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Abstract

In the context of a variation of the standard UFL (Uncapacitated Facility Location) problem,
but with an objective function that is a separable convex quadratic function of the transporta-
tion costs, we present some techniques for improving relaxations of MINLP formulations. We
use a disaggregation principal and a strategy of developing model-specific valid inequalities
(some nonlinear), which enable us to significantly improve the quality of the NLP (Nonlinear
Programming) relaxation of our MINLP model. Additionally, we describe some directions in
which our methodology can be extended.
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Introduction

The general form of an MINLP (Mixed Integer NonLinear Programming) problem that we consider
is

min f(x, y)
subject to:

gi(x, y) ≤ bi , for i = 1, 2, . . . , p ,P:
x ∈ RnR , y ∈ ZnZ ,

where f : RnR × RnZ 7→ R and the gi : RnR × RnZ 7→ R (i = 1, 2, . . . , p) are convex (and typically
twice continuously differentiable) functions.

Let PR denote the NLP relaxation of P. Convexity of the functions implies that PR is a convex
program. We are particularly interested in situations where (i) the solution of PR does not tend to
be on the boundary of its feasible region, and (ii) P has some structure that we can take advantage
of. Because of (i), the traditional cutting-plane approaches (both generic cuts like MIR and problem-
specific cuts) in the space of the model variables, which are successful for MILP (Mixed Integer Linear
Programming), will not be useful here. One approach for such problems is the MINLP approach
of OA (Outer Approximation), wherein we minimize a real variable φ, subject to the constraints
of P as well as the constraint f(x, y) ≤ φ . As the objective function is now linear, and since we
still have a convex relaxation, the optimal solution is now on the boundary of the feasible region
of the relaxation. Then generic cutting planes of the OA method may be fruitfully applied (see
[4]). Moreover, OA and other methods like NLP-based Branch-and-Bound may benefit from valid
inequalities that tighten the relaxation PR .

In what follows, from the above point of view, we study a variant of the UFL (Uncapacitated Facility
Location) problem. In our variant, the objective function is linear on the facility variables as is usual,
but we allow for nonlinear convex dependence on the shipment variables.

We attack our problem by proceeding in the spirit of OA, but we refine the approach by (i) disag-
gregating the objective function by introducing new variables corresponding to different nonlinear
parts of the objective function that are added together, and then (ii) establishing problem-specific
valid inequalities — some valid for the set of feasible solutions, and some only valid on the set of
optimal solutions. We note that some of our inequalities are nonlinear (but convexity preserving).
We are of course motivated by the success of disaggregation and developing model-specific cutting
planes — two very useful principals from MILP (see [13], for example). Our approach appears to
be quite general, but we mainly focus on a variant of the UFL problem for the sake of concreteness.

We note that there has been considerable work on other nonlinear versions of facility location
problems (see [6, 10, 11, 12, 15, 16, 14] for example), but the models and methods are quite different
from what we investigate.

In Section 1, we introduce our variant of the UFL. In Section 2, we develop our techniques in the con-
text of the separable quadratic-cost UFL. Section 3 contains the results of successful computational
experiments. Finally, in Section 4 we describe an extension.
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1 The UFL problem

Given a set of “customers” N := {1, 2, . . . , n} with demand for a single commodity and a set of
potential “facilities” M := {1, 2, . . . , m} with unlimited capacity, the Uncapacitated Facility Location
(UFL) problem involves (i) choosing a subset of the facilities to open and (ii) determining how
much of each customer’s demand is satisfied by each open facility. The objective function consists
of transportation costs as well as fixed costs associated with opening facilities.

To model the problem, we define a 0/1-valued variable

yi := indicator variable for whether or not facility i is open,

for each i ∈ M , and a continuous variable

xij := fraction of demand of customer j satisfied by facility i .

for each i ∈ M and j ∈ N . For notational convenience, we also define x·j ∈ Rm to denote the
column vector (x1j , x2j , . . . , xmj)T .

We next define the UFL problem with partially-separable transportation costs:

min cT y +
∑

j∈N

fj(x·j)

subject to:
0 ≤ x·j ≤ y , for j ∈ N ,PUFL:

eT x·j = 1 , for j ∈ N ,

yi ∈ {0, 1} , for i ∈ M ,

where ci is the cost of opening facility i ∈ M , and fj : RM 7→ R gives the total transportation cost
for customer j ∈ N . As is standard, for a nonempty subset S of M or N , we define RS to be R|S|,
but with coordinates indexed from S .

Note that if y is fixed to say ȳ ∈ {0, 1}M , where ȳ 6= 0, then the problem decomposes by customer,
and it suffices to solve the distribution problem

min fj(x·j)
subject to:

0 ≤ x·j ≤ ȳ ,Pj
Dist

eT x·j = 1 ,

for each customer j ∈ N .

For certain objective functions, the distribution problem defined by Pj
Dist can be solved easily. We

next discuss some of these cases. For ȳ ∈ {0, 1}M , let S(ȳ) := {i ∈ M : ȳi = 1} .
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1.1 Linear Case

The simplest situation is the linear case

fj(x·j) := qT
·jx·j ,

where qij denotes the cost of satisfying customer j demand (fully) from facility i . In this case, it is
clear (and well known) that optimal solution of Pj

Dist can be obtained by choosing an open facility
k ∈ S(ȳ), such that

qkj = min{qij : i ∈ S(ȳ)} ,

letting xkj = 1, and letting xij = 0 for i 6= k .

1.2 Quadratic Case

Another nice case is when

fj(x·j) := xT
·jQjx·j ,(1)

where Qj is a symmetric positive definite matrix and therefore fj is strictly convex.

For nonempty S ⊆ M , let Qj [S] be the principal submatrix of Qj indexed by S . In addition, let
xSj denote the (column) vector consisting of the |S| components xij with i ∈ S . It is not to difficult
to establish the following lemma using the KKT conditions.

Lemma 1.1. Suppose fj has the form (1) and let x̄·j be an optimal solution to Pj
Dist. If (Qj [S(ȳ)])−1

is diagonally dominant, that is, if (Qj [S(ȳ)])−1 e > 0, then x̄·j is given by x̄ij = 0 for i ∈ M \ S(ȳ)
and

x̄ij =
eT
i (Qj [S(ȳ)])−1 e

eT (Qj [S(ȳ)])−1 e
,

for i ∈ S(ȳ) .

Proof. First note that the objective function fj is convex on RM
+ , in addition, x̄·j is feasible for Pj

Dist.
Furthermore x̄·j satisfies ∇fj(x̄·j) = λe for

λ =
2

eT (Qj [S(ȳ)])−1 e
,

and therefore x̄·j and λ give a solution to the KKT conditions.

Note that the hypothesis could be strengthened to simply require that Q−1
j e be all positive. Also

note that under the assumptions of Lemma 1.1 it is easy to see that the optimal value of Pj
Dist is

fj(x̄[j]) =
1

eT (Qj [S(ȳ]))−1e
.
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1.3 Simple Polynomial Case

The last case we consider is the simple polynomial case where the objective function has the form

fj(x·j) :=
∑

i∈M

qijx
r
ij ,(2)

for some r > 0 . All qij are assumed to be strictly positive. Notice that when r ≤ 1 , fj is concave
on R+ and in this case (as in the linear case) the optimal solution of Pj

Dist can be obtained by simply
choosing an open facility k ∈ S(ȳ) , such that

qkj = min{qij : i ∈ S(ȳ)} ,

letting xkj = 1, and letting xij = 0 for i 6= k . Next, we analyze the case when r > 1 .

Lemma 1.2. Suppose fj has the form (2), and let x̄·j be an optimal solution to Pj
Dist . If r > 1,

then x̄·j is given by x̄ij = 0 for all i ∈ M \ S(ȳ) , and

x̄ij =
qij

−1/r−1

∑
k∈S(ȳ) qkj

−1/r−1
,

for i ∈ S(ȳ) .

Proof. First note that when r > 1 , the objective function fj is convex on R+ . In addition, x̄·j is
feasible for Pj

Dist , and it satisfies

r qij x̄r−1
ij =

r∑
k∈S(ȳ) qkj

−1/r−1
,

where the right-hand side of the equation does not depend on i and it can be interpreted as the
dual multiplier associated with the gradient of the constraint

∑
i∈M xij = 1 . We therefore have

∇fj(x̄·j) = λe for some λ ∈ R and x̄·j and λ indeed satisfy the KKT conditions.

Note that under the assumptions of Lemma 1.2, the value of the optimal solution becomes

fj(x̄·j) =
∑

i∈S(ȳ)

qij(x̄ij)r =

∑
i∈S(ȳ) qij · qij

−r/r−1

(∑
i∈S(ȳ) qij

−1/r−1
)r =


 ∑

i∈S(ȳ)

qij
−1/r−1



−(r−1)

.

2 Separable Quadratic UFL

In this section, we study the UFL when the objective function has the form (1) and (2) simultane-
ously. In other words we now consider the separable quadratic case when

fj(x·j) :=
∑

i∈M

qijx
2
ij ,(3)

where qij > 0 for all i ∈ M and j ∈ N .
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In this case the problem can be reformulated as

min cT y +
∑

j∈N

φj

subject to:
∑

i∈M

qijx
2
ij ≤ φj , for j ∈ N ,

0 ≤ x·j ≤ y , for j ∈ N ,PSQ
UFL

eT x·j = 1 , for j ∈ N ,

y ∈ {0, 1}M .

where we introduce real variables φj , one for each customer j ∈ N , to move the nonlinearity from
the objective into the constraints.

For the UFL problem with linear objective function, it is well known (see [13], for example) that
the continuous relaxation of the problem gives a very good approximation of the mixed-integer
problem, and therefore simple branch-and-bound techniques can be employed to solve the problem to
optimality. In the separable quadratic case, however, this is not the case as the continuous relaxation
of the problem is quite weak. In the remainder of this section we present valid inequalities (that
involve the φ variables) to tighten the continuous relaxation of PSQ

UFL.

It is also worth noting that unlike the linear case, using the aggregated formulation (where the
constraints xij ≤ yi for j ∈ M are aggregated into a single constraint

∑
j∈M xij ≤ m yi) does not

effect the quality of the continuous relaxation significantly. In fact, there is theoretical (see [9])
and computational (see [8]) evidence that the aggregated formulation may actually be preferred for
convex nonlinear objective functions.

As the separable quadratic case lies in the intersection of the quadratic case (by setting Qj =
diag(q1j , q2j . . . , qmj)) and the simple polynomial case (by setting r = 2) the distribution problem
Pj

Dist can be solved easily.

Corollary 2.1. Let (x′, y′, φ′) be an optimal solution to PSQ
UFL. Then,

x′ij =
1/qij∑

l∈S(y′) 1/qlj
y′i and φ′j =

1∑
l∈S(y′) 1/qlj

.

By Corollary 2.1, optimal solutions to PSQ
UFL satisfy the nonlinear equations

φjyi = qijxij ,(4)

for all i ∈ M and j ∈ N .

Based on this observation, it is possible to derive a linear formulation of the problem. It is easy to
see that the linear formulation presented in Lemma 2.2 is a relaxation of the problem as the optimal
solution (x′, y′, φ′) of PSQ

UFL is also feasible for P̄QS
UFL and has the same objective value.
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Lemma 2.2. The following gives an MILP reformulation of PSQ
UFL:

min cT y +
∑

j∈N

φj

subject to:
qijxij ≤ φj , for i ∈ M , j ∈ N,

0 ≤ x·j ≤ y , for j ∈ N,

eT x·j = 1 , for j ∈ N,P̄QS
UFL

y ∈ {0, 1}M .

Proof. Let (x′, y′, φ′) be an optimal solution to P̄QS
UFL and consider a fixed j ∈ N . We will demon-

strate that φ′j measures the flow cost correctly and therefore establish that optimal value of PSQ
UFL

and P̄QS
UFL are the same.

Clearly x′ij = 0 for all i 6∈ S(y′) and qkjx
′
kj = φj for some k ∈ S(y′) . In addition, unless qijx

′
ij = φj

for all i ∈ S(y′), objective value can be improved and therefore (x′, y′, φ′) could not be an optimal
solution. To see this notice that if qijx

′
ij < φ′j for some i ∈ S(y′), increasing x′ij and decreasing all

x′kj for k ∈ S(y′) \ {i} would decrease φ′j .

As x′ij = φ′j/qij for all i ∈ S(y′), we have
∑

i∈M

x′ij = φ′j
∑

i∈S(y′)

1/qij = 1 ,

and therefore φ′ indeed has the correct value shown in Corollary 2.1.

It is important to note that this linear formulation is based on optimality conditions and as such
would not generally be a valid formulation when there are additional constraints on the x and y
variables. In addition, this formulation has a min-max structure which makes it rather hard for
MILP solvers.

2.1 VUB inequalities

We can linearize and then strengthen (4) to obtain

qijxij + (1− yi)/
∑

l∈M−i

1/qlj ≤ φj ,(5)

which we call the strengthened variable upper bound inequality.

Lemma 2.3. For all i ∈ M and j ∈ N , the strengthened variable upper bound inequality 5 is valid
for all feasible solutions of PSQ

UFL.

Proof. If yi = 1, the inequality reduces to qijxij ≤ φj which is implied by (4). On the other hand, if
yi = 1, the inequality becomes

∑
l∈M−i 1/qlj ≤ φj which is valid as φj attains its least value when

all facilities are open.
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Note that these inequalities are valid for all feasible solutions even though we use optimality condi-
tions to demonstrate validity.

2.2 Subset customer-cost lower bounds

In this section we develop valid inequalities of the form

1/
∑

j∈S

1/φj ≥ α(x, y) ,

where S is a nonempty subset of N and α is convex in (x, y) . Actually, α will be a function of y,
and linear at that. To demonstrate that inequalities of this form maintain a convex relaxation, we
start with the following observation.

Lemma 2.4. For nonempty S ⊆ N , the function h : R|S|++ 7→ R defined by h(v) = 1/
∑

j∈S 1/vj is
concave.

Proof. 1/vj is convex on R++ . Therefore, the sum
∑

j∈S 1/vj is convex on R|S|++ . Therefore,

1/
∑

j∈S 1/vj is concave on R|S|++ .

Though h(v) is nonlinear when |S| > 1, it is rather well behaved; for example, when |S| = 2, h(v)
has the graph of Figure 1, which we note is rather flat away from the coordinate axes.

Figure 1: Plot of 1
1/v1+1/v2

Next, we set some convenient notation. For nonempty S ⊆ N and integer k satisfying 1 ≤ k ≤ m,
let

Hk
S := 1/

k∑

i=1

piS ,
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where, for i ∈ M , we let
piS :=

∑

j∈S

1/qij .

To simplify notation, we assume that piS are sorted (for a given S) so that

p1S ≥ p2S ≥ · · · ≥ pmS .

We next introduce the simple subset customer-cost lower bound inequalities.

Lemma 2.5. Let S be nonempty subset of N and let k be an integer satisfying 1 ≤ k ≤ m . The
simple subset customer-cost lower bound inequality

1/
∑

j∈S

1/φj ≥ Hk
S(6)

is valid for all feasible solutions of PSQ
UFL that satisfy

∑
i∈M yi = k . In addition, inequality (6) is

convex.

Proof. Convexity of inequality (6) follows from Lemma 2.4. To see validity, notice that when∑
i∈M yi = k,

1/
∑

j∈S

1/φj ≥ 1

max
Y⊆M
|Y |=k





∑

i∈Y

∑

j∈S

1/qij





=
1∑k

i=1 piS

= Hk
S .

We note that considering the objective function of PSQ
UFL, it is more natural to seek to lower bound∑

j∈S φj , thus keeping the inequality linear. However, then we do not see how to calculate the
appropriate lower bound. So, we use this nonlinear surrogate 1/

∑
j∈S 1/φj , which we know how to

lower bound, for
∑

j∈S φj .

Toward using these simple subset customer-cost lower bounds to form an inequality that does not
require

∑
i∈M yi = k, we prove that the Hk

S are discrete convex in k .

Lemma 2.6. Let S be nonempty subset of N and let k be an integer satisfying 1 ≤ k ≤ m − 2 .
Then,

Hk
S + Hk+2

S ≥ 2Hk+1
S .
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Proof.

Hk
S + Hk+2

S − 2Hk+1
S =

1∑k
i=1 piS

+
1∑k+2

i=1 piS

− 2∑k+1
i=1 piS

=

(
1∑k+1

i=1 piS

)(∑k+1
i=1 piS∑k
i=1 piS

+
∑k+1

i=1 piS∑k+2
i=1 piS

− 2

)

=

(
1∑k+1

i=1 piS

)(
1 +

pk+1S∑k
i=1 piS

+
∑k+1

i=1 piS∑k+2
i=1 piS

− 2

)

≥
(

1∑k+1
i=1 piS

)(
1 +

pk+2S∑k+2
i=1 piS

+
∑k+1

i=1 piS∑k+2
i=1 piS

− 2

)

= 0 .

Finally, we introduce the subset customer-cost lower bound inequalities

1/
∑

j∈S

1/φj ≥ Hk
S

(
k + 1−

∑

l∈M

yl

)
+ Hk+1

S

(
−k +

∑

l∈M

yl

)
.(7)

Combining the lemmata, we have the following result.

Theorem 2.7. Let S be nonempty subset of N and let k be an integer satisfying 1 ≤ k ≤ m − 1 .
Then, the subset customer-cost lower bound inequality (7) is valid for all feasible solutions of PSQ

UFL.
In addition, inequality (7) is convex.

Proof. Convexity of inequality (7) again follows from Lemma 2.4. To see validity, notice that for
any integer k̄ satisfying 1 ≤ k̄ ≤ m− 1, if

∑
l∈M y = k̄, then we have

1/
∑

j∈S

1/φj ≥ H k̄
S ≥ Hk

S

(
k + 1− k̄

)
+ Hk+1

S

(−k + k̄
)

(8)

where the last inequality follows from the fact that Hk
S is convex in k by Lemma 2.6.

We note that the subset customer-cost lower bounds can be strengthened by increasing the coeffi-
cients of some of the yl . In particular, this can be done for the yl corresponding to the facility l
that is “closest” (according to the plS) to customer subset S . The form of the expression is a bit
complicated, so we do not present it here.

Before continuing, we take a brief detour to place our inequality in a classical mathematical context.
Our subset customer-cost lower bound has the form h(φS) := 1/

∑
j∈S 1/φj >= α(y) . The well-

known harmonic mean of the φj , j ∈ S , is just H(φS) := |S|h(φS) . Other classical means

are the geometric mean G(φS) := |S|
√∏

j∈S φj and of course the arithmetic mean
∑

j∈S φj/|S| .
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The classical inequality relating the arithmetic, geometric and harmonic means is simply A(φS) ≥
G(φS) ≥ H(φS) . (with equality if and only if all φj are equal). So we have

A(φS)/|S| ≥ G(φS)/|S| ≥ H(φS)/|S| ≥ α(y) .

So while the linear inequality A(φS)/|S| ≥ α(y) is valid, we can regard our subset customer-cost
lower bounds as a nonlinear strengthening of this linear inequality. In between we have the weaker
strengthening G(φS)/|S| ≥ α(y) , which is also a convex inequality, since the geometric mean is
concave also.

Finally, we note that our subset customer-cost lower bounds can be viewed as coming from a more
general framework that we propose in Section 4.

2.3 Arc-flow lower bounds

Using ideas similar to those in the previous section, we next derive lower bounds on individual xij

variables. The inequality we describe below is not valid for all feasible solutions of PSQ
UFL. It is

however valid for the set of optimal solutions.

Let j ∈ N be given. To simplify notation, we assume that qij are non-decreasing:

q1j ≤ q2j ≤ · · · ≤ qmj .

Next, we define

Lk
ij :=





1/qij

1/qij + σk−1
j

, for i > k ;

1/qij

σk
j

, for i ≤ k ,

where σk
j :=

∑k
i=1 1/qij .

In correspondence with Lemmata 2.1 and 2.2, we first show that the inequality below is valid when∑
l∈M yl = k . We then show that Lk

ij is discrete convex in k .

Lemma 2.8. Given i ∈ M and j ∈ N , the simple arc-flow lower bound inequality

xij ≥ Lk
ijyi(9)

is valid for optimal solutions satisfying
∑

l∈M yl = k .

Proof. Let (x′, y′, φ′) be an optimal solution to PSQ
UFL that satisfies

∑
l∈M y′l = k . If y′i = 0, inequality

(9) reduces to the nonnegativity constraint and therefore, is valid. If, on the other hand, yi = 1 then
by Lemma 2.1

x′ij =
1/qij∑

l∈M (1/qlj)y′l
≥ Lk

ij ,

where the last inequality follows form the fact that the denominator of the previous expression is
maximized when y′l = 1 for l ∈ M with large 1/qlj , or, equivalently, with small qlj .
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The simple arc-flow lower bound inequality (9) can also be viewed as a strengthening of the the
nonnegativity constraints

xij ≥ 0 · yi .

when
∑

l∈M yl = k .

Lemma 2.9. Let i ∈ M , j ∈ N and let k be an integer satisfying 1 ≤ k ≤ m− 2 . Then,

Lk
ij + Lk+2

ij ≥ 2Lk+1
ij .

Proof. Similar to the proof of Lemma 2.6.

We use these lemmata to establish that the following arc-flow lower bounds are valid for all optimal
solutions.

Theorem 2.10. Let i ∈ M , j ∈ N and k ∈ {1, . . . , n − 1} be given. The arc-flow lower bound
inequality

xij ≥ Lk
ij

(
(k + 1)yi −

∑

l∈M

yl

)
+ Lk+1

ij

(
−kyi +

∑

l∈M

yl

)
+

(
Lk

ij − Lk+1
ij

)
(1− yi) ,

is valid for all optimal solutions.

Proof. We consider two cases. When yi = 1, the inequality reduces to

xij ≥ Lk
ij

(
1 + k −

∑

l∈M

yl

)
+ Lk+1

ij

(
−k +

∑

l∈M

yl

)
,

the validity of which follows from Lemmata 2.8-2.9.

Alternatively, when yi = 0, the inequality reduces to

xij ≥
(
Lk

ij − Lk+1
ij

)

1−

∑

l∈M :l 6=i

yl


 ,

in which the right-hand side is non-positive since the Lk
ij are decreasing in k, and at least one facility

must be open to satisfy demand.

We note that similar results can be obtained for upper bounds on xij , but we expect such inequalities
to be less useful in practice.

One possible computational strategy for solving our problem is to enumerate on k =
∑

l∈M yl . If
we do add this equation, then the arc-flow (resp., customer-cost) lower bounds reduce to the simple
arc-flow (resp., customer-cost) lower bounds.
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3 Computational experiments

We performed some computational experiments using the open-source MINLP code Bonmin 0.1,
which is distributed on COIN-OR (see [1] for a description of the algorithm; the users’ manual [2]
and source code are available at [3]). For our computational results, we used the B&B (branch-and-
bound) algorithmic option of Bonmin and otherwise accepted the defaults (e.g., the default node
selection strategy is ‘best bound’), including use of the NLP interior-point solver Ipopt [7]. We note
that preliminary experiments indicated that B&B is a better choice for our instances than OA. We
used AMPL [5] to interface with Bonmin. Our experiments were carried out on a dual-processor
machine with 2 GHz AMD Opterons and equipped with 3GB of memory.

Figure 2 illustrates an experiment that we made for a difficult separable quadratic UFL. This instance
from [8], has 30 potential facilities and 100 customers. We solved 30 subproblems, each of which fixes
the number of facilities to open to a specific number k (i.e., we appended the constraint

∑
i∈M yi = k)

for all possible choices of k = 1, 2, . . . , 30(= m) . The bottom of the three curves indicates the optimal
objective value of the NLP relaxation. The top curve indicates the optimal value of the MINLP.
It is noteworthy that the optimal solution of the NLP relaxation suggests that opening one facility
is optimal, giving us no real hint at the optimal number of facilities, which happens to be eight.
The middle curve reflects the improvement in the relaxation using our inequalities. In particular,
we utilized: strengthened VUBs, arc-flow lower bounds, subset customer-cost lower bounds for all
subsets S with |S| ∈ {1, n− 1, n} and some S with |S| = 2 .

We were interested in seeing the value of our inequalities to improve B&B. Table 1 indicates the
improvement in the NLP lower bound achieved by our inequalities, across five problems of varying
size. In regard to Table 1, we successively compare the value of different types of inequalities. Details
of what we compare are summarized as follows:

• Base Model: PSQ
UFL ;

• w/ Linear Cust-Cost: Additionally, with subset customer-cost lower bounds for all singleton
sets S ;

• w/ Nonlin Cust-Cost: Additionally, with subset customer-cost lower bounds for all S with
|S| = n − 1, n and some S with |S| = 2 . In particular, we used these for |S| = 2 only when
the distance between the pair of facilities constituting S was greater than some cutoff.

• w/ VUB & Arc-Flow: Additionally, with strengthened VUBs and arc-flow lower bounds;

• Opt: The optimal objective value (obtained by Bonmin’s B&B).

Table 1 demonstrates that our inequalities cut down between 70 and 90 percent of the gap between
the optimum and the lower bound obtained by using the original NLP relaxation. We note that
we only employed a limited subset of the subset customer-cost lower bounds, so there is significant
potential to improve the bounds further.

Table 2 indicates the performance of Bonmin’s B&B in solving problems to optimality. Apparently,
our inequalities are useful in limiting the B&B search. But it should be noted that inclusion of all
of our inequalities slows down the NLP solver rather drastically. We note that the nearly 10-fold
decrease in the node count for the m = 30, n = 100 problem, was obtained using only the subset
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Figure 2: Bound performance

customer-cost lower bounds for |S| = n on top of the base formulation. For this instance, our
inequalities reduced the running time by about 80% . Still, we need to find a way to solve the
NLP subproblems faster, so that we can fully realize the power of our inequalities; there are many
possibilities here (e.g., using looser tolerances in Ipopt, using an active-set based NLP solver rather
than Ipopt, using an OA algorithm rather than B&B, using cuts very selectively, aggregating cuts,
etc.), and this is work in progress.

4 UFL with more general convex costs

So as to suggest the potential generality of some of our techniques, we consider a more general form
of the fj(x·j), with the goal of generalizing the subset customer-cost lower bounds for the case in
which the subset S consists of a singleton j . We assume that

fj(x·j) :=
∑

i∈M

qijζj(xij) ,

where the qij are positive, and ζj : [0, 1] 7→ R is continuously differentiable and convex. So fj attains
its minimum at a KKT point. Let qmin(j) := min{qij : i ∈ M} and qmax(j) := max{qij : i ∈ M} .

13



m,n
Base

Model
w/ Linear
Cust-Cost

w/ Nonlin
Cust-Cost

w/ VUB &
Arc-Flow Opt

10,30 140.555 286.809 324.227 326.444 348.777
15,50 141.282 261.407 305.915 312.200 384.087
20,65 122.512 206.930 242.948 248.689 289.324
25,80 121.315 201.437 256.031 260.073 315.803

30,100 128.048 248.080 322.658 327.005 393.154

Table 1: Effectiveness of our inequalities: objective values

m,n No cuts Some cuts
10,30 384 118
15,50 1386 498
20,65 982 178
25,80 4,638 928

30,100 29,272 3,250

Table 2: Effectiveness of our inequalities: Node counts

We further assume that

(10) 0 ≤ ζ ′j(0) <
qmin(j)

qmax(j)
ζ ′j( 1

m−1 ) .

It is easy to check that for example ζj(xij) = aj +
∑

t x
rjt

ij , with aj ∈ R , rjt ∈ R , rjt > 1 satisfies
this condition.

Let

zk
j := min

∑

i∈M

qijζj(xij)

subject to:

eT x·j = 1 ;Pj :
0 ≤ x·j ≤ y ;

eT y = k ;
yi ∈ {0, 1} , ∀ i ∈ M ;

Assume that the qij are sorted so that

q1j ≤ q2j ≤ · · · ≤ qmj .

Lemma 4.1. If (10) holds, then there is an optimal solution to Pj having yi = 1 and xij > 0 for
1 ≤ i ≤ k, and yi = xij = 0 for k + 1 ≤ i ≤ m .

Proof. By the symmetry over i in the constraints and that we have sorted the qij , it is clear that
there is an optimal solution with yi = 1 for 1 ≤ i ≤ k, and yi = xij = 0 for k + 1 ≤ i ≤ m .
Moreover, again by how the qij are sorted, we can assume that x1j ≥ x2j ≥ · · · ≥ xkj . Let k′ be
the least i for which xk′j = 0 . We assume that k′(≤ k) exists, or we are done. Clearly x1j ≥ 1

k′−1 .

14



We will demonstrate how to construct a solution having an additional component positive and with
lower objective value. Consider the solution obtained from x·j by letting xk′j = ε and decreasing
x1j by ε, for some small positive ε . The change in the objective value is

−q1jζ
′
j(x1j)ε + qk′jζ

′
j(0)ε + O(ε2) .

This is negative, for sufficiently small ε > 0 since

ζ ′j(0)
q1j

<
ζ ′j(

1
m−1 )

qmj
≤ ζ ′j(

1
k′−1 )

qk′j
≤ ζ ′j(x1j)

qk′j
,

this first inequality holding by (10), the second holding since ζ ′j is nondecreasing and the qij are
non-decreasing in i, and the last holding since ζ ′j is non-decreasing.

Therefore, our hypothesis (10) implies that we can solve the MINLP Pj by solving an NLP. Since we
know that x·j is all positive, our hypothesis (10) implies that the KKT system for the NLP reduces
to:

qijζ
′
j(xij) = vk

j , ∀ i .

It is an easy matter to solve this nonlinear system of equations via a bisection search on vk
j .

We compare this to the quadratic-cost case. In that case, (i) we have a closed-form solution to the
MINLP Pj , and (ii) the zk

j are discrete convex (in k). It may be that even in the present more
general case, possibly utilizing further technical assumptions, the zk

j are discrete convex (as yet, we
are unable to prove this). Regardless, we can compute the lower convex envelope of the graph of zk

j

versus k =
∑

i∈M yi to derive the relevant inequalities. In this way, we do not have a closed form
expression for the inequalities, but we can easily compute them.
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