexity parameter. The required value of

the dependent static attribute is selected randomly and uni-

formly from the set of available values of this attribute. The

minimal required value of the dynamic attribute is selected

randomly and uniformly from the interval bounded by 0 and

the maximal available value of that attribute among the de-

fined resources.

We perform experiments for all three objective functions

defined in Section 3. The EA resource matcher is config-

ured to terminate its execution if one of the following con-

ditions is satisfied: (i) 1,000 iterations has been performed,

(ii) the current best solution has not been improved during

500 consecutive iterations, (iii) the total execution time has

exceeded 25,000 seconds. The hybrid matcher adopts the

termination conditions of EA matcher only changing the

maximum allowed number of iterations to 100 and the max-

imum number of iterations without improvement to 50. The

size of the partial problem solved in one iteration of the hy-

brid matcher equals 5.

We used several machines to deploy the components of

the on-line Resource Matcher described in Section 4. The

Resource Repository Interface, Resource State Repository,

Matcher Interface, stand-alone EA matcher, and EA com-

ponent of the hybrid matcher run on a Windows 2000, dual

Xeon 2.6GHz CPU, 3GB RAM machine. A machine with

an analogous configuration hosts the Resource Database.

The stand-alone LP matcher and LP component of the hy-

brid matcher run on a RedHat EL3, dual Xeon 2.6GHz

CPU, 3GB RAM machine.

5.2. Results of the experiments

To compare the performance of the three resource match-

ers, we measured the execution time and the final solution

quality using the LP, EA, and the hybrid resource matchers

for a range workloads and the experimental setup described

above. We discuss the results in the following.

5.2.1. Execution time. In the first set of experiments

we measure the execution time of the EA, LP, and hybrid

resource matchers for the three objective functions defined

in Section 3. For each objective function and each resource

matcher we perform four series of experiments for the val-

ues of the complexity parameter varying from 0.1 to 0.5

with step 0.1. After the value of the complexity parameter

is selected, we vary the number of jobs sent to the resource

matcher in a single batch. The batch size is one of 10, 20,

30, or 40.

Table 2 shows the execution time of the resource match-

ers for the throughput maximization, prioritized throughput

maximization and load balance objective functions. In all

experiments, the EA resource matcher required more time

to find the matching than any of the other two matchers.

Clearly, the objective most difficult to optimize is the load

balance. The relative increase in the execution time of EA

and LP when the throughput is replaced with the prioritized

throughput and then the load balance objective is more sig-

nificant than in case of the hybrid matcher. The execution

time of the LP matcher is not affected much by changing the

objective from the throughput to the prioritized throughput.

However, setting the objective to load balance increases the

execution time of LP by a factor of more than two com-

pared to the other objective functions. This suggests that

LP matcher is much more sensitive to the form of the objec-

tive function than the alternative approaches. With excep-

tion of the lowest-complexity problems, for which the LP

matcher achieves best results, the hybrid matcher outper-

forms the remaining matchers. The hybrid resource matcher



Complexity 0.1 0.2 0.3 0.4 0.5

Batch size 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

Maximize

throughput

Hybrid 3 6 11 12 4 6 10 11 4 13 50 74 3 21 71 140 6 52 124 214

LP 1 6 11 14 2 6 15 20 2 8 149 350 1 13 331 476 2 109 513 800

EA 7 134 201 298 14 245 415 1822 25 374 1726 1999 661 2752 3665 4384 8020 9114 13822 25000

Maximize

prioritized

throughput

Hybrid 3 7 14 14 5 8 13 13 5 16 62 90 4 26 86 176 8 65 152 276

LP 2 8 13 17 2 8 17 24 3 10 184 454 2 15 420 618 3 131 661 1032

EA 10 193 285 417 20 352 615 2639 36 558 2470 2959 936 4123 5354 6401 11780 13308 20661 25000

Load

balance

Hybrid 4 8 17 18 6 9 16 17 6 20 78 115 5 32 111 218 9 79 195 338

LP 4 19 33 41 5 18 42 60 7 25 454 1058 4 39 1022 1455 6 337 1565 2437

EA 12 232 361 508 25 425 720 3252 44 643 3039 3424 1143 4698 6457 7576 13759 16068 25000 25000

Table 2. Execution times in seconds of the hybrid, LP, and EA resource matchers configured with

three alternative objective functions and applied to problems of different complexities and sizes.

scales much better with the problem complexity and size

than any of the other two matchers. The significant im-

provement in the execution time achieved by the hybrid

matcher is extremely important for the on-line aspect of

the resource matching that imposes constraints on the max-

imum allowed execution time. We also note here that, com-

pared to the other two matchers, the execution time of the

hybrid matcher grows much more slowly as the complexity

and/or the batch size is increased. This is an important de-

sirable property of a resource matcher in a grid environment

where changes in workload or resource availability tend to

be clustered and not gradual.

5.2.2. Quality of matching. In this section, we compare

the quality of hybrid matcher solution with that obtainted

using the LP and EA based approaches. We use the value of

the objective function as a measure of the solution quality.

Figure 2 shows the objective values corresponding to the

final solutions found by the three resource matchers rela-

tive to the maximal objective value. The solution computed

by the LP matcher is by definition optimal. For throughput

maximization, the quality of the solution found by the EA

matcher in all cases but one is better or equal to the qual-

ity of the solution computed by the hybrid matcher. Only

for the complexity parameter equal to 0.5 and the batch size

equal to 40, the EA matcher exceeds the allowed execution

time and has to be terminated resulting in a lower quality

solution. The advantages of the hybrid approach over the

EA matcher become visible for more complicated objec-

tive functions. A significant difference in the quality of the

matching between the hybrid and EA approaches is appar-

ent in case of the load balance objective.

6. Related work

Condor system uses classified advertisement (ClassAd)

framework for solving resource allocation problem in a dis-

tributed environment with decentralized ownership of re-

sources [10]. The original matchmaking framework only al-

lows a request to be matched with a single ClassAd. In [11],

the matchmaking mechanism of Condor has been extended

to gangmatching for co-allocation. The running example

in [11] is the inclusion of a software license in a match of

a job and a machine which is a simpler problem than the

general grid resource matching problem introduced in Sec-

tion 2.

The Redline matching system [7] proposes a matchmak-

ing system more expressive than Condor ClassAd. In Red-

line, the matching problem is transformed into a constraint

satisfaction problem. The constraints are checked to make

sure that no conflicts occur and one of the existing con-

straint solving technologies (such as LP) are used to solve

the transformed problem. A variant of hybrid matcher could

be used to solve the constraints generated by Redline.

Globus [4] defines an architecture for resource manage-

ment of autonomous distributed systems with provisions for

policy extensibility and co-allocation. Users describe re-

quired resources through a resource specification language

(RSL) that is based on a pre-defined schema of the resources

database. Globus provides extendible APIs to perform so-

phisticated co-allocation which could be implemented by

the hybrid resource matcher.

7. Conclusions

In this paper, we have addressed the problem of effi-

cient resource matching in heterogenous gird environments.

Based on the observation that the popular approaches to

resource matching, the EA and LP approaches, are in a

way complementary, we have designed a hybrid resource

matcher that combines EA with LP. The hybrid resource

matcher inherits the flexibility of EA allowing the matching

process to be stopped practically at any point, and the high

matching accuracy of LP. Those properties of the hybrid

matcher, confirmed in a series of experiments on a trace-

based system model, are highly desired in an on-line envi-

ronment.

The novelty of the hybrid matcher is in iteratively refin-

ing the solution using the LP to solve the partial problems

accurately and using the EA to guide the inter-iteration flow.

This approach is generic and independent of the optimiza-

tion problem itself. We believe that the hybrid optimization

method can be applied in a broader scope than the particu-

lar problem of resource matching in grid environments. The
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Figure 2. Objective function value of the best solution relative to the maximal objective value found

by the three resource matchers maximizing the throughput, maximizing the prioritized throughput,
and balancing the load.

hybrid optimization method is not superior in all the aspects

to LP and EA, but it is rather an alternative. The hybrid ap-

proach is more complex to implement than EA and requires

more parameter tuning than LP, e.g., the partial problem se-

lection criterion. Those limitations open possibilities for the

future work. In particular, an interesting question is whether

the partial problem should be selected based on the objec-

tive function.
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