
RC24216 (C0703-005) March 12, 2007
Computer Science

IBM Research Report

An Intelligent Service Composer for Business-level Service
Composition

Liu Ying, Wang Li
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, P.R.C. 100094

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Intelligent Service Composer for Business-level Service Composition

Liu Ying, Wang Li
IBM China Research Lab

{aliceliu,wanglcrl}@cn.ibm.com

Abstract

Service Component Architecture (SCA) provides a
first class model for building systems using Service
Oriented Architecture (SOA). But SCA only focus on
functional level service components. Considering a
business system includes not only functional level
components but also user interface and data level
components, this paper presents a unified service
composition framework to support business level
service composition. This framework covers 3-layer
composition, including functional, data, and user
interface level service composition. An intelligent
service composer based on this unified service
composition framework is developed to enable
business level service composition by business people
under some advanced technologies, including
intelligent service components searching, automatic
service compliance checking, and template-based
service adaptation. An example is presented to
illustrate how a business people create a business
application by using the intelligent service composer.

1. Introduction

The growing trend in enterprises is to assemble
business systems from a set of appropriate web
services and no longer be written from scratch. Service
Oriented Architecture (SOA) [7] has gained a lot of
attention, so that more and more enterprises have
started to encapsulate their software components as
service components and created their business
applications by composing service components. In
order to help enterprises easy to create and integrate
business applications, Service Component Architecture
(SCA) [8] further provides a first class model for
building systems using SOA, which can be regarded as
a complementary of web services by providing a
means of assembling services into a business system,
as well as providing a service construction model.

However, current SCA focuses on the connections
of functional units of an application. A complete
business system obviously should have the user

interfaces and data level composition consideration. It
is a natural way to take the UI and data level
composition into account while assembling a SOA
application. In this paper, we present a unified service
composition framework which covers 3-layer
composition, including functional unit composition, UI
flexible binding, and data integration. While creating a
business system, the composition of related set of
functional components are taken as the starting point,
then corresponding UI components can be flexibly
bound with the functional components. If the data
structure or sources are inconsistent among these
functional components, they can be tackled at data
level of this framework.

The potential for businesses to be able to interact
with each other on the fly is very appealing. In order to
quickly and correctly create business application by
composing service components, business domain
knowledge, such as business logic and service
compliance requirements, are demanded. To date, the
activity of creating SOA business applications can not
be performed by business people because of technique
gap. The gap comes from the following four reasons:
firstly, the limitation of current service component
standard is that it only addresses how to define
interfaces but not business semantics, then business
people can not understand them; secondly, it is
difficult for business people to manually write
adaptation while two service components are
mismatched; thirdly, facing a large volume of service
components, business people could not easy to find the
required service components; fourthly, lacking of
mechanisms to let business people be aware of non-
compliance errors is another challenge.

In order to bridge the gap between existing service
composition technology and required business level
service composition, we developed an intelligent
service composer based on the above mentioned
service composition framework to enable business
level service composition. This service composer has
four important features: intelligent service components
searching to enable business people quickly locate the
required service components; automatic compliance

checking to support service functional and non-
functional level service compliance checking;
template-based adaptation to enable quickly and easily
adapt mismatched service components; and automatic
wiring feature to enable quickly connection of multiple
service components. This composer is web-based tool,
which provides the capability to quickly deploy the
composed business service, so that the quick demo can
demonstrate the function of composed business service
immediately.

The rest of this paper is organized as the following
structure. Section 2 presents the overview of the
unified service composition framework. In section 3,
three important features of the intelligent service
composer are introduced, including intelligent
component searching, automatic compliance checking,
and template-based service adaptation. UI level
composition is presented in section 4. In section 5, we
briefly introduce what are the critical challenges for
data-level composition. In section 6, an example is
taken to illustrate how to compose a business
application by using the intelligent service composer.
Related works of service composition are listed in
section 7. We give the conclusion in the final section.

2. Unified service composition framework

A business application is usually composed of three
parts, data structure, business logic, and UI.
Correspondingly, we define a unified service
composition framework from these three dimensions.
The overview of this framework is showed in figure 1.

Function components in this framework extend
SCA with business specification. The business
specification is classified as four kinds: the first one is
some meta-information, including name, description,
domain category, domain related keywords, associated
function components, provider information, and
implementation language; the second is some SLA
(Service Level Agreement) related properties,
including availability, security policy, duration of
service, performance metrics (e.g. maximum response
time, maximum capacity, throughput), management
policy (e.g. government policy, help desker
information); the third is business logic constraints; the
fourth one is the service delivery mode, such as lease
mode (the users can only use the service by web access
channel, and the service is charged by per year, per
month or per request) and sell mode (the service
component is sold to the users). From representation
perspective, a service function component is composed
of a business specification file in xml format and some

jar files which are implementations of the SCA
components.

A UI component encapsulates some UI pages, some
picture files, and some java files which implement the
UI actions. A UI component can be existed
independently, but the general situation is that a UI
component is glued with a service function component.

A data component includes two parts: one is the
data source specification (e.g. database version, xml
structure); the other is the data structure definition in
xml format. Similar to the UI components, a data
component can be defined independently or glued with
some function components.

Figure 1: Service Composition Framework

Service Component Architecture

Function
components

UI
components

Data
components

Extension with business specification

Service Components Catalog

Intelligent Service
Searching

Service Compliance
Checking

UI Binding

UI Preview

Data Consistency
Checking

Data Source Merging

Template-based
Adaptation

Service Wiring

Web-based Quick Service Demo

Since the target user of this framework is business
people, it is necessary to provide some easy-to-use
functions to support business people to compose
business service. Corresponding to the four reasons to
lead the technical gaps, we provide the following key
functions to bridge the gap.

How to quickly locate the required service
components is the first step. In this framework, some
intelligent searching mechanisms are designed based
on the features of function components. As the above
introduced, the function components are specified with
some business characteristics, such as domain related
keywords, associated function components, and SLA
related properties. Then the business people can search
the required service components by keywords and
SLA properties. While creating a business application,
the associated service components can be located once
one component of the business application is found
because the association relationships have been
specified in the business specification of service

components. For example, while composing an
account receivable application, a function component
‘create payment account’ is firstly searched by
keywords, the associated components ‘customer
relationship for RA’ and ‘payment management’ can
be quickly located because these two components are
associated components of ‘create payment account’
component.

The compliance judgment of service components no
matter from functional of SLA perspectives is a big
challenge for business people since they are not
technical experts. Automatic compliance checking
function is provided in the service composition
framework. The details will be introduced in section
3.1.

If the interfaces of two components do not match, to
manually write the adapter of these two components
are very difficult for business people. We propose to
apply template-based automatic adaptation technique
to replace manual adaptation.

There are two important features, UI binding and
UI preview, at UI composition layer. Through flexible
UI binding, users can choose their favorite UI style
just-in-time. UI preview function enables users to
visually select UI components they want.

As we know, data composition is a quite difficult
topic. Fortunately, a lot of existing works related to
information integration can be leveraged. In section 5,
we will analyze some specific challenges in the service
composition but without concrete technologies.

We developed a web-based service composer
following the service composition framework. Besides
the above introduced function features, the composer
provides quick demo capability. When the service
composition is finished, the generated runnable files
can be automatically deployed in the web platform.
The users can directly preview the execution result of
the composed service. It is beneficial for business
people to immediately make decision whether the
composed service satisfies the business requirements.

3. Intelligent features of composer

Three important features of the composer are
introduced in this section, including intelligent
searching, compliance checking, and template-based
adaptation.

3.1. Service intelligent searching

Business people usually know what they want from

business perspective, but they have no idea how to find
them because of lacking of technical background to

understand service interface definitions or complex
service specification. However how to quickly locate
suitable components and correctly compose them in
line with a given business model or to fulfill a specific
business requirement becomes a big challenge based
on existing web service composition technique.
The intelligent composer provides the intelligent
searching capability to help business people quickly
find out required service components. Actually, there
is no specific research difficulties while implementing
this capability but leveraging some searching
technologies. We particular indicates some aspects that
we have considered while designing this capability.
Firstly, business people can easily follow some
business questions, so that the composer can guide the
users to locate the target components step by step
under the guidance of those business questions. And
these business questions have been internally
connected with related service components. Secondly,
the organization structure of service components are
critical important. The composer is based on a service
catalog which aligns with asset repository standard.
Then the business people can search component by
domain, business rule, provided information, prices,
etc. Thirdly, the business specifications of service
components play important role in supporting
intelligent searching. Users can search service
components by following the attributes defined in the
business specification, such as environment (operation
system, language, system), interface (methods,
input/output), SLA (performance, limitations, database
usage), and component type, size, domain, etc.
Fourthly, user’s feedback is very important for
dynamically updating component usage information
based on searching historical record, such as service
level information, weights of searching algorithm,
categorization, etc.

3.2. Service compliance checking

A service component is often developed for a
specific business or a kind of businesses. The
component provider is quite clear what situation is the
appropriate business to adopt this component.
Therefore, we propose the provider specify these
constraints while delivering this component, including
business constraints and SLA properties. Business
constraints are specified as some compliance rules,
which should be complied in the functional level
composition. The compliance rules can be categorized
as the following three kinds:

Meta-information matching: The meta-information
of a function component has the corresponding
constraints while composing it with other components.

For example, the provider of a service component is
company A, and one of a compliance rule required that
the composed components with it should have the
same provider company A. The meta-information
matching rule is specified as the following format:

composite. Provider = SAME or composite.
Provider = ‘Company A’

All the meta-information of a service component
can be defined as the properties of the component, so
the meta-information matching rules are defined as the
assignment on the values of its composite components.
The implementation of checking meta-information
matching rules is intuitive, i.e. to analyze the business
specification files of the composed service component
to check whether these rules are complied or not.

 Business logic constraints: A function components
often includes multiple interfaces. In order to help
users easily and correctly assemble application through
the wiring of service interfaces, each service
components define some business logic constraints to
describe the interfaces connection rules. For example,
a component ‘create receivable account’ has two
interfaces: one is GetAccountInformation(Customer),
and the other is GenerateReceivableAccount(Account).
The business function of this component is to generate
receivable account after analyzing the information of
customer. The interface
GetAccountInformation(Customer) is usually invoked
by other system, such as inventory management system
or customer management system. After having the
information of customer, the other interface
GenerateReceivableAccount(Account) is invoked by
payment management system to generate receivable
account information. That is to say that the invoke
sequence of these two interfaces are demanded to be
complied in case of leading errors. This business
constraint can be formally specified as the following
temporal logic formulas.
Always Next(GetAccountInformation(Customer),
GenerateReceivableAccount(Account))
It means that once the action of invoking
GetAccountInformation(Customer) is executed, the
next action is always to invoke interface
GenerateReceivableAccount(Account), otherwise, this
constraint is violated.

We have defined a language, called Business
Property Specification Language (BPSL), based on
LTL to specify business logic constraints. From
implementation perspective, we propose to apply
model checking technology to check the compliance of
a composed service against all the business logic
constraints involved in this composed service. The
details of applying model checking technology into

compliance checking have been introduced in our
pervious paper [9].

Besides temporal logic rules, the intelligent service
composer supports another two kinds of business logic
constraints: association binding and exclusion. The
association binding rules specify the constraint that
multiple interfaces are always invoked associately. For
example,
Always AND(GetAccountInformation(Customer),
GenerateReceivableAccount(Account))
Means that any one of the interfaces,
GetAccountInformation(Customer),
GenerateReceivableAccount(Account), is invoked, then
the other interface must be invoked in the same
composed service. The exclusion rules specify that
multiple interfaces should not be invoked at the same
composed service. For example,
Exclusion(GetAccountInformation(Customer),
GenerateReceivableAccount(Account))
Means that any one of the interfaces,
GetAccountInformation(Customer),
GenerateReceivableAccount(Account), is invoked, then
the other interface should not be invoked in the same
composed service.

SLA compliance: Besides the functional level
constraints, each service component should provide
SLA terms. As the previous introduce, the service
components has include SLA related properties in their
business specification file. However, in order to reach
the predefined SLA goals, they may have some
requirements on the composed components with it. For
example, an interface
‘GetAccountInformation(Customer)’ can provide 256
bit encryption service, however, the input data must
also provide 256 bit encryption service while it is
invoked by another services. So we suggest that the
service provider should define the required SLA
compliance for the to-be-composed components. The
definition of the SLA compliance rules is similar to
that of meta-information matching rules. For example,
the security compliance rule example can be defined as:
Composite.
Interface(GetAccountInformation(Customer)). INPUT.
Security(encryption, protocol)=(256, SSL)

3.3. Template-based service adaptation

In section 3.1, we have introduced that the service
components are organized with a well-defined Service
Catalog to enable the quick searching. Service Catalog
is a repository of service components from different
service providers. It will be the general situation that
some components can not be found from catalog. For

this kind of situation, composer provides service
adapter templates mechanism to help business man
automatically generate adapter but not manual writing
from scratch. While a required component is missed in
the service catalog, the user can create an empty
service which only has some business specification.
The composed service with empty service can be saved
as a service template in the user’s personal workspace.
When the new service is implemented, it can be used
to replace the empty service in service template. And
resave the service template as composed service in
work space. This mechanism makes it flexible to
replace a service template with different
implementations.

In the real cases, users often meet the mismatched
service components. If two service components come
from different service providers, the common situation
is that they are Partial Compatibility for composed
service offering [6]. It means these two service
components provide complementary functionality and
could be linked together in principal; however, their
interfaces and interaction patterns do not fit each other
exactly. There are mainly four kinds of mismatch:

Signature Mismatch: it refers to the data that the
service processing is different. Such as different data
type, the number of data that can be processed per time.

Behavior/Protocol Mismatch: it refers to the
message mismatch, such as different message order or
sequence, different message name. etc.

QoS Mismatch: It refers to the non–function
property mismatch, such as performance, max
response time, etc.

Semantic Mismatch: Even the name is the same; it
is possible that they have different semantics.

For QoS mismatch, we will include it in service
compliance checking part. If the services do not
compatible in QoS, then they are not allowed to be
composed. For other situation, it is necessary to use
mediators [6] to make the composition feasible. The
basic approach is that we focus on mediator design
time, set up mediator repository, define all kinds of
mediator patterns and figure out mediator generating
situations. For users’ special requirement, composer
will select the proper mediator, and for the mediator
pattern that is not implemented yet, composer support
users to create mediator template and implement it in
later. During run time, mediator can generate
automatically based on the situation match
making.Due to the limited paper size, we will
introduce this work in the separate paper.

4. UI-level composition

Different customers often have some specific
requirements for UI; the intelligent service composer
supports users to replace UI under the support of UI
preview function and UI binding capability. Before
introduce the details of UI composition, we first give
the formal definition on some concepts mentioned in
section 2.

Service component as the complete implementation
of a business problem, including function, UI, and data
implementation. We separate each part of service
components as independent component that can be
composed separately. Then the separate components
include service function component, UI component,
and data component. Function Component is defined
as the function implementation of service component,
including business logic and data operation
implementation. UI Component encapsulate the
implementation of the user interface of service
component.

At UI composition layer of the composer, users can
select and integrate UI components based on function
composition result to enable flexible UI binding to the
composed service. A service function component can
bind a UI component or not when it is uploaded to the
service catalog. At the same time, UI component can
be developed independently and uploaded to the
service catalog. We provide UI preview function to
enable user to preview the UI pages and page flow
before binding. And user can flexibly replace the UI
components based on the specific requirements. We
also provide personal workspace to save UI selection
result.

5. Challenges of data-level composition

Users often face the problem that two components
provided by different providers are composible from
business function point of view but their data
structures or data sources are different. If the data
structures of two services don’t matched, an intuitive
way is to create mediators to transfer them. As we
know, a lot of research works in this area can be
leveraged by us. For example, [6]. Which describe the
service composition problem from data angle, and give
an example to show how to generate data mediator to
make service compatiable. Another situation is that the
data sources of two components are different, for
example, one data source is xml style data definition,
and the other data source is database. So it is
necessary to generate data mediation to bridge
them together. Some existing works or products such
as schema matching database integration, etc. related
to information federation or information integration

[11, 12] can be leveraged to federate different data
sources.

Through the above analysis, we know that it is not a
big problem to solve isomerous data structures or
sources. However, to check the mismatching of two
data structures is a big challenge for us because the
semantics of data structure definition may be different.
We can imagine that two data structures coming from
different two providers may be different even they are
completely the same from syntactical perspective. In
fact, this problem has also been discussed in some
papers [14, 15]. But there is no effective way to solve
this problem. We believe an effective way to solve this
problem is to require that all the service provides
define their data structure based on the same standard,
for example, Oagis [13] is a standard for retail industry
data definition.

6. An example

In this section, we will go through an example to
illustrate how to use composer to create a business
application. The original real case is a big system, but
we have simplified it as a small example here.

Example Background:
Client: ABC Clothes Company, this company is a

small clothing company with about 200 employees;
their main product is ABC sport suit.

Requirement: ABC Clothes Company intends to
develop a sale management system, which supports
customer to submit order and pay for the order online.
In order to support online payment, this sales
management system needs to integrate with an online
payment system. Meanwhile, ABC Clothes Company
can manage these orders and process correspondingly
with the sales management system, such as check
inventory, check out, customer information
management, etc. ABC Clothes Company requires that
the payment system can be replaced by other payment
system flexibly but without stopping the system.

The related business people of ABC Clothes
Company can use the intelligent service composer to
quickly create a business application to meet the above
requirement since a lot of service components have
been available. Figure 2 gives the snapshot of web-
based Intelligent Service Composer.

 Figure 2: System Structure Overview

Overall, the complete business application

development will go through two stages. In the
engaging phase, only part of service components are
available, then business people can quickly compose
an incomplete application with available components
and some service templates to quickly verify
requirements. In the following producing phase, the
missing service components are implemented and
replace the service templates. In the following part, we
introduce how to compose a business application with
the intelligent service composer step by step.

In engaging phase
In the engaging phase, the appropriate service

components are located from service catalog, and an
initial application is created under the support of some
advance features of the composer. After the
composition, users can run a quick demo to verify
whether the execution result can fulfill the requirement.

Step 1: selecting service components
Firstly, business people can find out a component

‘Payment Creation’ by searching some business
keywords, such as ‘payment’ and ‘retail’. Then the
association searching capability of the intelligent
searching can help quickly find out its associate
component ‘Company Relationship’. Figure 3 shows
the snapshot of the intelligent searching. By following
same approach, six components, ‘Payment
Management’, ‘Payment Creation’, Company
Relationship’, ‘Inventory Delivery’, ‘Paypal’, and
‘Chinapay’, are searched out.

Figure 3: Intelligent searching
Step 2: Automatic wiring and mediators’ generation
For those compatible service components, the auto

wiring capability of composer can automatically check
their consistency and connect them. If two components
don’t exactly match, the composer will firstly search
whether their mediator has been provided in the
service catalog. If no appropriate mediators can be
found out, a mediator template will be generated, but
the implementation of this mediator should replace the
template finally. As showed in Figure 4, component
‘Payment management’ and ‘Inventory Delivery’ don’t
match, then a mediator is generated there.

Figure 4: Composed service at functional level

Step 3: Service compliance checking
For checking the compliance of the composed

service components, users have two choices to define
compliance rules for this composed service. On the
one hand, the embedded compliance rules of the
composer can be selected, such as inclusion or
exclusion rules; on the other hand, users can define
some rules by themselves. In this case, a security
related rules are defined which requires that the
encryption byte of ‘Paypal’ component and ‘Payment
Management’ component is the same (256 bit). The
representation of the embedded compliance rules and
user defined rules are showed in Figure 5.

Figure 5: Compliance rules
Step 4: Saving composed service in work space
The composed service can be save in user’s

personal workspace
Step 5: UI component binding
User can use UI preview capability to select proper

UI for service offering. Service function component
‘payment management’ has two UI components, then
the user can flexible bind different UI component with
the service function component as showed in Figure 6.

UI component category

UI binding

UI work space

UI selected mark

The properties of service component

Service component

Service category

Personal work space

mediator

Figure 6: UI binding
Step 6: Data-level composition
In data composition view, data consistency

checking tool can help check whether the data
structure and source are consistent.

Step 7: Quick demo
The quick demo function can quickly deploy the

composed service in the Tuscany platform of the
composer, then the application can be executed. After
looking at the execution result of the quick demo, ABC
Company believes that this system satisfies their
requirement. They will pay for the service components
used in this composed service. All of above can be
done through the intelligent service composer platform
but without face to face communication, which will
save a lot of engagement cost.

In producing phase:
During producing phase, the user needs to

download the complete code of system to their own
environment and run the application in their own
environment. In addition, some templates need to be
implemented and replaced.

 …
<constrain name="binding">

 <bind

interface="com.ibm.crl.service2.emgr.paypal.PayPalService" />

 <bind

interface="com.ibm.crl.service2.emgr.payment.PaymentManage

mentService" />

 </constrain>

 <constrain name="exclusion">

 <bind

interface="com.ibm.crl.service2.emgr.finance.PaymentCreationT

oOagis" />

 <bind

interface="com.ibm.crl.service2.emgr.paypal.PayPalService" />

 </constrain>

 <constrain name="timelogic">

 </constrain>

 <constrain name="security">

 <bind

7. Related works

There is a lot of work about web service
composition. Here we list several main and most
popular approaches for web service composition.
BPEL [10] is an XML language that supports process
oriented service composition developed by BEA, IBM,
Microsoft, SAP, and Siebel. BPEL composition

interacts with a Web services’ subset to achieve a
given a task. Another is Semantic Web (OWL-S) [1].
The Semantic Web vision is to make Web resources
accessible by content as well as by keywords. The
most important semantic web based composition tool
is the Web Ontology Language for Services
(www.daml.org/services). OWL-S (previously known
as DAML-S) is a services ontology that enables
automatic service discovery, invocation, composition,
interoperation, and execution monitoring. Recently,
Web Components [2] approach is getting more and
more attention, IBM developed SCA (Service
Component Architecture) as SOA programming model
and support service composition. The Web component
approach treats services as components in order to
support basic software development principles such as
reuse, specialization, and extension.

Besides above approaches, there are also some other
approaches for web service composition such as
algebraic process composition, Petri Nets method,
model checking and Finite-State Machines, etc. But all
these approached are developed from the developers’
perspective and focus on the software application layer,
but not from users’ perspective or focus on business
application level, and for business man it is hard for
them to understand and do application from IT service
view.
 Some recent works in Web Service field aims to
provide promising opportunities for integrating data,
applications and business process. More and more
works have discussed business level service
composition or service integration from different
enterprises. Such as Framework for Semantic Web
Process Composition [3], which provides the
enhancement of the current Web process composition
techniques by using Semantic Process Templates to
capture the semantic requirements of the business
process. Another important work is Role and
Application of Pluggable Business Service Handlers in
Web Services Choreographies [4], which attempts to
address business process integration issues, is Web
Services Choreography Definition Language (WS-
CDL)
 A composition mechanism must therefore satisfy
several requirements: Connectivity, Nonfunctional
Quality-of-Service Properties, Correctness, and
Scalability [5]. However, business level service
composition is a very complex case of service
composition, as it requires strong support for both
business process understanding and technical
infrastructure developing in order to satisfy the
connectivity at all levels. So we put forward a unified
service composition framework which covers 3-layer
composition. With this composition framework the

connectivity of composition at all levels can be
fulfilled.

8. Conclusion and future works

We present a service composition framework which
covers 3-layer composition, including functional
composition, UI composition, and data composition.
An intelligent service composer based on this
framework enables business people to compose
business application from a set of service components.
The service composer provides three important
advanced capabilities, intelligent service searching,
automatic compliance checking, and template-based
service adaptation, which enable non-technical people
quickly locate the required service components,
quickly check the compliance of these components,
and automatically connect these components. The web-
based composer allows business people to try the
function of the composed service by using the quick
demo function. We have applied this composer into a
service delivery platform which supports business
people, such as end users or business partners, to
compose business applications by themselves.

In fact, we only give the overall introduction of the
service composition framework in this paper but
without deep technologies introduction. As we have
mentioned in the previous sections, there are lot of
technical challenges in order to enable business people
to develop business applications, such as data
adaptation and function interface mediation. In future,
we will have deep research on the consistency
checking of two service component from function, UI
and data perspectives.

9. References

[1] A. Ankolekar et al., “DAML-S: Web Service
Description for the Semantic Web,” Proc. Int’l
Semantic Web Conf. (ISWC), LNCS 2342, Springer-
Verlag, 2002, pp. 348–363.
[2] J. Yang and M.P. Papazoglou, “Web Component: A
Substrate for Web Service Reuse and Composition,”
Proc. 14th Conf. Advanced Information Systems Eng.
(CAiSE 02), LNCS 2348, Springer-Verlag, 2002, pp.
21–36.
[3] Kaarthik Sivashanmugam, John A. Miller, Amit P.
Sheth, Kunal Verma. “Framework for Semantic Web
Process Composition” Large Scale Distributed
Information Systems (LSDIS) Lab, Computer Science
Department.
[4] Svirskas, A. Wilson, M. Roberts, B. Vilnius Univ.,
Lithuania, “Role and application of pluggable business

service handlers in Web services choreographies”
Data base and Information Systems, 2006 7th
International Baltic Conference Publication Date: 3-6
July 2006 On page(s): 194- 201ISSN: IS : 1-4244-
0345-6

BN

[5] Nikola Milanovic and Miroslaw Malek, “Current
Solutions for Web Service Composition” (spotlight)
[6] Wei Tan. , Zhong Tian. , Fangyan Rao., Li Wang.,
Ru Fang, “Process Guided Service Composition in
Building SoA Solutions: A Data Driven Approach”.
Web service, 2006. ICWS’06. International
Conference
Publication Date: Sept. 2006 On page(s): 558-568
Location: Chicago, IL, USA,ISBN: 0-7695-2669-1
[7] Thomas Erl, “Service-Oriented Architecture (SOA):
Concepts, Technology, and Design.” The Prentice Hall
Service-Oriented Computing Series, ISBN 0-13-
185858-0.
[8] Service Component Architecture Specifications,
http://www.osoa.org/display/Main/Service+Componen
t+Architecture+Specifications.
[9] Y. Liu, S. Müller, K. Xu, “A Static Compliance
Checking Framework for Business Process Models”.
Special Issue on Compliance Management, IBM
Systems Journal, 46(2). (2007).
[10]Business Process Execution Language.
Http://www.ibm.com/developerworks/library/ws-bpel.
[11] Philip Bohannonz Wenfei Fany _ Michael
Flasterz P. P. S. Narayan, “Information Preserving
XML Schema Embedding”
[12] Zhen Zhang Bin He Kevin Chen-Chuan Chang
“Light-weight Domain-based Form Assistant:
QueryingWeb Databases On the Fly”
[13]“OAGIS 9.0 Introduction”,
http://xml.coverpages.org/OAGISv90-
Introduction20050809.pdf
[14] Bringing Semantics to Web Services: The OWL-S
Approach, Book Series Lecture Notes in Computer
Science, Semantic Web Services and Web Process
Composition, Springer Berlin / Heidelberg , ISSN
0302-9743 (Print) 1611-3349 (Online) , Volume
3387/2005, ISBN 978-3-540-24328-1, Pages 26-42.
[15] Foster, H. Uchitel, S. Magee, J. Kramer, J.,
Model-based verification of Web service compositions,
appears in: Automated Software Engineering, 2003.
Proceedings. 18th IEEE International Conference on
Publication. Page 152-161, ISSN: 1527-1366, ISBN:
0-7695-2035-9.

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8780
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8780

	1. Introduction
	2. Unified service composition framework
	3. Intelligent features of composer
	3.1. Service intelligent searching
	3.2. Service compliance checking
	3.3. Template-based service adaptation
	4. UI-level composition
	5. Challenges of data-level composition
	6. An example
	7. Related works

	8. Conclusion and future works
	9. References

