
RC24224 (C0703-012) March 23, 2007
Computer Science

IBM Research Report

Maintaining Consistency in a Web 2.0 Collaborative
Editing System

Chang Yan Chi, Wen Peng Xiao
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, P.R.C. 100094

Danny Yeh, Ravi Konuru
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Maintaining Consistency In A Web 2.0 Collaborative
Editing System
Chang Yan Chi
IBM China
Research Lab
chicy@cn.ibm.co
m

Wen Peng Xiao
IBM China
Research Lab
xiaowp@cn.ibm.c
om

Danny Yeh
IBM T.J. Watson
Research Center
dlyeh@us.ibm.oc
m

Ravi Konuru
IBM T.J. Watson
Research Center
rkonuru@us.ibm.c
om

Abstract. Web based collaborative editors are increasingly required within Web 2.0 era.
Since this involves group editing, concurrency control and consistency of the updates
needs to be addressed. In this paper we present an optimistically concurrent and
serialization algorithm for Web based real-time group editing of XHTML documents. The
algorithm uses standard W3C document object model (DOM) as its data representation
model in the runtime environment. We implemented this algorithm in a Web 2.0
collaborative editor system, and at this time provide some preliminary observations on
the working system.

Introduction
The World Wide Web (WWW) has been developed from Web 1.0 to Web 2.0
(Web 2.0) era, and the emerging technologies like AJAX, blog, and wiki let
people rendezvous spontaneously to contribute their thoughts to the web world.
As a result, the demands for online collaborative editing become stronger than
before. For instance, Wikipedia, a popular wiki application system, has handy on-
line editors like FCKEditor that help its users easily and quickly publish their rich
format content. The most important characteristic of these on-line editors is their

mailto:chicy@cn.ibm.com
mailto:chicy@cn.ibm.com
mailto:xiaowp@cn.ibm.com
mailto:xiaowp@cn.ibm.com
mailto:dlyeh@us.ibm.ocm%0ERavi
mailto:dlyeh@us.ibm.ocm%0ERavi
mailto:rkonuru@us.ibm.com
mailto:rkonuru@us.ibm.com

use of W3C document model (DOM), which is different from the traditional rich
text editors like Microsoft Word or OpenOffice Writer.

Within cyber communities, the needs for people to work on the same
document synchronically over the Internet are increasing, especially when
members of such virtual team across different geographies. The users require
multiple peers to interact through a shared document with no additional
constraints on their ability to do editing work on the XHTML page. There are
many Web 2.0 web sites which providing collaborative document editing services
for rich text or spreadsheet. One example is Google Write and its spreadsheet
functions to provide on-line document system (Google docs).

The topic of enabling group collaboration in one single document editor has
been extensively explored within the field of CSCW. There are many group-
editing system in traditional groupware domain, Ellis (Ellis and Gibbs, 1989)
gave the characteristics of real-time groupware systems, as well as presented one
well-accepted algorithm to maintaining the data model consistency base on
operation transformation, coined as OT. At that time, other existing groupware
systems like GROVE (Sun, 1990, 1998) and Jupiter (David, 1985) also use plain
text document data model to address the content consistence problem. It means
the document model is plain text without rich styles, and can be located by linear
address mechanism. It doesn’t quite handle the vivid formatting of Web 2.0
application (Davis, 2002).

Recently research works try to use tree as the inner data model, for example,
Davis (2002) uses general markup language as data model, and treeOPT (Ignat
and Norri, 2002) uses document natural syntax structure as document tree
representation which different with linear document representation. One
limitation of such works is the method of operate the document model is private
and hard to reused by other systems.

Operational transformation has been used as an appropriate approach for
consistency maintenance in real-time collaborative editing system. Such existing
transformation algorithms keep a history of already executed operations in order
to compute the proper execution form of new operations. Unfortunately, when the
participant sites have limited computation capability such as Web Browser, it’s a
heavy burden to do transformation within the browser

W3C DOM (Document Object Model 1998) is used as Web 2.0 client
programming model. This means all document can be treated as DOM tree, not
use internal document definition such as one document is consisting of characters,
words, sentences, paragraph, section etc. There is some works to decompose
W3C DOM based applications as Web services to be collaborative (Qiu, 2003).

This paper presents a specialized consistency maintenance algorithm for the
web 2.0 environments that is based on DOM representation and defines the
atomic operators in DOM-based share editing system to maintain document
consistency in a single-server, multiple client configurations. To solve the

browser processing limitations, we adopt a server centric master-slave model that
simplifies some of the issues in maintaining consistency. An addressing
mechanism is defined to fine-grain synchronization of editing operations. Finally
we present the implementation and observations of a group web-document editor.
At this point, the results are preliminary and we plan to submit an updated set of
observations if accepted.

The rest of the paper is structured as follows. In section 2, we introduce the
document format that we focus on, and define a new addressing scheme, and the
operators to manipulate a DOM tree. Typical usage and conflict scenarios are also
discussed in this section. Section 3 presents our algorithm design. Section 4
briefly presents the implementation of web2.0 document editor and some
preliminary results. Section 4 summarizes related works. Finally, we conclude in
section 5.

Collaboration over XHTML Documents in Web
Browser
To consider a web page rendered by modern web browsers like Internet Explore,
Mozilla Firefox, Safari, and others, the content of the XHTML (XHTML1.0
specification) is not only plain text, but also rich styling information like font size,
font color, and images. Web browsers act as a user-friendly viewer to render these
contents.

In figure 1, we show a sample document view from user’s perspective on the
left side. This document fragment consists of a paragraph and a bullet list. The
corresponding document model expressed in XHTML is illustrated on the right
side.

The document’s model is different with user’s view as the style formatting
such as font size, font color and metadata will be inserted as standard XHTML
elements or attributes. It’s different with Ignat (Ignat, 2006), which classified the
nodes of the XML document into private types, not W3C DOM. In DOM
specification, the attributes are distinguished from the children of the element.

Before presenting algorithm details, we briefly describe the document model in
an on-line collaborative editing system. XHML is a tree-based document model
that composed of nodes. A node (N) is a standard XHTML node:

• Element
• Element node has zero or more than one children

• Attribute
• Embedded as properties in the element node.

• Text
• Text node is the leaf node

Every element is identified by its identifier but not position in the document
structure. The unique identifier can be used to address every node in the XHTML
tree model.

Figure 1 Standard XHTML Page and View
There are different synchronization granularity levels in the group editing

systems, and some existing solutions use character based synchronization
granularity. Since the document in our system is represented as nodes, the data
synchronization also occurs at node level. For instance, if user has made some
changes in his editor, e.g. insert characters or change the formatting styles, the
nodes that are affected by the changes are sent in their entirety to the server for
propagation to other clients. Depends on document structure, the node can be
very large or very small.

Usage Scenarios

In a typical group editing session, multiple authors can interactively edit a shared
document without additional constraints, so concurrent operations on the same
nodes by different users are unavoidable. One typical case is the modify-delete
scenario where one user deletes a node that is being modified by another user, and
another case is where one or more users modifying the same node in the
document. We consider these two scenarios below.
Imagine there are two users Tracy and Gary, and they are working on the same
document through the Internet.

Situation 1: un-executable operations

Tracy inserts a new node when Gary deletes its parent node and nested
children. As the result, if the deletion operation is executed firstly under server
side, the sub sequential insertion operation will not be executed because it lost the
reference nodes. Figure 2 illustrates this scenario in detail.

It’s a conflict problem, not same with the intention violation (Sun, 1996). In
one dimension editing system, they used linear address to locate the operations,
so operations always can be executed.

Figure 2 un-execute operations in situation 1
Situation 2: update same attribute
Tracy and Gary are changing the same attribute of the same node. It’s also a

very common scenario and similar with original OT scenario which has been
addressed in a linear addressing editor.

In figure 3, Tracy and Gary’s changed the font color to read and blue
respectively, and then two synchronization messages are sent to server. Suppose
server will processes these messages sequentially. When the Tracy’s message
arrived at server, the server model is changed to red, and then the change is
broadcast to Gary’s clients. According to the synchronization message, the
document model is changed red from blue under Gary’s client. The server
continues to process the message sent by Gary, in this time, the server model is
changed to blue. Following the same steps, the message is also broadcasted to
Tracy’s client, so the color would be changed from red to blue for Tracy. As a
result, Gary’s client will keep a consistency document model with server, but
Tracy’s client will have an in-consistency document model.

Figure 3: modify the same text node in situation 2
From the above scenarios, there are two cases of inconsistencies: the first one

is the propagated operation cannot be executed at the server side, and the second
one is the executed result is not the same at the client sites. In this paper, we
present an optimistic serialization algorithm to solve these issues in the Web
context. The detail is described in the latter section, but first we describe our
address schema.

Operation Addressing Schema

In order to reproduce the same operations on the DOM at remote sites, an address
scheme is needed to locate the correct node accurately. Fortunately, DOM defines
a unique identity key for every node, that every node can host an attribute named
id, whose value is a unique string.

When user edits the document tree in one site, the actions are transformed to
operate the DOM tree directly. The editor captures user’s operations such as
inserting a char, deleting a selection, or changing the style of an element. Editor
should record the changes, for example, in figure 1, when user wants to insert a
new bullet element "Plan" behind list "Goal", the inserted result should be:

<li id="xxxx"><div id="yyy">PLAN </div>
On the other site, how will the above fragment be executed? It is very clear

that the related location information also need be provided in the synchronization
event. We propose a new addressing scheme for such tree model.

The operation address in our system is defined as a triple below:
Address {elementId, attrName, textIndex}
• elementId: if the node type is element, it will have a unified ID
• attrName: specifies the attribute name of one element node
• textIndex: specifies the index of text content if the node is text
For instance, in the figure 1, the address of element LI is {id, null, null}, its

font style attribute address is {id, "font-weight", null}, the address of "G" of
"Goal" is {id, null, 1}.

Because tree model is two-dimension structure, only one address is insufficient
to locate the unify position in some cases. For example, assume an element A in
one document tree, and one site appends a new element B as a child of element A,
to accurately propagate this operation to other sites that assures the consistency
among all participants, we adopt two address parameters that defined above to
describe one operation position. The first one is called as target address, and the
second one is the reference address. Figure 4 illustrates how to insert one node in
these two different situations above.

The dashed circle represents the node to be inserted. In (a), the node will be
inserted between node 3 and node 4, so the target address is (2, null, null), and
the reference address is (4, null, null). In (b), the node will be appended as the last

child of node 2, so the target address is (2, null, null), and the reference address is
null.

Figure 4 the tree graph of figure 1

Synchronized Operations

A set of operations contains basic insert and delete operations like existing group
editing system (Ellis and Gibbs 1989) is also provided here; they have been
proved suitable for systems that use linear address space to execute the operations.
According to the inherent properties of tree based data module, we also add a new
operation: replace.

Insert: add a new node into the document tree. This operation will be ignored
if the node has the same address already existed in document tree.

Insert (new node, target address, reference address)
The first parameter is the new node. It’s a XHTML fragment that includes

node id, attributes and children node if necessary. The rest of parameters locate
the position where the node will be added.

Delete: remove one existing node from the document tree. The operation will
be ignored if the node specified by given address does not exist in this document.

Delete (target address)
Replace: change the content of one text node, or change the attributes of one

node
Replace (target address, reference address, raw data)

The third parameter “raw data” will replace original data located by the target
address and reference address. If reference address is empty, it means updating
attribute.

Optimistic Serialization Algorithm for DOM
In this section, we will present the optimistic serialization algorithm that we
defined for maintaining the consistency of DOM based groupware applications.

We follow the same consistency mode that claimed by Ellis and Sun (1985). The
most important three properties are described as following:

• Convergence property means each participant has the same structure after
all sites have executed the same set of operations

• Causality preservation property means operations’ execution order is same
on each site

• Intention preservation property means if a given operation O is executed on
a site, the execution effect is exactly same as the original intention of O at
the site where it was generated.

According to our server centric synchronization model, all clients’ operations
are executed in server site sequentially, which achieve the second causality
preservation property at the server side and we use the master-slave relationship
to simplify the decision of the ordering of operations for the clients.

Design Disciplines

The system architecture of our collaborative editing system is client/server
where multiple clients (C) are allowed to take part in the same editing session,
and a central server (S) is used to coordinate the changes and to keep each client
synchronized. A copy of document object model (DOM) is maintained at each
site (both the clients and the server) to represent current state of the document that
is being edited, and each user’s editing operations is modeled as operation (O),
which changes the state of the DOM.

Rule 1: The operation which applied to server document model DOM(S) is
irrepealably.

Policy and algorithm should be designed to guarantee that the DOM(S) always
in the right and properly situations at any time in order we can use it as the
reference base in this system at any time.

Rule 2: Operations on DOM(S) should also be applied to client document
model DOM(C).

Supposes the sign “==” denotes that two DOM are equal, and the pre-
condition is DOM(C1) == DOM(S1). We also suppose an operation O(1) is
executed at server side which changes DOM(S1) to DOM(S2). At client side, a
corresponding operation should also be applied to make DOM(C1) change to
DOM(C2), and the post-condition of this operation must satisfy DOM(C2) ==
DOM(S2).

Rule 3: The final sequence of operations applied in DOM(S) and DOM(C)
should be same.

In order to keep the document content consistently in different sites, a basic
disciplines of this system is keeping the final sequence of operations exactly same
at each site.

Basic System Modeling

Let’s start from the simplest collaborative editing system which embodies a
server (S) and two clients (C1 and C2). At the startup time (t0), the content of
document in each site is same:

DOM(S, t0) == DOM(C1, t0) == DOM(C2, t0)
Consequentially, some modification happens in C1 at the time of t1, which

makes the document model changed to DOM(C1, t1) at this client site. This
change can be modeled as an operation O(C1, seq1) on DOM(C1, t1):

DOM(C1, t1) = DOM(C1, t0) * O(C1, seq1)
Each client site maintains a counter to generate a sequential number for

identifying operation. The sequential number of different site maybe same, but
the pair of (client, sequence) should be unique, that is the reason why we use
O(C1, seq1) to identify the operation in above case. In the following sections, the
model of operation (O) will be extended to accommodate more complex
situations, and we just keep it as simple as possible here to start from.

According to rule 1, an operation executed in server side is validated and
irrepealably, so O(C1, seq1) is vulnerable before it is applied to server side. To
fulfill this purpose, client C1 will request server to do the same change on
DOM(S) by sending the operation O(C1, seq1) via network. This operation
arrives in server side at time t2, and will be executed by server on DOM(S, t0):

DOM(S, t2) = DOM(S, t0) * O(C1, seq1)
In the above equations, we use asterisk (*) to strand for an operation is

executed, or applied, on a specified DOM state. Now, DOM(S, t2) is equal with
DOM(C1, t1), because the initial status and applied operation are same. In other
words, client C1 is consistent with S now. In order to keep others clients
synchronized, an executed operation EO(C1, seq1, exeseq1) will be sent to each
client. Server also maintains a counter to generate a sequential number (exeseq1)
for identifying each executed operation. In our case, when this executed operation
is received by the operation original client (e.g. C1), no other actions need to be
performed at this site. On another hand, when this executed operation is received
by other client sites (e.g. C2 at time t4), the corresponding operation must be
applied on current document model. We can describe it as following equation:

DOM(C2, t4) = DOM(C2, t0) * EO(C1, seq1, exeseq1)
The difference between O(C1, seq1) and EO(C1, seq1, exeseq1) is the

additional attribute which denote the execution sequence in server side. When it
is applied in client C2 at time t4, we can infer that each sites keeps a consistent
document model:

DOM(S, t4) == DOM(C1, t4) == DOM(C2, t4)
Figure 5 illustrates the basic system model of this sequence.
What’s more, we can infer that the document model at server site from t2, is

equal with the document model at client sites from t4, so we can use

DOM(EO(C1, seq1, exeseq1)) to represent such unified document status in our
deeper discussion.

Figure 5 basic system modeling for operation executing

Algorithm on Client Site

Consider a more complex scenario in a real collaborative editing system which is
illustrated in figure 6. Both client and server start from the consistent status
DOM(EO0), and the user in client C1 and C2 perform some operations
sequentially. In order to avoid jumping into too complex discussion directly, let’s
start from the case in which all of these operations can be executed at server side
successfully.

Figure 6 collaborative editing session between two clients
In our case, after the operation O(C1, seqa1) is received by server at time t2, a

piece of processing time is needed before this operations is really executed by

server at time t5. After that, the document model at server side will change to
DOM(EO1), EO1 is the abbreviation for EO(C1, seqa1, exeseq1). Subsequently,
the executed operation EO(C1, seqa1, exeseq1) will be sent to C1 and C2 at time
t7. At client site C2, there is an unexecuted operation, O(C2, seqb1), from its
perspective because the EO(C2, seqb1, exeseq3) is not arrived yet at time t7. For
this reason, C2 must apply the operation EO(C1, seqa1, exeseq1) on DOM(EO0)
but DOM(C2, t3) because the intermediate document model DOM(C2, t3) is not
authoritatively. In other words, the DOM(C2, t3) will be discarded, and C2 will
restore its document model to DOM(EO0) before applying EO(C1, seqa1,
exeseq1). At client side C1, there is a list of unexecuted operations including
O(C1, seqa1), O(C1, seqa2) and O(C1, seqa3) at time t7 because none of their
corresponding executed operations has been handled by C1. By comparing the
first item of this list (O(C1, seqa1)), and the arrived EO(C1, seqa1, exeseq1), C2
can tell that the O(C1, seqa1) has been executed successfully by server, so the
only thing that need to do is removing O(C1, seqa1) from the unexpected
operations list. We can use bellowing pseudo-code to describe such process:

dom := document model at client site
domeo := last consistent document model at client site
uo := unexecuted operations list at client site
eo := executed operation from server

let o = uo.firstItem()
if o != eo
then
 dom.restoreTo(domeo)
 dom.applyOperation(eo)
end
uo.removeFirstItem()
domeo = domeo * eo // update last consistent document model

For more details, the definitions of an operation is equal (denoted as “==”) or
not equal (denoted as “!=”) with an executed operation are:

Definition1: i) O == EO iff
O.client == EO.client and O.seqence == EO.sequence

ii) O != EO iff
O.client != EO.client or O.seqence != EO.sequence

According to above algorithm, when the executed operation EO(C2, seqb1,
exeseq3) arrives in client C1 at t9, the last consistent document model in this site
is DOM(EO2), the local document model is DOM(C1, t4) as it didn’t do any
restore operation when handling previous two executed operations, and the
unexecuted operations list contains one item, O(C1, seqa3). By comparing
EO(C2, seqb1, exeseq3) and O(C1, seqa3), it is obvious that C1 should restore
local document model to DOM(E02), apply action EO(C2, seqb1, exeseq3) on
local document model, remove O(C1, seqa3) from unexecuted operations list, and

update the last consistent document model to DOM(EO3) by applying EO(C2,
seqb1, exeseq3) on DOM(EO2) respectively.

Algorithm on Server Site

Now we will move to the design of server side. In order to conform rule 1, server
can be simply implemented to sequentially process the operations coming from
the client sites to avoid the concurrency problems. There is no limitation for client
to decide when to send operation to server, so we can use a pending operation
queue at server site to queue all operations need to be handled. Suppose each
operation handled by server need the same time T, just as we illustrated in figure
7.

We need some more definition before go on with more discussion. One of
them is whether an operation (O) is compatible with (denoted as “∈”) a specified
document object model (DOM(S)):

Definition 2: O � DOM(S) iff
i) O can be applied to DOM(S)
ii) DOM(S) * O still in properly status

Another definition is whether two operations are compatible (denoted as
“�DOM”) on a specified document object model (DOM(S)):

Definition 3: O1 �DOM(S) O2 iff
DOM(S) * O1 * O2== DOM(S) * O2 * O1

We also give the definition of change set (CS). If a sequence of operations
(O1, O2, … On) can be applied on an source document model (DOM(S)), and get
the target document model (DOM(T)), then the change set is represented as the
difference between these two models (denoted as “-”):

Definition 4: CS(DOM(T), DOM(S))
= DOM(T) – DOM(S)
= O1 * O2 * … * On

An operation executed by server site may compatible with (also denoted as
“∈”) a change set or not, according to the following definition:

Definition 5: Om ∈ CS(DOM(T) - DOM(S)) iff
i) Om ∈ DOM(S)
ii) CS(DOM(T), DOM(S)) = O1 * O2 .. * On
ii) ∏(i=1,n) Om ∈DOM(S)* O1 * ..Oi-1 Oi

A deduction can be deduced using the mathematical induction:
Deduction: if O ∈ DOM(S)

and
O ∈ CS(DOM(T) - DOM(S))
then
O ∈ DOM(T)

It is the time to extended our operation definition to (client, sequence, domeo)
in which the domeo can identity the last consistent document model when this

operation is sent by client site. In figure 7, when the operation O(C2, seqb1, EO0)
is processed by P4 at server site, current consistent document model in server is
DOM(EO3), but this operation happens on previous consistent document model
DOM(EO0) in client side at t4., For this reason, server should check the
compatibility of operation O(C2, seqb1, EO0) on DOM(EO3) to decide whether
this operation can be executed or not. We can use bellowing pseudo-code to
describe such process:

oue := operation under execution at server site
domeo := last consistent document model at server site

// check compatibility
if oue.domeo != domeo and not oue∈ CS(domeo – oue.domeo)
then
 reject = new RejectOperation(oue)
 sendRejectedOperation(oue.client)
 return
end

// propagate messages
domeo = domeo * oue
exeseq = exeseq + 1
eo = new ExecutedOperation(oue, exeseq)
sendExecutedOperation(ALL_CLIENTS)

Figure 7 operations compatibility checking

Web 2.0 Group Document Editor Implementation
We implemented a web based group editor that uses the algorithm described
above whose screenshot is presented in figure 8. The left side bar in this

screenshot illustrates there are two people working on the same document, who
have different color identities. The color in the content area means different
ownership, and we found it to be clear and helpful to know who contributed to
which changes.

In details, the on-line editor hosted in browser composed by a) editing
component handles user’s editing operations, and b) synchronizing component
synchronize, execute and propagate operations on shared documents. Editor has
the capability to capture user’s operations, and then transform it to
synchronization messages that will to be executed in other peer sites. There are
two kinds of messages to be executed; one comes from local user, and one from
other sites.

Figure 8 on-line collaborative Editor UI
Messaging is used in this editing system that can be executed in each

participant’s document model. According to the specification, standard DOM
implementation will fire different events when data model is changed.
Consequently, if we want to support web based collaborative applications, the
collaborative event object should be well defined and contains sufficient
information for collaboration.

We define a XML based collaborative event protocol and convert DOM event
to our semantic synchronization event at client site when user’s action is detected
and send to server. A similar message will be received by each other client site
after the operations has be processed at server site. The receiver will convert the
collaboration event to DOM actions and perform corresponding operations in
local document model. One message can contain several operations that reflect
user’s atomic intention.

At client side, the user can freely edit the document without any limitations.
Upon receiving a remote operation, the receiving site will verify it first for causal
readiness. If the composite operation is not causally ready, the operations in the

history stack will rollback to original state, and then execute the remote
operations, it’s very similar as a UNDO operations.

We have done some preliminary performance testing for the whole system. We
simulated clients to send synchronization events at same time, when the number
is less than 20, the response time is less than 5 seconds. The system is currently
running as a pilot system that supports more than 100 active users.

Related Work
The important characters of real-time groupware systems are “highly interactive”
and “real-time” (Ellis and Gibbs 1989). Locking manipulated objected isn’t a
good user experience. Operation serialization and operation-based approach are
different approach to solve concurrency control problem in real-time groupware
system within lock-free property.

The Operational transformation algorithm dOPT (Ellis and Gibbs, 1989), and
sub-sequential extend algorithms, like David (1989), Sun (1998) have been used
in many group editors, which focus on plain text document model. It means the
document model is plain text without rich styles, and can be located by linear
address mechanism. Basic OT algorithm also is extended to handle different
document model. treeOPT (Ignat and Norri, 2002, 2003) models the text
document using a hierarchical structure as tree representation of the document,
which has several levels of granularity: document, paragraph, sentence, word and
character corresponding to the common syntactic elements used in natural
language. Because the document is a generalization of the linear representation,
so the treeOPT algorithm can extend the existing OT algorithms.

CoWord (Xia, 2004) proposed a transparent adaptation approach to adapt the
single-user application-programming interface to the data and operational models
of the underlying collaboration supporting technique. It access all data objects of
a Word document by their positional references in a linear address space from an
adapted Word API, which meets the data modeling requirement of OT. The
assumption is the shared application’s API should be adaptable. CoWord is one
example that converts Word to a real-time collaborative word processor.

To consider XML markup language as document model, Davis (2002)
provided an extended OT algorithm to handle general XML, “The major
operational transformation editors use an abstract data model of a single linear
sequence of content data. Such a flat sequence can model flat text”. Ignat
presented an operation-based approach to merger XML document for an
asynchronous editor (Ignat and Norri, 2006a).

Greenberg S. and Marwood (1994) examine locking, serialization, and the
degree of optimism etc. concurrence control methods, which have quite different
impacts on the interface and how transitions are shown to, and perceived by
group members. There is a general concurrency control method to fulfill different

application domains. GROUPKIT gives groupware developers the power to
choose a concurrency scheme that fits the nuances of their application.

Qiu X. (2003) investigate a general approach to restructure W3C DOM based
applications as web service, and then apply a general approach to making web
services collaborative. Java SVG application is used to demonstrate the idea. .

Conclusions and future work
Within Web 2.0 era, people are eager for rich editing experiences in on-line
collaborative environments. On the other hand, how to keep document model
consistency is another major issue of Web based group editor systems while
keeping the processing load on the browsers small and maintaining a good
interactive response. This paper presents a consistency maintenance algorithm
that is tuned for the online environments where browsers are used by each user to
collaborate on the same document and a central server to keep the document’s
state synchronized and consistency. In this algorithm, W3C standard document
object model (DOM) is extended for distributed environments in order to identify
the right address when synchronous operation is executed on remote sites.

As the computation capability is a major limitation in our target environments,
such algorithm is designed to simplifying some of the issues in pure peer-to-peer
systems and reducing processing requirements on the browsers. The principle of
server controlling execution sequences, and all participants executing with the
same order differs from previous work in terms of the rules used preserving
consistency properties.

Our preliminary work uses this algorithm to develop an on-line text editor.
Because the basic Web programming model is based on the DOM to develop
kinds of applications, our future work is extending our work to other on-line co-
authoring system which base on XML or XHTML, for example SVG drawing. As
a next step, we also want to do more user studies to improve the system usability.

Acknowledgments
We thank our colleagues Robert Flavin for insightful introduction to this area, Apratim
Purakayastha, Hui Su, and Frank Fu for support during this period of design and development.
We thank all the anonymous referees for their time in reading this paper.

References
Davis, A.H., Sun, C., J. (2002). ‘Generalizing operational transformation to the standard general

markup language’. Proceedings of CSCW 2002, New Orleans, Louisiana, USA, pp.56-87

Ellis, C.A, and Gibbs, S.J. (1989). ‘Concurrency control in groupware systems’, Proceedings of the ACM
SIGMOD Conference on Management of Data, pp.399-407

David A. Nichols, Pavel Curtis, Michael Dixon, and John Lamping (1985). ‘High-latency, low-bandwidth
windowing in the Jupiter collaboration system’, Proceedings of the ACM 1995 Symposium on User
Interface Software and Technologies, ACM, November 1995, pp.111–120.

Sun, C., Yang, Y., Zhang, Y., and CHEN, D. (Sun 1996). ‘A consistency model and supporting schemes for
real-time cooperative editing systems’, Proceedings of the 19th Australian Computer Science
Conference, Melbourne, pp.582-591

Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D. (1998). ‘Achieving Convergence, Causality-preservation, and
Intention-preservation in Real-time Cooperative Editing Systems’. In ACM. Trans. on Computer-
Human Interaction 5, 1(March) 1998. pp.63-108.

Sun, C., Ellis C.A. (1998). ‘Operational Transformation in Real-Time Group Editors: Issues, Algorithms,
and Achievements’, in proceeding of CSCW’98 (Nov. 1998), ACM Press, pp.59-68

Greenberg S. and Marwood D. (1994). ‘Real time groupware as a distributed system: concurrency control
and its effect on the interface’, in proceeding of ACM conference on Computer Supported Cooperative
Work, pp.207-217

Xia, S., Sun, D., Sun, C., Chen. D., Shen, H. (2004). ‘Leveraging Single-user Applications for Multi-user
Collaboration: the CoWord Approach’, in proceedings of the CSCW’04, Chicago, Illinois, USA

Sun D., Xia S., Sun C., Chen D. (2004). ‘Operational Transformation for Collaborative Word Processing’, in
proceedings of the CSCW’04, Chicago, Illinois, USA

Qiu X. (2003). ‘Internet Collaboration using the W3c document Object Model’, proceedings of International
Conference on Internet Computing, Las Vegas

Ignat, C.L. and Norrie, M.C. (2002). ‘Tree-based model algorithm for Maintaining Consistency in Real-Time
Collaborative Editing Systems’, The Fourth International Workshop on Collaborative Editing
Systems, CSCW 2002

Ignat, C.L. and Norrie, M.C. (2003). ‘Customizable Collaborative Editor Relying on treeOPT Algorithm’, in
proceedings of the 8th ECSCW’03, Helsinki, Finland, pp.315-334

Ignat, C.L. and Norrie, M.C. (2004). ‘Grouping in Collaborative Graphical Editors’, in proceedings of the
CSCW’04, Chicago, Illinois, USA, pp.447-456

Ignat, C.L. and Norrie, M.C. (2006a). ‘Flexible Collaboration over XML Documents’, in proceedings of the
3rd International Conference on Cooperative Design, Visualization and Engineering, CDEV’ 06,
Mallorca, Spain.

Ignat, C.L. and Norrie, M.C. (2006b). ‘Draw-Together: Graphical Editor for Collaborative Drawing’, in
proceedings of the CSCW’06, Banff, Alberta, Canada, November, pp447-456

Document Object Model Level 1 Specification. W3C Recommendation, http://www.w3c.org/ TR/REC-
DOM-Level-1/1998

XHTML 1.0 specification, W3C Recommendation, http://www.w3c.org/TR/2002/REC-xhtml1-
20020801/

AJAX technology: http://en.wikipedia.org/wiki/Ajax_%28programming%29
FCKEditor, http://www.fckeditor.net
Google Docs, http://docs.google.com
Web 2.0, http://oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

http://www.w3c.org/TR/2002/REC-xhtml1-20020801/
http://www.w3c.org/TR/2002/REC-xhtml1-20020801/
http://en.wikipedia.org/wiki/Ajax_%28programming%29
http://www.fckeditor.net/
http://docs.google.com/
http://oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

	Introduction
	Collaboration over XHTML Documents in Web Browser
	Usage Scenarios
	Operation Addressing Schema
	Synchronized Operations

	Optimistic Serialization Algorithm for DOM
	Design Disciplines
	Basic System Modeling
	Algorithm on Client Site
	Algorithm on Server Site

	Web 2.0 Group Document Editor Implementation
	Related Work
	Conclusions and future work
	Acknowledgments
	References

