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ABSTRACT

Freshness and accuracy are two key measures of quality of
service (QoS) in processing location-based, mobile contin-
ual queries (CQs). Freshness necessitates the CQ server to
perform frequent query re-evaluations. Accuracy demands
the CQ server to receive and process frequent position up-
dates from the mobile nodes. However, it is often difficult
to provide both fresh and accurate CQ results due to (a)
limited resources in computing and communication and (b)
fast-changing load conditions caused by continuous mobile
node movement. Thus a key challenge for a mobile CQ sys-
tem is: How do we achieve the highest possible quality of
the query results, in both freshness and accuracy, with cur-
rently available resources under rapidly changing load con-
ditions? In this paper, we formulate this problem as a load
shedding one, and develop MobiQual as a solution. It is a
dynamic and QoS-aware framework for performing both up-
date load shedding and query load shedding. MobiQual uses
per-query QoS specifications to maximize the overall fresh-
ness and accuracy of the query results. In view of the QoS
specifications, it employs query clustering and space parti-
tioning mechanisms to apply differing amounts of query and
update load shedding for different query and mobile node
groups, respectively. We show that our solution is supe-
rior to competing approaches that lack the QoS-awareness
properties of MobiQual, as well as solutions that perform
query-only or update-only load shedding.

1. INTRODUCTION
With the ever increasing accessibility of wireless communi-

cations and the proliferation of mobile devices, we are expe-
riencing a world where we can stay connected while on-the-
go. Combined with the availability of low-cost positioning
devices (such as GPS sensors), this has created a new class of

 
 
 
 
 
 
 
 

applications and business opportunities in the area of mobile
location-based services (LBSs). Examples include location-
aware information delivery and resource management, such
as transportation services (NextBus bus locator [13], Google
ride finder [6]), fleet management, mobile games, and bat-
tlefield coordination.

A key challenge for LBSs is a scalable location monitor-
ing system capable of handling a large number of mobile
nodes and processing complex queries over those node po-
sitions. Although several mobile continual query (CQ) sys-
tems have been proposed to efficiently handle long-running
location monitoring tasks in a scalable manner [5, 9, 10, 12,
18], the focus of these works is primarily on efficient indexing
and query processing techniques, not accuracy or freshness
of the query results.

Accuracy (inaccuracy) refers to the amount of mobile node
position errors found in the query results at the time of

query re-evaluation. The accuracy measure is strongly tied
to the frequency of position updates received from the mo-
bile nodes. Alternatively, accuracy can be measured by the
amount of containment errors found in the query results, in-
cluding both false positives and false negatives. However, a
bound on the amount of containment errors can be approxi-
mated by a bound on the position errors, if the distribution
of the mobile nodes around the query boundaries is at hand.
In this paper, we choose the amount of node position er-
rors as the accuracy measure, because such inaccuracy can
be easily bounded by a threshold-based position reporting
scheme [17, 2].

Freshness (staleness), on the other hand, refers to the age
of the query results since the last query re-evaluation. It
is dependent on the frequency of query re-evaluations per-
formed at the server. As mobile nodes continue to move,
there are further deviations in mobile node positions after
the last query re-evaluation. However, such deviations are
not attributed to inaccuracy, which only captures those at
the time of query re-evaluation. Hence, freshness can be
seen as a metric capturing the post-query-re-evaluation de-
viations in mobile node positions.

To obtain fresher query results, the CQ server must re-
evaluate the continual queries more frequently, requiring
more computing resources. Similarly, to attain more accu-
rate query results, the CQ server must receive and process
position updates from the mobile nodes in a higher rate,



demanding communication as well as computing resources.
However, it is almost impossible for a mobile CQ system to
achieve 100% fresh and accurate results due to continuously
changing positions of mobile nodes. A key challenge then is:
How do we achieve the highest possible quality of the query
results, in both freshness and accuracy, with currently avail-
able resources under fast changing workloads?

In this paper, we propose MobiQual as a solution. It is a
resource-adaptive and QoS-aware load shedding framework
for mobile CQ systems. MobiQual is capable of providing
high-quality query results by dynamically determining the
appropriate amount of update load shedding and query load
shedding to be performed according to the application-level
QoS specifications of the queries.

To the best of our knowledge, none of the existing work
has considered the application-level freshness and accuracy
of mobile queries, or the opportunities for performing dy-
namic update load shedding and query load shedding in the
presence of limited resources or severe performance degra-
dations. Yet, due to the rapidly changing nature of mobile
node positions, freshness and accuracy are two critical qual-
ity of service (QoS) measures. More importantly, limited-
resource scenarios are the norm, rather than the exception,
in mobile CQ systems. The concepts of freshness and ac-
curacy in mobile CQ systems are, to some extent, similar
to those of timeliness and completeness, respectively, in the
web information monitoring domain [14]. It is important to
note that higher freshness does not necessarily imply higher
accuracy and vice versa.
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Figure 1: Mobile CQ system and load shedding

1.1 Load Shedding in Mobile CQ Systems
In a mobile CQ system, the CQ server receives position

updates from the mobile nodes through a set of base stations
(see Figure 1) and periodically evaluates the installed con-
tinual queries (such as continual range or nearest neighbor
queries) over the last known positions of the mobile nodes.
Since the mobile node positions change continuously, mo-
tion modeling [17, 2] is often used to reduce the number
of updates sent by the mobile nodes. The server can pre-
dict the locations of the mobile nodes through the use of
motion models, albeit with increasing errors. Mobile nodes
generally use a threshold to reduce the amount of updates
to be sent to the server and to limit the inaccuracy of the
query results at the server side below the threshold. Smaller
thresholds result in smaller errors and higher accuracy, at
the expense of a higher load on the CQ server. This is
because a larger number of position updates must be pro-
cessed by the server, for instance, to maintain an index [16,
10]. When the position update rates are high, the amount

of position updates is huge and the server may randomly
drop some of the updates if resources are limited. This can
cause unbounded inaccuracy in the query results. In Mo-
biQual, we use accuracy-conscious update load shedding to
regulate the load incurred on the CQ server due to position
update processing by dynamically configuring the inaccu-
racy thresholds at the mobile nodes.

Another major load for the CQ server is to keep the query
results up to date by periodically executing the CQs over the
mobile node positions. More frequent query re-evaluations
translate into increased freshness in the query results, also
at the expense of a higher server load. Given limited server
resources, when the rate of query re-evaluations is high,
the amount of queries to be re-evaluated is vast and the
server may randomly drop some of the re-evaluations, caus-
ing stale query results (low freshness). In MobiQual, we
utilize freshness-conscious query load shedding to control the
load incurred on the CQ server due to query re-evaluations
by configuring the query re-evaluation periods.

In general, the total load due to evaluating queries and
processing position updates dominates the performance and
scalability of the CQ server and thus should be bounded
to the capacity of the CQ server. Furthermore, the time-
varying processing demands of a mobile CQ system entails
that update and query load shedding should be dynami-
cally balanced and adaptively performed in order to match
the workload with the server’s capacity, while meeting the
accuracy and freshness requirements of queries.

1.2 The MobiQual Approach
The MobiQual system aims at performing dynamic load

shedding to maximize the overall quality of the query re-
sults, based on per-query QoS specifications and subject to
processing capacity constraints. The QoS specifications are
defined based on two factors: accuracy and freshness. In
MobiQual, the QoS specifications are used to decide on not
only how to spread out the impact of load shedding among
different queries, but also how to find a balance between
query load shedding and update load shedding. The main
idea is to apply differentiated load shedding to adjust the ac-
curacy and freshness of queries. Namely, load shedding on
position updates and query re-evaluations is done in such
a way that the resulting impacts on freshness and accuracy
are nonuniform among the queries.

From the perspective of query load shedding, we make
two observations to show that nonuniform freshness in the
query results can increase the overall QoS of the mobile CQ
system: (1) Different queries have different costs in terms
of the amount of load they incur. (2) Different queries have
different tolerance to staleness in the query results. Thus it
is more effective to shed load (by sacrificing certain amount
of freshness) on a costly query than an inexpensive one.
This is especially beneficial if the costly query happens to be
less stringent on freshness, based on its QoS specification.
Bearing these observations in mind, in MobiQual we use
the query re-evaluation periods as control knobs to perform
query load shedding, where the same amount of increase
in query re-evaluation periods for different queries brings
differing amounts of load reduction and QoS degradation
with respect to freshness. We refer to the load shedding that
uses query re-evaluation periods to maximize the average
freshness of the query results under the QoS specifications
as the QoS-aware query load shedding.



Similar to query load shedding, we make two observations
regarding update load shedding to show that nonuniform re-
sult accuracy can increase the overall QoS. First, different
geographical regions have different numbers of mobile nodes
and queries. Second, different queries have different toler-
ance to position errors in the query results. This means that
shedding more updates from a region with a higher density
of mobile nodes and a lower density of queries can bring a
higher reduction on the update load and yet have a smaller
impact on the overall query result accuracy. This is espe-
cially true if the queries within the region have less stringent
QoS specifications in terms of accuracy. Thus, in Mobi-
Qual we use the inaccuracy thresholds employed in motion
modeling as control knobs to adjust the amount of update
load shedding to be performed, where the same amount of
increase in inaccuracy thresholds for different geographical
regions brings differing amounts of load reduction and QoS
degradation with respect to accuracy. We refer to the load
shedding that adjusts the inaccuracy thresholds based on
the densities of mobile nodes and queries to maximize the
average accuracy of the query results under the QoS speci-
fications as the QoS-aware update load shedding.
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Figure 2: QoS-aware update load shedding and
query load shedding

MobiQual dynamically maintains a throttle fraction, which
defines the amount of load that should be retained. It per-
forms both update load shedding and query load shedding
to control the load of the system according to this throttle
fraction, while maximizing the overall quality of the query
results. As illustrated in Figure 2, MobiQual not only strikes
a balance between freshness and accuracy by employing both
query and update load-shedding, but also improves the over-
all quality of the results by utilizing per-query QoS specifica-
tions to capture each query’s different tolerance to staleness
and inaccuracy.

1.3 Contributions
MobiQual makes the following three major contributions:
− We combine query load shedding and update load shed-
ding within the same framework by formalizing the problem
as an optimization one. We provide a fast greedy algorithm
that uses differentiated load shedding concept to configure
query re-evaluation periods and inaccuracy thresholds, aim-
ing at achieving high overall QoS with respect to the fresh-
ness and accuracy requirements of the queries.
− We use per-query QoS specifications to characterize the
tolerance of queries to the staleness and inaccuracy in the
query results. In order to deal with a large number of queries
and mobile nodes, we introduce query grouping and space

partitioning to reduce the adaptation time required to re-
configure the system upon changes in workload character-
istics, and to enable low-overhead and frequent adaptation.
We also impose certain structure on the QoS functions to
make aggregation for query load shedding independent of
aggregation for update load shedding.
− The MobiQual load shedding mechanisms are lightweight,
enabling quick adaptation to changes in the workload, in
terms of both the number of queries, the number of mo-
bile nodes, and their changing movement patterns. We have
conducted a detailed experimental study. Our experimental
results show that MobiQual significantly outperforms the
approaches that are based on query-only or update-only
load shedding, or the approaches that lack the support of
differentiated load shedding elements of the MobiQual solu-
tion, including the query grouping and the space partition-
ing mechanisms.

2. NOTATION AND FUNDAMENTALS
The set of continual queries installed in the system is de-

noted by Q. For each query q ∈ Q, it has an associated QoS
specification Sq. The QoS function Sq(τq, ǫq) takes a value
in [0, 1], where 1 represents perfect quality in terms of fresh-
ness and position error, and 0 represents the worst. τq and ǫq

are used to denote the degree of staleness and inaccuracy in
the query results, respectively. τq corresponds to the query
re-evaluation period for q, whereas ǫq corresponds to the av-
erage of the inaccuracy thresholds used in motion modeling
for the mobile nodes within the query result of q. At any
given time, the result of query q can be at most τq seconds
old and at the time of query evaluation the position of a
mobile node in the query result can deviate from its actual
position by ǫq meters on average. The mobile CQ system
supports a minimum staleness value of τ⊢ and a minimum
position error of ǫ⊢. For any query q, we have Sq(τ⊢, ǫ⊢) = 1.
Similarly, we introduce a maximum staleness value, denoted
by τ⊣, and a maximum position error, denoted by ǫ⊣. The
staleness in the query results cannot exceed the maximum
threshold value of τ⊣, at which point the results are assumed
to be useless. Also the position error is bounded by ǫ⊣. In
summary, we have τq ∈ [τ⊢, τ⊣] and ǫq ∈ [ǫ⊢, ǫ⊣]. The mini-
mum and maximum staleness and position error thresholds
are system parameters.

Since a scalable mobile CQ system should be able to han-
dle tens of thousands of queries and hundreds of thousands
of mobile nodes, it is inefficient, even if it is possible, to
adjust and dynamically maintain the re-evaluation periods
for queries and inaccuracy thresholds for mobile nodes in-
dividually. In MobiQual, we divide the set of m queries
into k groups, denoted by Cj , j ∈ [1..k], where the num-

ber of queries in Cj is denoted by mj and
Pk

j=1 mj = m.
The queries within the same group Cj share the same re-
evaluation period Pj , i.e. we have ∀qu ∈ Cj , τu = Pj . We
denote the one-time cost of processing the set of queries in
Cj as fc(Cj), which is simply the sum of one-time process-
ing costs of individual queries. The usage of the cost model
in MobiQual does not require absolute values of query costs
and can work with relative values for cost-based analysis.
A key question for query load shedding is how to divide
the queries into k query groups and how to compute the
re-evaluation period Pj for each query group Cj (j ∈ [1..k]).

Similarly, given a total number of n mobile nodes, we
partition the geographical area of interest into l regions, de-



noted by Ai, i ∈ [1..l], where the number of mobile nodes in

Ai is denoted by ni and
Pl

i=1 ni = n. The mobile nodes
within the same region Ai use the same inaccuracy threshold
∆i. A query qu whose result lies completely within region
Ai will have ǫu = ∆i. For queries whose results contain mo-
bile nodes from different regions, ǫu is given by a weighted
average of ∆i values of the involved regions.

We denote the fraction of updates received from a region
Ai, when using an inaccuracy threshold ∆i, as fr(∆i). fr is
relative to the ideal case where all ∆i’s are equal to the min-
imum position error ǫ⊢. Thus we have fr(ǫ⊢) = 1 > fr(ǫ⊣).
fr is a non-increasing continuous function with a positive
second derivative. More detailed characterization of such
functions exist for specific motion modeling and prediction
schemes [17, 4]. A key challenge for update load shedding
is how to partition the geographical area of interest into l
regions and how to compute the inaccuracy threshold ∆i for
each region Ai (i ∈ [1..l]).

2.1 Trade-offs in Setting k and l

In general, the larger the number of query groups (k) we
have, the higher the quality of the query results is in terms of
freshness, as it enables performing differentiated load shed-
ding with finer granularity. The only restriction in setting
the value of k is the computational cost (which forms a ma-
jor part of the adaptation cost) of finding an effective setting
for the re-evaluation periods Pj , j ∈ [1..k]. Similar trade-off
is observed in setting the number of regions (l) and thus the
number of inaccuracy thresholds, with one exception. Since
the changes in inaccuracy thresholds have to be communi-
cated back to the mobile nodes through control messages
(broadcasts from base stations), there is a second dimension
to this trade-off: The larger the l value is, the higher the
control cost of the adaptation step will be. In Section 7, we
experimentally evaluate the benefit/cost trade-off in setting
k to show that with lightweight adaptation we can achieve
high quality query results. The details of setting l can be
found in [4], whose results apply to the QoS-aware update
load shedding problem presented here and are used for set-
ting the value of l in the experimental evaluation of Sec-
tion 7. We show that this facilitates a very lightweight so-
lution and significantly improves the query results in terms
of accuracy.

2.2 Solution Outline
There are three functional components in the MobiQual

system: reduction, aggregation, and adaptation.

− Reduction includes the algorithm for grouping the queries
into k clusters and the algorithm for partitioning the geo-
graphical space of interest into l regions. The query groups
are incrementally updated when queries are installed or re-
moved from the system. The space partitioning is re-computed
prior to the periodic adaptation.

− Aggregation involves computing aggregate-QoS func-
tions for each query group and region. The aggregated QoS
functions for each query group represent the freshness as-
pect of the quality. The aggregated QoS functions for each
region represent the accuracy aspect of the quality. We ar-
gue that the separation of these two aspects is essential to
the development of a fast algorithm for configuring the re-
evaluation periods and the inaccuracy thresholds to perform
adaptation. QoS-aggregation is repeated only when there is
a change in the query grouping or the space partitioning.

− Adaptation is performed periodically to determine: (i)
the throttle fraction z ∈ [0, 1], which defines the amount of
load that can be retained relative to the load of providing
perfect quality (i.e., ∀j∈[1..k]Pj = τ⊢ and ∀i∈[1..l]∆i = ǫ⊢);
(ii) the setting of re-evaluation periods Pj , j ∈ [1..k]; and
(iii) the setting of inaccuracy thresholds ∆i, i ∈ [1..l]. The
latter two are performed with the aim of maximizing the
overall QoS. The computation of the throttle fraction is per-
formed by monitoring the performance of the system and
adjusting z in a feedback loop.

In the remaining sections, we first present the aggrega-
tion of QoS functions, assuming that the query grouping
and space partitioning are performed (Section 3). We then
present the formulation of the QoS-aware query load shed-
ding problem and present the quality loss based clustering

(Qlbc) algorithm for clustering the queries into k groups
(Section 4). Then we formalize the QoS-aware update load
shedding problem and provide a brief description of the
QoS-aware space partitioning algorithm for dividing the ge-
ographical space of interest into l regions (Section 5). Fi-
nally, we present the formulation of the problem of com-
bining query load shedding with update load shedding, and
present the minimum quality loss per cost step (Mqls) al-
gorithm for performing the adaptation step (Section 6).

3. AGGREGATING THE QOS FUNCTIONS
The aim of QoS aggregation is to associate an aggregate

function V∗
j (Pj) for each query group Cj , and an aggregate

function U∗
i (∆i) for each region Ai, such that the overall

QoS of the system, denoted by Ψ, is maximized. We define
Ψ as follows:

Ψ =
1

m

X

q∈Q

Sq(τq, ǫq) (1)

Sq(τq, ǫq) denotes the QoS specification for query q and
can be defined as follows:

Sq(τq, ǫq) = αq · Vq(τq) + (1− αq) · Uq(ǫq)

In other words, Sq(τq, ǫq) is a linear combination of the
freshness QoS function Vq(τq) and the accuracy QoS func-
tion Uq(ǫq). The parameter αq ∈ [0, 1], called freshness

weight, is used to adjust the relative importance of the two
components, freshness and accuracy. Vq(τq) and Uq(ǫq) are
non-increasing positive functions, where Vq(τ⊢) = 1 and
Uq(ǫ⊢) = 1.

Since the query groups are non-overlapping, we have:

V∗
j (Pj) =

X

q∈Cj

αq · Vq(Pj) (2)

We approximate the Vq functions using piece-wise linear
functions of κ equal-sized segments along the input domain
[τ⊢, τ⊣]. This enables us to represent the aggregate QoS
functions (V∗

j ’s) as piece-wise linear functions of κ segments
as well. Figure 3 gives and example of aggregating two piece-
wise linear functions of 4 segments each.

Recall that the set of queries that intersect a region Ai

can overlap with the set of queries that intersect a different
region, since a query q can intersect more than one region.
Let mq(i) denote the fraction of q’s query region that lies
within Ai and Q denotes the set of queries in the system.
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Figure 3: Example of QoS function aggregation

Then, we have:

U∗
i (∆i) =

X

q∈Q, s.t. mq(i)>0

(1− αq) ·mq(i) · Uq(∆i) (3)

The equality in Equation 3 holds when (a) Uq’s are lin-
ear functions,1 or (b) Uq’s are piece-wise linear functions
and there are no queries crossing the region borders. How-
ever, it is still a good approximation for the general case of
piece-wise linear functions if the crossings are not frequent.
Because the size of a region is significantly larger than that
of a query, query crossings are indeed infrequent. Like V∗

j ’s,
we also represent U∗

i ’s as piece-wise linear functions with κ
segments. Based on this analysis, the Equation 1 can be
written in the following form:

Ψ =
1

m

 

k
X

j=1

V∗
j (Pj) +

l
X

i=1

U∗
i (∆i)

!

(4)

Note that, for a given j ∈ [1..k], V∗
j is independent of ∆i’s

(i ∈ [1..l]). Similarly, for a given i ∈ [1..l], U∗
i is independent

of Pj ’s (j ∈ [1..k]). This separation allows us to operate at
the granularity of query groups for configuring query load
shedding and at the granularity of regions for configuring
the update load shedding.

It is critical to note that the queries within Cj may in-
tersect a number of different areas, and similarly queries
within area Ai may be contained in a number of different
query groups. As a result, if U∗

i ’s were not independent of
Pj ’s, altering the re-evaluation period Pj for queries within
Cj may have altered more than mj different aggregate QoS
functions belonging to different regions. A similar argument
is valid for altering the inaccuracy threshold ∆i for Ai when
V∗

j ’s are not independent of ∆i’s. Thus, without a clear sep-
aration of re-evaluation periods and inaccuracy thresholds
in aggregated QoS functions, one may create a significant
problem for the system optimization, as it will defy reduc-
tion by making V∗

j ’s and U∗
i ’s dependent on a large number

of parameters, making their computation costly.
One downside of representing a query’s QoS specification

as a linear combination of a freshness-related QoS function
and an accuracy-related QoS function is the loss of certain
amount of expressiveness, compared to the case of an unre-
stricted QoS function of two parameters. Yet, the presented
model still manages to capture a wide spectrum of QoS spec-
ifications, ranging from staleness insensitive (αq = 0) to in-
accuracy insensitive (αq = 1) scenarios. As we will present
in the rest of the paper, this way of modeling the QoS spec-
ifications lends itself to an efficient implementation of the

1For Equation 3 to hold, we should be able to write Uq(ǫq) =
Uq(
P

i,mq(i)>0 mq(i) ·∆i) =
P

i,mq(i)>0 mq(i) · Uq(∆i). This

can be done if and only if Uq is a linear function.

adaptive load shedding optimization, making it possible to
adapt more frequently, with minor overhead.

To better understand the problem of how to combine
query load shedding and update load shedding, we first dis-
cuss the query load shedding and the update load shedding
separately in the next two sections and then present our fi-
nal solution for combining QoS-aware query load shedding
and QoS-aware update load shedding.

4. QOS-AWARE QUERY LOAD SHEDDING
We now focus on the QoS-aware query load shedding prob-

lem, by only considering the freshness aspect of the quality
and the cost of query re-evaluation.

4.1 Formalization of the Problem
The aim of the query load shedding problem is to maxi-

mize the first component of the overall quality from Equa-
tion 4, denoted by Ψv. Given k query groups, recalling that
V∗

j (Pj) denote the aggregation function for the query group
Cj , and Pj denote the setting of the re-evaluation period for
Cj , we define Ψv as follows:

Ψv =
k
X

j=1

V∗
j (Pj)

Assume that the throttle fraction z is given, which defines
the fraction of query load to keep. The detail for compu-
tation of z will be described in Section 6.3. Under this as-
sumption, the one-time re-evaluation cost of queries within
Cj is given by fc(Cj) and since these queries are re-evaluated
every Pj seconds, the overall cost is given by fc(Cj)/Pj . As
a result, the load under a given set of re-evaluation periods
{Pj} is

Pk
j=1 fc(Cj)/Pj , which should be less than or equal

to the throttle fraction times the load of the ideal case of
∀q∈Q, τq = τ⊢, which is given by z ·

P

q∈Q fc({q})/τ⊢. In
summary, the query load shedding algorithm should respect
z as the query re-evaluation budget, while maximizing the
freshness in the query results. This can be modeled by the
following processing constraint:

k
X

j=1

fc(Cj)/Pj ≤ z ·
X

q∈Q

fc({q})/τ⊢

∀j∈[1..k], τ⊢ ≤ Pi ≤ τ⊣

The second constraint defines the scope of the re-evaluation
period Pj (j ∈ [1..k]). The key problem here is to define the
set of query groups, so as to maximize Ψv.

4.2 Measuring Quality Loss Per Unit Cost
The first question for clustering queries is to find which

metric should be used as a distance measure to define similar
queries. One intuitive observation is that two queries are
similar for the purpose of query load shedding if the amount
of reduction in quality per unit decrease in cost is similar for
the two queries. We call this measure quality loss per unit

cost (qlpc) metric. Let G(q, z) denote the quality loss per
unit cost for a given query q and a given throttle fraction z.
We define G(q, z) using the following formula:

G(q, z) =
αq ·

d(Vq(τ))

dτ

˛

˛

τ=τ⊢/z

fc({q}) ·
d(1/τ)

dτ

˛

˛

τ=τ⊢/z

(5)



Note that Vq(τ) is the freshness-related QoS function asso-
ciated with q, whereas fc({q})/τ is the cost function of q.
Setting the re-evaluation period to τ = τ⊢/z reduces the
overall cost of re-evaluating q to z times the cost for the
ideal case of τ = τ⊢. Since queries within the same group
will share the same re-evaluation period, Equation 5 cap-
tures the quality loss per unit cost for a dτ increase in the
re-evaluation period.

Clearly, a query q with a small G(q, z) value is a good
choice for shedding the query load, as it brings a small loss
in QoS for a large amount of decrease in load. Therefore,
if two queries have similar Vq functions, then the one with
the larger evaluation cost fc({q}) will be preferred for load
shedding. However, if two queries have similar fc({q}) val-
ues, then the query with the smaller (absolute) derivative
of its Vq function will be preferred for load shedding. Note
that the derivative of the QoS function Vq is constant over
each linear segment and thus Equation 5 can be simplified as
follows, where Va

q (i) denotes the slope of the ith (i ∈ [1..κ])
linear segment of Vq:

G(q, z) =
αq · V

a
q

“

⌈κ · τ⊢/z−τ⊢
τ⊣−τ⊢

⌉
”

−fc({q}) · (z/τ⊢)2
(6)

4.3 Grouping Queries with Qlbc

MobiQual uses the quality loss per unit cost (qlpc) metric
to define the similarity of queries and the distance function
used for clustering queries into desirable query groups in
terms of load shedding effectiveness. We call this algorithm
the Quality loss based clustering algorithm, Qlbc for short.

It is obvious that putting queries that have diverse G(q, z)
values into the same group is very ineffective, because queries
with larger G(q, z) values are not good candidates for query
load shedding compared to others. Hence there will be less
overall benefit from increasing the common re-evaluation pe-
riod. The Qlbc algorithm finds the similarity between two
queries q1 and q2 in two steps. First, it models the quality
loss per unit cost of each query at different z values using
a qlpc vector, where each element of the vector corresponds
to the G(q, z) value at a different load shedding level z (κ
different levels equally spaced between 0 and 1). Second,
the Qlbc algorithm uses the Euclidean distance between
the qlpc vectors of queries to define the similarity of queries.
This similarity, denoted by D(q1, q2), is defined as follows:

D(q1, q2) =
X

ι∈([1..κ]−0.5)/κ

(G(q1, ι)−G(q2, ι))
2 (7)

The Qlbc algorithm uses k-means clustering [8] to form
the final k set of query groups, based on Equation 7.

5. QOS-AWARE UPDATE LOAD SHEDDING
In this section we describe the QoS-aware update load

shedding problem, by only considering the accuracy aspect
of the quality and the cost of position update processing.

5.1 Formalization of the Problem
The goal of the update load shedding problem is to maxi-

mize the second component of the overall quality from Equa-
tion 4, denoted by Ψu. Given l regions of the geographical
space of interest, recalling that U∗

i (∆i) denote the aggrega-
tion function for region Ai, and ∆i denote the inaccuracy

threshold associated with Ai, we define Ψu as follows:

Ψu =
l
X

i=1

U∗
i (∆i)

Assume that the throttle fraction z is given, which defines
the fraction of update load to keep. The number of updates
and thus the relative cost of update processing for a given
region Ai are proportional to ni · fr(∆i). As a result, the
load under a given set of inaccuracy thresholds {∆i} can

be computed by
Pl

i=1 ni · fr(∆i). This load should be less
than or equal to the throttle fraction times the load of the
ideal case of ∀i∈[1..l], ∆i = ǫ⊢, which is given by z ·n ·fr(ǫ⊢).
Thus, the following processing constraints must hold for the
update load shedding problem:

l
X

i=1

ni · fr(∆i) ≤ z · n · fr(ǫ⊢)

∀i∈[1..l], ǫ⊢ ≤ ∆i ≤ ǫ⊣

The second constraint defines the domain of the inaccu-
racy threshold ∆i (i ∈ [1..l]). The key question here is
how to partition the space of interest into a number of re-
gions such that the overall quality Ψu is maximized. To
perform this we use an extension of the previously pro-
posed GridReduce algorithm [4]. Our extensions are tar-
geted toward building QoS-awareness into the algorithm.
Here we briefly describe this extension.

5.2 The Space Partitioning Algorithm
The goal of the space partitioning algorithm is to partition

the geographical space of interest into l shedding regions,
such that this partitioning produces query results of higher
accuracy. Concretely, the algorithm first builds a partition
hierarchy over the space by constructing a quad-tree, where
each tree node corresponds to a different region in the space.
The partition hierarchy contains a single region at the top
level and becomes more fine-grained as we go down in the hi-
erarchy. This is achieved by dividing each partition into four
quadrant partitions at the next lower level. Each level of the
quad-tree is a uniform and non-overlapping partitioning of
the entire space. In order to capture the QoS characteris-
tics of each partition, we aggregate the QoS functions for
each partition in the hierarchy through a post-order traver-
sal of the quad-tree. Once the hierarchy is constructed and
the QoS functions are aggregated for each partition, the se-
lection of the l regions follows a top-down process. The
algorithm starts from the top-most partition in the hierar-
chy. At each step one partition is picked and is replaced by
its four quadrants. This process continues until l regions of
possibly different sizes are reached. The criterion used to
decide which partition to pick at each step forms the crux of
the algorithm. With the QoS functions at hand, we compute
how beneficial it is to divide a partition into its quadrants
by solving the small scale version of the QoS-aware update
load shedding problem we formalized in the previous sub-
section by restricting it to the four quadrants at hand. The
partition that provides the highest gain in terms of the QoS
measure Ψu is picked for further partitioning.

6. PUTTING IT ALL TOGETHER: THE MO-

BIQUAL SOLUTION



In this section we first formalize the problem of combining
QoS-aware update load shedding and QoS-aware query load
shedding. Then we present a fast greedy algorithm called
the Minimum quality loss per cost step (Mqls) to configure
the re-evaluation periods Pj , j ∈ [1..k] and the result inac-
curacy thresholds ∆i, i ∈ [1..l] within the same framework,
aiming at achieving high overall QoS and better satisfying
the freshness and accuracy requirements of mobile location
queries. Finally, we describe how to set the throttle fraction
z using a feedback-based adaptive mechanism.

6.1 Problem Formalization
The objective of the combined load shedding problem is

to maximize the overall quality Ψ = 1
m

(Ψv + Ψu) given in
Equation 4. We now restate the processing constraint by
combining the load due to query re-evaluation and update
processing.

Let zv denote the fraction of the query load retained for
a given set of re-evaluation periods {Pj}. We have: zv =

Pk
j=1 fc(Cj)/Pj

P

q∈Q fc({q})/τ⊢
. Similarly, let zu denote the fraction of the

update load retained for a given set of inaccuracy thresholds

{∆i}. We have: zu =
Pl

i=1 ni·fr(∆i)

n·fr(ǫ⊢)
. With these definitions,

we can state the processing constraint as follows:

zv + zu · γ ≤ z · (1 + γ) (8)

The parameter γ in Equation 8 represents the cost of per-
forming update processing with the setting of ∀i, ∆i = ǫ⊢
compared to the cost of performing query re-evaluation with
the setting of ∀j , Pj = τ⊢. In other words, for the ideal case
the query re-evaluations costs 1 unit, whereas the update
processing costs γ ∈ (0,∞] units. Note that γ is not a
system specified parameter and is learned adaptively as fol-
lows. Let U be the observed cost of update processing and
V be the observed cost of query re-evaluation during the last

adaptation period. Then we have γ = U/zu

V/zv
. This assumes

that the workload does not significantly change within the
time frame of the adaptation period. Recall that the load
shedding parameters are configured after each adaptation
period, thus yielding new values for zu and zv (by way of
changing Pj ’s and ∆i’s). Thus the combined load shedding
problem is formalized as follows:

maximize Ψ = 1
m

“

Pk
j=1 V

∗
j (Pj) +

Pl
i=1 U

∗
i (∆i)

”

subject to
Pk

j=1 fc(Cj)/Pj
P

k
j=1

fc(Cj)/τ⊢
+ γ ·

Pl
i=1 ni·fr(∆i)

n·fr(ǫ⊢)
≤ z · (1 + γ)

∀j∈[1..k], τ⊢ ≤ Pi ≤ τ⊣, ∀i∈[1..l], ǫ⊢ ≤ ∆i ≤ ǫ⊣

Note that this is a non-linear program, since the constraints
have 1/Pj terms and are not linear. We now describe Mqls

− a fast, greedy algorithm for setting the re-evaluation pe-
riods and inaccuracy thresholds to solve the above stated
QoS-aware load shedding problem.

6.2 The Mqls Algorithm
The basic principle of the Mqls algorithm is to start with

the ideal case of ∀j , Pj = τ⊢ and ∀i, ∆i = ǫ⊢ and incremen-
tally reduce the load to z times that of the ideal case by
repetitively increasing the re-evaluation period or the inac-
curacy threshold that gives the smallest quality loss per unit
cost reduction. The algorithm is greedy in nature, since it
takes the minimum quality loss per cost step. Concretely,

we partition the domain of re-evaluation periods and inaccu-
racy thresholds into β segments, such that we increase the
Pj ’s and ∆i’s in increments of size cv = (τ⊣ − τ⊢)/β and
cu = (ǫ⊣ − ǫ⊢)/β, respectively. The Mqls algorithm main-
tains a min. heap that stores a qlpc (quality loss per unit
cost2) value for each re-evaluation period and each inaccu-
racy threshold. The qlpc value of a re-evaluation period (or
an inaccuracy threshold) gives the quality loss per unit cost
for increasing it by cv units (or cu units). The qlpc value is
denoted by Sv

j for query group Cj and Su
i for region Ai. We

have:

Sv
j =

X

q∈Q

fc({q}) ·
V∗

j (Pj + cv)− V∗
j (Pj)

fc(Cj) · (
1

Pj+cv
− 1

Pj
)

(9)

Su
i = γ · n · fr(ǫ⊢) ·

U∗
i (∆i + cu)− U∗

i (∆i)

ni · (fr(∆i + cu)− fr(∆i))
(10)

The nominators of the second components in the above
equations represent the changes in the quality due to the
increment, whereas the denominators represent the changes
in the cost. Note that the first components of the above
equations are used to normalize the costs in the denomina-
tors of the second components, so that Sv

j ’s and Su
i ’s can be

compared.
When the Mqls algorithm starts, the current load expen-

diture of the system, which is the sum of the load due to
update and query load shedding appropriately weighted by
γ, is above our load budget imposed by the throttle fraction
z. The algorithm iteratively pops the topmost element of the
min. heap and depending on whether we have a re-evaluation
period or inaccuracy threshold makes the increment using
either cv or cu. The qlpc value of the popped element is
updated based on Equation 9 (or Equation 10) and is put
back into the heap unless no further increments are possi-
ble. The algorithm runs until the load expenditure of the
system is within the budget or all the re-evaluation periods
and inaccuracy thresholds hit their maximum value. In the
latter case the load cannot be shed to meet the processing
constraint and random dropping of incoming updates as well
as delay in query re-evaluations will unavoidably take place.
The pseudo-code of Mqls is given in Algorithm 1.

The total number of greedy steps the algorithm can take is
given by β ·(l+k), which happens when all re-evaluation pe-
riods and inaccuracy thresholds have to be increased to their
maximum values. Each greedy step takes O(log (l + k))
time, since the min. heap has l + k elements and the heap
operations used take logarithmic time on the heap size. The
final time complexity of the Mqls algorithm directly fol-
lows as O(β · (l + k) · log (l + k)) and the space complexity
as O(l + k).

6.3 Setting the Throttle Fraction
We set the throttle fraction adaptively based on feedback

with regard to how well the system is performing in terms
shedding the correct amount of load. When the throttle frac-
tion z is larger than what it should be, the system will not
be able to re-evaluate all queries at all of their re-evaluation
points and/or will not able to admit all position updates
into the system. Let σv represent the fraction of query load
imposed by the set of re-evaluation periods that was actu-

2This is qlpc for a query group or for a region, and not for
a query as it was first introduced in Section 4.2. The core
concept is the same.



Algorithm 1: The Mqls Algorithm

Input: z: throttle fraction; cv : period incr.; cu: threshold incr.
Output: Pj , j ∈ [1..k]: periods; ∆i, i ∈ [1..l]: thresholds
GreedyIncrement(z, cv , cu)
(1) H: empty, min heap of Sv

j ’s and Su
i ’s

(2) V ←
P

q∈Q fc({q})/τ⊢, V⊣ ← z·V {query expend., budget}

(3) U ← n · fr(ǫ⊢), U⊣ ← z · U {update expend., budget}
(4) for j = 1 to k {init. Sv

j ’s, add to H}

(5) Sv
j ←

V∗
j (τ⊢+cv)−V∗

j (τ⊢)

fc(Cj)·
“

1
τ⊢+cv

− 1
τ⊢

” {initial query qlpc}

(6) Sv
j ← Sv

j /V⊣ {normalize}

(7) Pj ← τ⊢, H.Insert(Sv
j ) {add query qlpc}

(8) for i = 1 to l {init. Su
j ’s, add to H}

(9) Su
i ←

U∗
i (ǫ⊢+cu)−U∗

i (ǫ⊢)

ni·(fr(ǫ⊢+cu)−fr(ǫ⊢))
{initial update gain}

(10) Su
i ← γ−1 · Su

i /U⊣ {normalize}
(11) ∆i ← ǫ⊢, H.Insert(Su

i ) {add update gain}
(12) repeat {start increment loop}
(13) S ← H.PopMax() {next Pj or ∆i to incr.}
(14) if S is for a period, S = Sv

j

(15) V ← V −
fc(Cj)

Pj
+

fc(Cj)

Pj+cv
{query expend.}

(16) Pj ← Pj + cv {increment Pj}
(17) if Pj ≤ τ⊣ {further incr. possible}

(18) Sv
j ←

V∗
j (Pj+cv)−V∗

j (Pj)

fc(Cj)·

„

1
Pj+cv

− 1
Pj

« {new query qlpc}

(19) Sv
j ← Sv

j /V⊣ {normalize}

(20) H.Insert(Sv
j ) {insert the query qlpc}

(21) else if S is for a threshold, S = Su
i

(22) U ← U−ni·fr(∆i)+ni·fr(∆i+cu) {update expend.}
(23) ∆i ← ∆i + cu {increment ∆i}
(24) if ∆i ≤ ǫ⊣ {further incr. possible}

(25) Su
i ←

U∗
i (∆i+cu)−U∗

i (∆i)

ni·(fr(∆i+cu)−fr(∆i))
{new update qlpc}

(26) Su
i ← γ−1 · Su

i /U⊣ {normalize}
(27) H.Insert(Su

i ) {insert the update qlpc}
(28) until V + γ · U ≤ V⊣ + γ · U⊣ {budget reached}

or H.Size()= 0 {all period and thresholds maxed}

ally handled with respect to query processing. This can be
calculated by observing the number of query re-evaluations
performed and skipped during the last adaptation period,
appropriately weighted by query costs. Similarly, let σu

represent the fraction of update load imposed by the set
of inaccuracy thresholds that was actually handled with re-
spect to update processing. This can be calculated by ob-
serving the number of updates admitted and dropped since
the last adaptation period. Once σv and σu are computed,
we can capture the performance of the system in handling
the amount of load imposed by the current throttle fraction
z as follows:

φ =
zv · σv + γ · zu · σu

z · (1 + γ)
(11)

The denominator of Equation 11 is the amount of load
the system was supposed to handle and the nominator is the
actual amount of load that was handled. In order to take
into account the cases where z is lower than what it should
ideally be, we also consider the utilization of the system, µ.
When we have an overshot z the utilization of the system
will be 1, whereas it would be less that 1 when we have
an undershot z since the system would be idle at times not
processing any queries or updates. As a result we adjust z

as follows for the two cases:

z ←

(

z · φ µ = 1

min(1, z/µ) µ < 1
(12)

This concludes our description of the MobiQual system.

7. EXPERIMENTAL EVALUATION
In this section we compare the performance of the Mo-

biQual system to a number of other alternatives. These
include:
− Query-only load shedding refers to QoS-aware dif-

ferentiated load shedding with respect to re-evaluation peri-
ods only (see Section 4) and uses a fixed inaccuracy thresh-
old of ǫ⊢.
− Update-only load shedding refers to QoS-aware dif-

ferentiated load shedding with respect to inaccuracy thresh-
olds only (see Section 5) and can be seen as the QoS-aware
extension of the Lira approach [4]. Thus we name it as
Lira+.
− Single ∆-P refers to combined QoS-aware query and

update load shedding, but without query grouping (Qlbc al-
gorithm from Section 4.3) and space partitioning (extended
GridReduce algorithm from Section 5.2). It represents a
special case of the MobiQual system with k = l = 1.

We evaluate the MobiQual system using four main evalu-
ation metrics. These include:

i) The overall quality metric Ψ, as defined by Equation 4.

ii) The mean period delay D, which is defined as the av-
erage difference between the ideal case period τ⊢ and
the assigned period of queries, τq = Pj for q ∈ Cj . The
mean period delay is formulated as:
D = 1

m

P

q∈Q(τq − τ⊢)

iii) The mean position error R, which is defined as the av-
erage error in the positions of the mobile nodes within
query results, relative to the error for the ideal case of
∀i∈[1..l] ∆i = ǫ⊢. It is formulated as:
R = 1

m

P

q∈Q(ǫq − ǫ⊢)

iv) The running time of the adaptation step, which in-
cludes configuring a new set of re-evaluation periods
and in-accuracy thresholds using the Mqls algorithm.

7.1 Experimental Setup
To create the mobile node movement trace used in the ex-

periments, we used a real-world road map from the Cham-
blee region of the state of Georgia, USA. The trace covers a
region of around 200km2 and part of it is shown in Figure 4.
We used real-world traffic volume data at the granularity of
specific road types (such as expressway, arterial, collector),
taken from Gruteser and Grunwald [7], to simulate cars go-
ing on roads. The trace contains around 15K mobile nodes.
The default re-evaluation period range used for the exper-
iments is [τ⊢, τ⊣] = [1, 10] seconds, whereas the inaccuracy
threshold range used is [∆⊢, ∆⊣] = [5, 100] meters. The
number of regions used for partitioning is set as l = 250
(see [4]). The increments used by the Mqls algorithm are
determined using β = 100, i.e., the maximum number of
increments possible is 100 for each re-evaluation period and
inaccuracy threshold. The queries used in the experiments
are range queries. The query distribution is proportional to
the object distribution. Inverse and random distributions



Figure 4: The road map used in the
experiments, Chamblee, GA, USA
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Figure 5: Example QoS functions, with
different mid-point QoS values (y0.5)

were also used, with similar results. The query side lengths
were randomly chosen from the range [0, 1000] meters.

A number of system and workload parameters were varied
in the course of the experiments to understand their impact
on the query result quality and running-time performance of
the MobiQual system. These include the number of query
groups used, i.e., the k parameter used by the Qlbc algo-
rithm (default value: 16), the number of queries to number
of objects ratio (default value: 0.01), the emulated capac-
ity of the system (default: z = 0.5), and the QoS functions
specified by the queries. Figure 5 gives the general template
of the QoS functions that were used for both Vq (freshness)
and Uq (accuracy) components of a query q’s QoS speci-
fication function Sq, whereas the α value that adjusts the
relative importance of the freshness and accuracy compo-
nents of quality were chosen at random from the range [0, 1].
The QoS functions were approximated by 10 linear segments
and a parameter called mid-point QoS threshold was used to
pick a random Vq or Uq component from the set of available
functions, a subset of which is shown in Figure 5. Any given
Vq or Uq is chosen by randomly picking a number, say y0.5,
between 0 and the mid-point quality threshold, and deter-
mining the QoS function whose value for the mid-point of
its domain is equal to y0.5 (and matching the template given
in Figure 5).

7.2 Experimental Results
We divide the experimental results into three parts. The

first part deals with the impact of the amount of load to be
shed on the query result quality. The second part deals with
the performance of MobiQual under different query loads
and the impact of the number of query groups on the query
result quality as well as on the time it takes to perform the
adaptation step. The third part deals with the impact of
the QoS specifications on the performance of MobiQual.

7.2.1 Impact of the Throttle Fraction

The graphs in Figure 6 plot the overall quality of the query
results as a function of the throttle fraction (i.e., at differ-
ent load shedding levels) for the competing approaches. At
a given load shedding level, if 1 − z fraction of the load
cannot be shed by a load shedding algorithm, then the QoS
value is not plotted for that z value, and for smaller z values
thereof. For instance, we observe from Figure 6 that, for the
default settings, the query-only approach can only support
load shedding for z ≥ 0.7 and Lira+ for z ≥ 0.5, whereas
MobiQual and Single ∆-P can support z ≥ 0.2. MobiQual
significantly outperforms update-only and query-only load
shedding schemes, as it is observed from the rapidly declin-
ing QoS values of the latter two approaches with decreasing
z. Furthermore, MobiQual outperforms Single ∆-P, for a
wide range of z values. While shedding 60% (z = 0.4) of
the load, MobiQual is able to keep the QoS around Ψ = 0.9,
whereas this value is only around 0.75 for the Single ∆-P ap-
proach. Similarly, MobiQual manages to sustain a QoS value
of Ψ = 0.7 for 70% load shedding, compared to a mere 0.4 for
Single ∆-P. The two approaches both hit the Ψ = 0 bound-
ary when MobiQual is forced to set all query re-evaluation
periods and inaccuracy thresholds to their maximum value,
at which point there is no difference between the two ap-
proaches. The superior performance of MobiQual compared
to Single ∆-P illustrates the strength of the differentiated
load shedding concept, whereas the poor performances of
update-only and query-only load shedding attest to the im-
portance of performing combined quary and update load
shedding.

The graphs in Figures 7 and 8 plot the mean period de-
lay and mean position error as a function of the throttle
fraction for competing approaches, respectively. Note that
the query-only approach has zero mean position error (as
observed from Figure 8), whereas the update-only approach
has zero mean period delay (as observed from Figure 7).
However, since a good overall quality requires balancing
freshness and accuracy, these two approaches do not pro-
vide good overall QoS as observed from Figure 6. The mean
period delay of Single ∆-P stays slightly above that of Mobi-
Qual for z > 0.3. After this point Single ∆-P registers lower
mean period delays. This is because further increasing the
single re-evaluation period has diminishing benefit in terms
of the qlpc metric, since Single ∆-P cannot provide differen-
tiated load shedding. In contrast, the MobiQual approach
can locate queries that can tolerate further staleness with
less impact on the QoS value, due to the Qlbc algorithm,
and thus can increase the re-evaluation periods further for
such queries. Even though this results in higher mean pe-
riod delay compared to Single ∆-P, it translates into a higher
overall QoS due to a better balance between query and up-
date load shedding. It is observed from Figure 8 that Mo-
biQual consistently outperforms Single ∆-P in terms of the
mean position error. This is not because MobiQual sheds
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Figure 6: Overall result quality as
a function of the throttle fraction
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Figure 7: Mean period delay as a
function of the throttle fraction
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Figure 8: Mean position error as a
function of the throttle fraction
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Figure 9: Overall result quality
with changing query workload
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Figure 10: The impact of number
of query groups on result quality
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Figure 11: Adaptation time with
different number of query groups

less update load, but it is because MobiQual sheds the up-
date load from regions that has lesser impact on the query
results, due to the QoS-aware partitioning algorithm it em-
ploys.

7.2.2 Impact of the # of Queries and Query Groups

The graphs in Figure 9 plot the overall QoS of the query
results as a function the number of queries to number of mo-
bile nodes ratio, for MobiQual vs. query-only and update-
only (Lira+) load shedding. The throttle fraction is set to
0.75 for this experiment. It is interesting to observe that as
the number of queries increase, the update-only load shed-
ding loses its advantage over query-only load shedding. This
is because with increasing number of queries, the dominant
cost becomes the query re-evaluation, since the full update
load does not depend on the number of queries. This shows
the importance of performing combined query and update
load shedding, which is effective independent of the number
of queries or the number of mobile nodes, as evidenced by
the superior performance of MobiQual compared to query-
only and update-only approaches with changing number of
queries to number of mobile nodes ratio (see Figure 9).

An important parameter that impacts the performance of
the MobiQual system is the number of query groups, k. As
discussed in Section 2.1, in general the higher the number
of query groups the more fine grained is the differentiated
load shedding. The only limiting factor in increasing the
value of k is the time it takes to execute the adaptation
step, as the computational complexity of the Mqls algo-

rithm is dependent on k. However, increasing the number
of k has diminishing return in terms of the overall QoS, as
shown by Figure 10, since the query groups become more
and more homogeneous in terms of the QoS functions of the
queries contained within. The graphs in Figure 10 plot the
overall QoS as a function of the throttle fraction (x-axis is
in logarithmic scale) for different k values. This experiment
is run for 1000 continual queries. We clearly see from the
figure that the gain in QoS when going from k = 8 to k = 16
is significantly lower than the gain in QoS when going from
k = 1 to k = 2. This shows that having query groups smaller
than 50-60 queries does not bring much gain in overall query
result quality. Even though small query groups are unnec-
essary, the Mqls algorithm can support large k values with
low overhead. Figure 11 shows that for k = 16 and z = 0.5
the adaptation step takes around 110 milliseconds. In a mo-
bile CQ system, the change in the workload in terms of the
number of CQs and mobile nodes is not spontaneous, and
significant shifts in the workload is likely to happen within
minutes. Thus the time it takes to run the adaptation step
in order to configure the new set of re-evaluation periods and
inaccuracy thresholds is really small compared to the adap-
tation period and results in a very lightweight load shedding
scheme.

7.2.3 Impact of the QoS Specifications

The graphs in Figures 12 and 13 plot the overall query
result quality as a function of the mid-point QoS threshold
used for the freshness component of the QoS specifications
and the accuracy component of it, respectively. Decreasing
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Figure 12: Query result quality for
varying freshness QoS specs.
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Figure 13: Query result quality for
varying accuracy QoS specs.
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Figure 14: Result quality under
changing z & freshness QoS specs.

values along the x-axis represent QoS specifications with in-
creasingly stringent freshness components for Figure 12 and
increasingly stringent accuracy components for Figure 13.
A high throttle fraction value of 0.75 was used to make sure
that all competing approaches can shed the required fraction
of the load. Note that update-only load shedding (Lira+) is
indifferent to the freshness components of the QoS specifica-
tions, whereas query-only load shedding is indifferent to the
accuracy components. As a result, the lines for update-only
and query-only load shedding are flat in Figures 12 and 13,
respectively. We observe from Figure 12 that MobiQual is
very robust to changes in the freshness components of the
QoS specifications and shows a smaller decrease in overall
QoS with increasing intolerance to staleness in QoS speci-
fications, compared to alternative approaches. It provides
up to 12% better QoS compared to query-only load shed-
ding and 5% better compared to Single ∆-P. These values
are valid for shedding 25% percent of the load. The im-
provement provided by MobiQual over the closest competi-
tor reaches 80% when shedding 70% of the load, and for a
mid-point freshness QoS threshold of 0.75 (see previous Fig-
ure 6). The results presented in Figure 13 for the mid-point
accuracy QoS threshold are very similar in nature.

In Figures 14 and 15 we further study the sensitivities
of the MobiQual system to changes in the QoS specifica-
tions of the queries. We do this by looking at the change
in the overall QoS of the query results at different levels
of load shedding, under changing values of the mid-point
QoS thresholds. We observe from Figures 14 that even for a
mid-point freshness QoS threshold of 0.1, which implies that
Vq(

τ⊢+τ⊣
2

) is always less than 0.1 for a query q, MobiQual is
able sustain an overall QoS value of > 0.78 for z ≥ 0.5 (shed-
ding at most half of the load). Similarly, for a mid-point ac-
curacy QoS threshold of 0.1, which implies that Uq(

ǫ⊢+ǫ⊣
2

) is
always less than 0.1 for a query q, MobiQual is able sustain
an overall QoS value of > 0.85 for z ≥ 0.5. The overall QoS
sharply drops when shedding more than half of the load, and
MobiQual becomes more sensitive to increasing intolerance
to staleness and inaccuracy in QoS specifications of queries.
This is clearly observed from the increasing gap between the
QoS lines in Figures 14 and 15, and their increasing slope
with decreasing values of the throttle fraction. Yet, even for
shedding 70% of the load at the most stringent configura-
tions of the freshness and accuracy components of the QoS
specifications, MobiQual is able to provide an impressive
QoS value of > 0.6.
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Figure 15: Result quality under
changing z and accuracy QoS specs.

8. RELATED WORK
Previous work on mobile CQ systems have focused on four

major themes with respect to scalability and performance.
These are: i) indexing schemes to process position updates
more efficiently [16, 10, 11, 20]; ii) query processing tech-
niques to evaluate continual queries more efficiently [12, 5,
15, 19]; motion modeling techniques to reduce the number of
position updates received from the mobile nodes, while keep-
ing the position accuracy high [17, 2]; and iv) distributed
mobile CQ systems that achieve scalability by performing
query-aware update filtering on the mobile node side to re-
ceive updates that only relate to the current set of queries
installed in the system [1, 9, 3]. Most of these works, with
the exception of the works listed under item iv, are mostly
orthogonal to our work and can be incorporated into Mobi-
Qual easily. For instance, MobiQual can use a TPR-tree [16]
as its underlying index structure on the server side, can make
use of advanced motion modeling techniques [17] on the mo-
bile node side, and can employ incremental query process-
ing techniques [5] for query re-evaluation. Unlike the set of
works listed under item iv, MobiQual receives updates from
all the nodes, so that ad-hoc and historical queries can also
be supported. However, MobiQual prefers to shed position
updates from regions that have minimal impact on the cur-
rently installed queries, thus achieving best of both worlds.

To the best of our knowledge, none of the previous works
in the field of mobile CQ systems has addressed the prob-
lem of QoS-aware query management. MobiQual addresses
this issue by introducing a novel load shedding framework.
Note that mobile node movement is not discrete, but con-



tinuous. As a result, zero staleness and inaccuracy in the
query results is impossible to achieve with finite resources.
Thus, a solution is required to adjust the balance between
the update processing and query re-evaluation components
in mobile CQ systems. Moreover, this balance is depen-
dent on the tolerance of the individual queries to staleness
and inaccuracy in the query results. Prior works on mobile
CQ systems not only have overlooked the QoS aspect of the
problem, but also either have not address how frequent the
position updates should be received from the mobile nodes
or have not specified how frequent query results should be
updated by re-evaluating the queries. However, as we show
in this paper, an integrated, QoS-aware approach is essential
for achieving high quality query results.

In our previous work [4], we introduced the Lira system
for performing update load shedding in mobile CQ systems.
However, the work in Lira not only misses the consideration
of the query load shedding and its impact on update load
shedding, but also ignores any QoS-aware mechanisms as
a part of the load shedding framework. Thus the Lira re-
sults are limited. In contract, MobiQual provides a general
QoS-aware load shedding framework that effectively com-
bine query load shedding with update loading shedding to
maximize the freshness and accuracy of the query results.
The MobiQual space partitioning algorithm is built on top
of the GridReduce algorithm in Lira. Our experiments
showed that even a QoS-enhanced version of Lira which uses
only QoS-aware update load shedding is significantly inferior
to MobiQual.

9. CONCLUSION
In this paper we have presented MobiQual, a load shed-

ding system aimed at providing high quality query results in
mobile continual query systems. MobiQual has three unique
properties. First, it uses per-query QoS specifications that
characterize the tolerance of queries to staleness and inac-
curacy in the query results, in order to maximize the overall
QoS of the system. Second, it effectively combines query
load shedding and update load shedding within the same
framework, through the use of differentiated load shedding
concept. Finally, the load shedding mechanisms used by Mo-
biQual are lightweight, enabling quick adaption to changes
in the workload, in terms of the number of queries, num-
ber of mobile nodes or their changing movement patterns.
Through a detailed experimental study, we have shown that
the MobiQual system significantly outperforms approaches
that are based on query-only or update-only load shedding,
as well as approaches that do combined query and update
load shedding but lack the differentiated load shedding el-
ements of the MobiQual solution, in particular the query
grouping and space partitioning mechanisms.
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