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A Geometric Analysis of Renegar’s Condition Number, and its

interplay with Conic Curvature

Alexandre Belloni∗ and Robert M. Freund†

April 11, 2007

Abstract

For a conic linear system of the form Ax ∈ K, K a convex cone, several condition measures have
been extensively studied in the last dozen years. Among these, Renegar’s condition number C(A)
is arguably the most prominent for its relation to data perturbation, error bounds, problem geome-
try, and computational complexity of algorithms. Nonetheless, C(A) is a representation-dependent
measure which is usually difficult to interpret and may lead to overly-conservative bounds of com-
putational complexity and/or geometric quantities associated with the set of feasible solutions.

Herein we show that Renegar’s condition number is bounded from above and below by certain
purely geometric quantities associated with A and K, and highlights the role of the singular values
of A and their relationship with the condition number. Moreover, by using the notion of conic
curvature, we show how Renegar’s condition number can be used to provide both lower and upper
bounds on the width of the set of feasible solutions. This complements the literature where only
lower bounds have heretofore been developed.

1 Introduction

We consider the problem of computing a solution of the following conic linear system:

{

Ax ∈ int K
x ∈ X

(1)

where X and Y are n- and m-dimensional Euclidean subspaces, respectively, A : X → Y is a linear
operator and K ⊂ Y is a regular closed convex cone. It is still an open question whether there
exists a strongly-polynomial-time algorithm to solve (1) even for the case when K = IRm

+ . Indeed,
computational complexity analysis of (1) always relies on some condition measure associated with the
set of feasible solutions, the linear operator A, and/or the cone K, or combinations thereof.

Herein we focus on the data-perturbation condition number C(A) of Renegar, see [8]. It is well-
known that ln(C(A)) is tied to the complexity of interior-point methods, the ellipsoid method, and
re-scaled perceptron algorithms for computing a feasible solution of (1), see respectively [9], [3], and
[1]. Nonetheless, Renegar’s condition number depends on the particular norms being used and on
the particular choice of A. As such, C(A) is not an intrinsic geometric measure associated with the
feasible solution set of (1), and can provide misleading information about certain geometric aspects
of the feasible solution set. Herein we show that C(A) is bounded from below and above by certain
purely geometric quantities, which enable us to see better how C(A) behaves relative to the underlying
problem geometry.

∗IBM T. J. Watson Research Center and MIT, 32-221, 1101 Kitchawan Road, Yorktown Heights, New York 10598,

email: belloni@mit.edu
†MIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142, USA, email: rfreund@mit.edu

1



A geometric condition measure associated with (1) is the width τF of the cone of feasible solutions
of (1). It is well understood that Renegar’s condition number - combined with the width of K itself -
can be used to bound the width of the feasible set from below. However, there is no reverse relation
in general: C(A) by itself carries no upper bound information on the width τF in general. In fact, one
can observe this shortcoming of C(A) even for the linear inequality case, i.e., when K = IRm

+ .
By introducing a simple notion of conic curvature, we develop upper-bound information on the

width of the feasible solution set as a function of the condition number C(A) and the conic curvature
of the fixed cone K (or the components of K if K is a cartesian product of basic cones). These bounds
pertain only to the case when K or its components have strictly positive conic curvature, and so are
relevant when K is the cartesian product of second-order cones Qki (whose conic curvature is 1) and
products of IR2

+ × · · · × IR2
+ (whose component conic curvature is also 1), but does not include the case

when K is the cone of symmetric positive semi-definite matrices.
The paper is organized as follows. After preliminaries and notation in Section 2, in Section 3 we

develop an analysis of Renegar’s condition number in terms of purely geometric quantities that bound
C(A) from above and below. In Section 4 we present a lower bound on the width of the feasible solution
set of (1) in terms of C(A). In Section 5 we introduce the concept of conic curvature, and we present
upper bounds on the width of the feasible solution set using C(A) and the conic curvature K. Section
6 contains comments about three themes underlying conic linear systems (1): conditioning, geometry,
and complexity, and relations between these themes.

2 Preliminaries

Let C ⊂ Y denote a convex cone and C∗ := {w ∈ Y ∗ : 〈w, v〉 ≥ 0, for all v ∈ C} denote the dual cone
associated with C, where Y ∗ is the dual space of Y . C is said to be regular if it is a pointed cone (it
contains no lines) and has non-empty interior. Moreover, the width of C is defined as

τC := max
r,x

{r : ‖x‖ ≤ 1, B(x, r) ⊂ C}

where B(x, r) denotes a Euclidean ball centered at x with radius r. x is the center of C if ‖x‖ = 1 and
B(x, τC) ⊂ C. Let ∂C denote the boundary of C and ∂B(0, 1) = Sm−1 denote the (m−1)-dimensional
unit sphere.

The cone of feasible solutions of (1) is denoted by F := {x ∈ X : Ax ∈ K} and its width is τF .
Considering (1) as a system with fixed cone K and fixed spaces X and Y , let M denote those operators
A : X → Y for which (1) has a solution. For A ∈ M, let ρ(A) denote the distance to infeasibility for
(1), namely:

ρ(A) := min
∆A

{‖∆A‖ : A + ∆A /∈ M} ,

where for a linear operator M , ‖M‖ denotes the operator norm, ‖M‖ := max{‖Mx‖ : ‖x‖ ≤ 1}. ρ(A)
is the smallest perturbation of our given operator A which would render the system (1) infeasible.
Let C(A) := ‖A‖/ρ(A) denote Renegar’s condition number, which is a scale-invariant reciprocal of the
distance to infeasibility.

Let A∗ : Y → X denote the adjoint operator associated with A, and let PL denote the orthogonal
projection on the subspace L := span(A). It follows from basic linear algebra that A∗w = A∗PLw, and
dist(w, L⊥) = ‖PLw‖ for any w ∈ Y . Let λmin(A), λmax(A) denote the smallest and largest singular
values of A, and note that λmax(A) = ‖A‖ = ‖A∗‖. Furthermore, λmin(A)‖w‖ ≤ ‖A∗w‖ ≤ λmax(A)‖w‖
for all w ∈ L.
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Figure 1: When K = K∗ and the original system is feasible, L := span(A) must have a nontrivial
intersection with K. Equivalently, K∗ can only intersect L⊥ at the origin. This illustrates a conic
theorem of the alternative.

3 Some Intrinsic Geometry related to Renegar’s Condition

Number

Our motivating geometry is Figure 1 which presumes for visualization that K is self-dual, i.e., K = K∗.
Under the assumption that (1) is feasible, we have

K ∩ L 6= {0} and K∗ ∩ L⊥ = {0}. (2)

Although equivalent to (1), relation (2) is a geometric statement about the intersection of cones
and subspaces. The dependence of the representation of A is embedded into L⊥, the null space of the
operator A∗.

The goal of this section is to relate Renegar’s condition number to another (more geometric) quantity
inspired by (2). In order to properly “quantify” the relations in (2), consider the following defined
quantities:

µA := min
w

‖A∗w‖ and µL = min
w

‖PLw‖ = minw dist(w, L⊥)

‖w‖ = 1 ‖w‖ = 1 ‖w‖ = 1
w ∈ K∗ w ∈ K∗ w ∈ K∗ .

(3)

Whereas µA turns out to be the distance to infeasibility ρ(A) (see Lemma 3.2), µL is a simpler
object whose dependence on the data A is only through L = span(A). By its definition, µL captures
important aspects of the underlying geometry of (1). The next theorem, which is the main result of
this subsection, shows how the condition number is related to µL.

Theorem 3.1 If (1) is feasible, then

1

µL

≤ C(A) ≤ λmax(A)

λmin(A)

1

µL

.
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Proof. The proof follows directly from Lemmas 3.1 and 3.2 below.
The following elementary lemma illustrates the “gap” between working with the particular repre-

sentation of A and working with the subspace L.

Lemma 3.1 If (1) is feasible, then

λmin(A
∗)µL ≤ µA ≤ λmax(A

∗)µL .

Proof. This follows since ‖A∗w‖ = ‖A∗PLw‖ ≤ λmax(A)‖PLw‖ and ‖A∗w‖ = ‖A∗PLw‖ ≥ λmin(A)‖PLw‖.

It turns out that the distance to infeasibility ρ(A) is exactly the quantity µA. A version of this
statement was initially proved as Theorem 2 of [4] using a more general non-homogeneous framework
and arbitrary norms. For the sake of completeness we include a simple proof specialized to our problem
setting.

Lemma 3.2 If (1) is feasible, then ρ(A) = µA.

Proof. Let ∆A denote any perturbation for which the system (A + ∆A)x ∈ int K is not feasible. By
a theorem of the alternative, there exists w ∈ K∗, ‖w‖ = 1 satisfying (A + ∆A)∗w = 0. Thus we have

‖∆A‖ = ‖∆A∗‖ ≥ ‖∆A∗w‖ = ‖A∗w‖ ≥ µA.

Taking the infimum on the left-hand side over all such ∆A we obtain ρ(A) ≥ µA.
On the other hand, let ŵ be the point in K∗, ‖ŵ‖ = 1, such that µA = ‖A∗ŵ‖. Consider the linear

operator ∆Aŵ(·) := −ŵ 〈ŵ, A(·)〉, whereby ∆A∗
ŵŵ = −A∗ŵ. Therefore (A + ∆Aŵ)∗ŵ = 0 which in

turn implies that ρ(A) ≤ ‖∆Aŵ‖ = ‖A∗ŵ‖ = µA.
The following example illustrates these concepts in the case of a small system of linear inequalities.

This same example will be revisited in Sections 4 and 5.

Example 3.1 Given ε ∈ (0, 1/4), define Aε :=





2ε 0
1 −1
1 1



 and let K := IR3
+. Since the columns

of Aε are orthogonal, it is easy to verify that L⊥
ε = {t(1,−ε,−ε)T : t ∈ IR}. Note that µL =

dist(L⊥
ε , K∗ ∩ S2) =

√
2ε/

√
1 + 2ε2, λmax(Aε) = ‖Aε‖ =

√
2 + 4ε2 and λmin(Aε) =

√
2. Therefore, we

have 1√
2ε

≤
√

1+2ε2√
2ε

= 1/µL ≤ C(Aε) ≤ λmax(A)
λmin(A)

1
µL

= 1+2ε2

√
2ε

. In this example 1/µL is a relatively tight

bound on C(A) for ε small, since λmax(A)/λmin(A) =
√

1 + 2ε2 ≈ 1 for ε small.

4 Lower Bounds on the Width of the Cone of Feasible Solu-

tions based on the Condition Number

The cone of feasible solutions of (1) is denoted by F := {x ∈ X : Ax ∈ K} and its width is τF :

τF = max
x,r

{r : ‖x‖ ≤ 1, AB(x, r) ⊂ K} .

The following theorem presents lower bounds on τF based on the condition number and/or on
more geometric quantity µL. This is of interest from a computational complexity perspective since the
iteration complexity of many algorithms for (1) involve 1/τF either polynomially (conditional gradient,
perceptron) or logarithmically (interior-point methods, ellipsoid method, re-scaled perceptron). In
conjunction with Theorem 4.1, C(A) and µL can be used to upper bound the computational complexity
of these methods directly.

Theorem 4.1 If (1) is feasible, then τF ≥ τK

(

1
C(A)

)

≥ τK

(

µL
λmin(A)
λmax(A)

)

.
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The middle quantity in Theorem 4.1 bounds the width of the feasible cone from below using the
width of K and the condition number C(A), whereas the right-most quantity in the theorem bounds the
width using quantities that each have a purely geometric interpretation. A version of the first inequality
of the theorem was proved in slightly weaker form for non-homogeneous systems and arbitrary norms
as Theorem 19 of [4]. Before proving the theorem we illustrate it in the continuation of Example 3.1.

Example 4.1 (Continuation Example 3.1) Let Fε := {x ∈ IR2 : Aεx ∈ K} where K = IR3
+. Then

Fε = {x ∈ IR2 : x1 ≥ x2, x1 ≥ −x2}, and τFε
=
√

1/2 ≥
√

1

3

√
2ε√

1+2ε2
= τKµL ≥ τK/C(Aε). Note that this

bound is very weak when ε is close to zero.

The proof of Theorem 4.1 is based on the following elementary proposition and corollary, and a
technical lemma, Lemma 4.1, whose results will be used here as well as in Section 5.

Proposition 4.1 Let C be closed convex cone. Then B(y, r) ⊆ C if and only if 〈d, y〉 ≥ r‖d‖ for all
d ∈ C∗.

Proof. Suppose B(y, r) ⊂ C. Let d ∈ C∗. Then, y − r d
‖d‖ ∈ C and since d ∈ C∗,

〈

d, y − r d
‖d‖

〉

≥ 0.

Thus, 〈d, y〉 ≥ r 〈d,d〉
‖d‖ = r‖d‖. Conversely, suppose 〈d, y〉 ≥ r‖d‖ for every d ∈ C∗. Let v satisfy ‖v‖ ≤ r.

Assume y + v /∈ C, then there exists d ∈ C∗, 〈d, y + v〉 < 0. Therefore 〈d, y〉 < −〈d, v〉 ≤ r‖d‖, which
contradicts 〈d, y〉 ≥ r‖d‖.

Corollary 4.1 Let C be closed convex cone. Then for y ∈ C we have maxr{r : B(y, r) ⊆ C} =
mind{〈d, y〉 : d ∈ C∗, ‖d‖ = 1}.

The last ingredient of the proof of Theorem 4.1 is Lemma 4.1 below, which is based on the following
definition.

Definition 4.1 Let K ⊂ Y be a fixed convex cone, A : X → Y be a linear operator, and M ⊂ Y be a
subspace. Define the deepness of A (in K) with respect to M as

ρ(A, M) := maxx,r r

s.t. Ax +
(

B(0, r) ∩ M
)

⊂ K

‖x‖ ≤ 1 .

Definition 4.1 is a geometric counterpart/generalization of concepts developed in [9] and [4] for
M = Y . The following technical lemma shows some ways that this deepness measure is related to the
distance to infeasibility ρ(A).

Lemma 4.1 Let L = span(A) and K be a pointed convex cone. Then:
(i) ρ(A, L) ≤ ‖A‖;
(ii) ρ(A) ≥ ρ(A, Y ) ≥ τKρ(A);
(iii) ρ(A, Y ) ≥ 1

2
√

2
min{ρ(A, L), ρ(A, L⊥)}.

Proof. (i) If x, r is feasible for the problem defining ρ(A, L) and r > ‖A‖, then Ax + B(0, r) ∩ L
contains a neighborhood of the origin restricted to the subspace L. If this neighborhood is contained
in K, then K contains L and is not pointed, thus proving (i) by contradiction.The proof of the first
inequality of (ii) is a straightforward consequence of minimax weak duality:

ρ(A) = minw ‖A∗w‖
s.t. w ∈ K∗

‖w‖ = 1

= minw maxx 〈A∗w, x〉
w ∈ K∗ ‖x‖ ≤ 1
‖w‖ = 1
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≥ maxx minw 〈w, Ax〉
‖x‖ ≤ 1 w ∈ K∗

‖w‖ = 1

= maxx,r r = ρ(A, Y )
s.t. B(Ax, r) ⊂ K

‖x‖ ≤ 1 .

Here the first equality is from Lemma 3.2, the inequality is from the observation that minimax
≥ maximin, and the second-to-last equality above follows from Corollary 4.1. To prove the second
inequality of (ii), let z be the center of K, whereby ‖z‖ = 1 and B(z, τK) ⊂ K. It then follows from
Proposition 4.1 that τK‖w‖ ≤ 〈z, w〉 ≤ ‖w‖ for any w ∈ K. We have:

ρ(A) = minw ‖A∗w‖
s.t. w ∈ K∗

‖w‖ ≥ 1

≤ minw ‖A∗w‖
s.t. w ∈ K∗

〈z, w〉 = 1

= minw maxx 〈A∗w, x〉
w ∈ K∗ s.t. ‖x‖ ≤ 1
〈z, w〉 = 1

= maxx minw 〈Ax, w〉
‖x‖ ≤ 1 s.t. w ∈ K∗

〈z, w〉 = 1

≤ maxx minw (1/τK) 〈Ax, w〉
‖x‖ ≤ 1 s.t. w ∈ K∗

‖w‖ ≥ 1

= (1/τK)maxx,r r = ρ(A, Y )/τK .
s.t. B(Ax, r) ⊂ K

‖x‖ ≤ 1

Here the first equality is from Lemma 3.2 and the third equality follows from a standard minimax
theorem, see Bertsekas [2] Proposition 5.4.4, for example. The second-to-last inequality uses τK‖w‖ ≤
〈z, w〉 for any w ∈ K from Proposition 4.1, and the second-to-last equality follows from Corollary 4.1.

To prove (iii), let xL and xL⊥ ∈ K be points that achieve respectively ρ(A, L) and ρ(A, L⊥). By

convexity of K, for w := A
(

xL+x
L⊥

2

)

, we have

w + B

(

0,
1

2
ρ(A, L)

)

∩ L ⊂ K and w + B

(

0,
1

2
ρ(A, L⊥)

)

∩ L⊥ ⊂ K .

This implies that B
(

w, 1
2
√

2
min{ρ(A, L), ρ(A, L⊥)}

)

⊂ K, whereby

ρ(A, Y ) ≥ 1

2
√

2
min{ρ(A, L), ρ(A, L⊥)} .

Proof of Theorem 4.1: From Definition 4.1 and Lemma 4.1 there exists x satisfying ‖x‖ ≤ 1 and
Ax + B(0, τKρ(A)) ⊂ Ax + B(0, ρ(A, Y )) ⊂ K, which implies that AB(x, τKρ(A)/‖A‖) ⊂ K, from

which it follows that τF ≥ τK

(

1
C(A)

)

. The second inequality follows directly from Theorem 3.1.

5 Upper Bounds on the Width of the Cone of Feasible Solu-

tions based on the Condition Number and Conic Curvature

As illustrated in Example 4.1 when ε is small, the condition number C(A) by itself might contain
no upper-bound information on the width of the feasibility cone. Herein we show that if one has
information about the conic curvature of the cone K, then such upper-bound information is available.
Furthermore, as we will see, for standard cross-products of cones such conic curvature information is
known a priori.
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5.1 Conic Curvature

The term “conic” in conic curvature is intended to contrast our concept with other notions of curvature
that can be found in the literature. The origins of this concept can be traced to the notion of strongly
convex sets which was first defined by Levitin and Poljak in [6]. A systematic study of such sets can
be found in [7, 10, 11].

Definition 5.1 A set S is strongly convex with parameter δ ≥ 0 if S is bounded, and for every pair of
points x, y ∈ S, and every λ ∈ [0, 1], it holds that

λx + (1 − λ)y + B

(

0,
δ

2
λ(1 − λ)‖x − y‖2

)

⊂ S .

According to Definition 5.1, even if we relax the boundedness assumption, no convex cone (other
than IRn or {0}) is strongly convex with δ > 0. To obtain a meaningful concept of strong convexity
and curvature for cones, we simply limit attention to points with unit norm:

Definition 5.2 A cone C has conic curvature δ if δ is the largest nonnegative scalar such that for
every pair of points x, y ∈ C satisfying ‖x‖ = ‖y‖ = 1, and every λ ∈ [0, 1], it holds that

λx + (1 − λ)y + B

(

0,
δ

2
λ(1 − λ)‖x − y‖2

)

⊂ C .

Although technically valid, this definition is meaningless for dimension n = 1, since in this case all
regular cones are half-lines and trivially have infinite curvature.

Example 5.1 (IR2
+) The nonnegative orthant in IR2 has curvature δ = 1. To see this let e1 and e2 be

the extreme rays of IR2
+ with unit length, in particular ‖e1 − e2‖2 = 2. Moreover, for λ ∈ [0, 1] we have

dist(λe1 + (1 − λ)e2, ∂IR2
+) = min{λ, 1 − λ}. The curvature δ is the largest scalar that satisfies

min{λ, (1 − λ)} ≥ δ
λ(1 − λ)

2
‖e1 − e2‖2 = δλ(1 − λ),

which implies that δ = 1.

The nonnegative orthant IRn
+ for n ≥ 3 and the cone of positive semi-definite symmetric matrices

Sn
+ for n ≥ 3 have zero conic curvature. On the other hand, the second-order cone has conic curvature

δ = 1 for n ≥ 2 as shown in the next lemma.

Lemma 5.1 For n ≥ 2, the second-order cone Qn := {(x, t) ∈ IRn : ‖x‖ ≤ t} has conic curvature
δ = 1.

Proof. Let (x, t), (y, s) ∈ ∂Qn, ‖(x, t)‖ = ‖(y, s)‖ = 1. Therefore we have ‖x‖2 + t2 = 1, ‖x‖ = t =
1/

√
2, likewise we have ‖y‖ = s = 1/

√
2.

For λ ∈ [0, 1] let (z, u) = λ(x, t) + (1 − λ)(y, s) = (λx + (1 − λ)y, 1/
√

2) ∈ Qn. Define r such
that r + ‖z‖ = 1/

√
2. Note that dist((z, u), ∂Qn) = r√

2
and the result follows if we show that

r ≥ 1√
2
λ(1 − λ)‖x − y‖2, and that equality holds in the limit for some values of λ, x, and y.

By the Pythagorean Theorem noting that z = (1/2)(x+y)+(λ−1/2)(x−y) and (x+y)T (x−y) = 0,
we have

‖z‖2 =

∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

2

+

(

1

2
− λ

)2

‖x − y‖2.

Using the definition of r in the relation above we have

r = 1√
2
−
√

∥

∥

x+y
2

∥

∥

2
+
(

1
2 − λ

)2 ‖x − y‖2 = 1√
2
−
√

1
2 − λ(1 − λ)‖x − y‖2

≥ 1√
2
λ(1 − λ)‖x − y‖2
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where we used
∥

∥

x+y
2

∥

∥

2
+
∥

∥

x−y
2

∥

∥

2
= 1

2 and 1√
2
−
√

1
2 − a ≥ 1√

2
a for a ∈ [0, 1/2].

Equality follows by considering the case of λ = 1/2, and x arbitrary close to y.
Finally, it follows from the definition that the conic curvature of the intersection of two convex cones

is at least the minimum of the conic curvature of the two cones. Moreover, except for the case of IR2
+

considered as the the cartesian product IR2
+ = IR+× IR+ , the cartesian product of two cones must have

zero conic curvature. This last comment notwithstanding, we show in Corollary 5.1 how to construct
useful upper bounds when K is the cartesian product of simpler cones.

5.2 Using Conic Curvature to Upper-Bound the Width of the Feasibility

Cone

We will prove the following theorem which bounds the width of the feasible region of (1) from above
using C(A) in conjunction with the conic curvature of K.

Theorem 5.1 Let K be a regular convex cone with conic curvature δ, and let A be a linear operator
satisfying rankA ≥ 2. If (1) is feasible, then

τF ≤ 1
√

C(A)

4
√

8√
δ

(

λmax(A)

λmin(A)

)

≤ √
µL

4
√

8√
δ

(

λmax(A)

λmin(A)

)

.

Similar to Theorem 4.1, the middle quantity in Theorem 5.1 bounds the width of the feasible cone
from above using geometric quantities and the condition number C(A), whereas the right-most quantity
in the theorem bounds the width using quantities that each have a purely geometric interpretation.

Before proving Theorem 5.1, we present a corollary that pertains to the case when K is the cartesian
product of basic cones., and the system (1) has the form

Aix ∈ int Ki, for i = 1, . . . , r , (4)

where K = K1 × K2 × · · · ×Kr ⊂ Y1 × Y2 × · · · × Yr = Y . Let ρ(Ai) and C(Ai) denote the distance to
infeasibility and the condition number of the system Aix ∈ Ki for i = 1, . . . , r. Although in this case
the conic curvature of K is zero under Definition 5.2 (except for the special case when K = IR2

+), it
is sufficient to look at the curvatures δi of the basic cones Ki, i = 1, . . . , r, as the following corollary
demonstrates.

Corollary 5.1 Consider the system (4), let δi be the conic curvature of Ki, i = 1, . . . , r, and suppose
that rankAi ≥ 2 for i = 1, . . . , r. Then

τF ≤ 4
√

8min
i

{√
τKi√
δi

λmax(Ai)

λmin(Ai)

}

,

τF ≤ 4
√

8 min
i

{

1√
δi

1
√

C(Ai)

λmax(Ai)

λmin(Ai)

}

,

and

τF ≤
4
√

8
√

C(A)
max

i

{

1√
δi

λmax(Ai)

λmin(Ai)

√

λmax(A)

λmax(Ai)

}

.

Remark 5.1 The requirement that rankAi ≥ 2 cannot be relaxed. To see this, suppose K = IRm
+ and

we consider K as the cartesian product of m half-lines IR+, in which case rankAi = 1, i = 1, . . . , m.
In this case δi = ∞, i = 1, . . . , m, and the resulting upper bound on τF would (falsely) be zero.
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Remark 5.2 Although the conic curvature of IRm
+ is zero for m ≥ 3, the conic curvature of IR2

+ is
equal to one. By adding one redundant inequality if necessary to ensure that m is even, without loss of
generality we can write a linear inequality system Ax ∈ IRm

+ as

Aix ∈ IR2, i = 1, . . . , m/2 ,

and through Corollary 5.1 with δi = 1, i = 1, . . . , m/2, we obtain upper bounds on the width of the
feasible region in terms of the condition number C(A). Notice from the last bound in Corollary 5.1
that the more natural quantity λmin(A) is missing in the bound, and cannot in general be inserted since
λmin(A) ≥ mini=1,...,m{λmin(Ai)}.

A close inspection of the second bound in Corollary 5.1 leads us to conclude that if the original
problem has good geometry (τF is large) but has a badly conditioned subsystem (C(Ai) is large for
some i), the ratio between the largest and smallest singular value of Ai must be large to accommodate
the discrepancy. Put another way, for instances in which the ratio between the largest and smallest
singular values of Ai is small, Renegar’s condition number yields relevant upper bounds on the width
of the feasible region in the presence of finite conic curvature.

We now proceed to prove Theorem 5.1 and Corollary 5.1. We first prove two intermediary results.

Proposition 5.1 ρ(A, L) ≥ λmin(A)τF .

Proof. By definition there exists z ∈ IRn, ‖z‖ = 1, for which B(z, τF) ⊂ F , i.e., AB(z, τF) ⊂ K.
Therefore Az + B(0, λmin(A)τF ) ∩ L ⊂ K, which implies that ρ(A, L) ≥ λmin(A)τF .

Lemma 5.2 Let K be a regular convex cone with conic curvature δ, and suppose that rankA ≥ 2 and

(1) is feasible. Then ρ(A) ≥ δ

2
√

2

λ2

min
(A)τ2

F

λmax(A) .

Proof. From Definition 4.1, there exists xL satisfying ‖xL‖ ≤ 1 and AxL + B(0, ρ(A, L)) ∩ L ⊂ K.
Since L has dimension at least two, there exists v ∈ L, ‖v‖ = 1, 〈v, AxL〉 = 0, such that u± :=
AxL ± ρ(A, L)v ∈ K. Therefore we have ‖u±‖ =

√

‖AxL‖2 + ρ(A, L)2 and ‖u+ − u−‖ = 2ρ(A, L).
Since K has conic curvature δ, using λ = 1/2 we have

B

(

AxL
√

‖AxL‖2 + ρ(A, L)2
,
δ

2

1

4

4ρ(A, L)2

‖AxL‖2 + ρ(A, L)2

)

⊂ K.

After re-normalizing and applying Lemma 4.1 and Proposition 5.1, we obtain

ρ(A) ≥ ρ(A, Y ) ≥ δ

2

ρ(A, L)2
√

‖AxL‖2 + ρ(A, L)2
≥ δ

2
√

2

λ2
min(A)τ2

F
λmax(A)

.

Proof of Theorem 5.1: The first inequality follows directly from Lemma 5.2, and the second inequality
follows from Theorem 3.1.

Proof of Corollary 5.1: By definition, there exist x̄, ‖x̄‖ = 1, such that AiB(x̄, τF ) ⊂ Ki for
i = 1, . . . , r. Using a similar construction to that used in the proofs of Proposition 5.1 and Lemma 5.2,
for each basic cone Ki we obtain

B

(

Aix̄,
δi

2
√

2

λ2
min(Ai)τ

2
F

λmax(Ai)

)

⊂ Ki . (5)

From this it follows that τKi
≥ δiτ

2

F
λ2

min
(Ai)

2
√

2λ2
max

(Ai)
and rearranging yields the first inequality of the corollary.

Applying Lemma 4.1 to the system Aix ∈ Ki and using (5) we obtain ρ(Ai) ≥ ρ(Ai, Yi) ≥ δiτ
2

F
λ2

min
(Ai)

2
√

2λmax(Ai)
,

and rearranging yields the second inequality of the corollary. Note that (5) also implies

B

(

Ax̄,
τ2
F

2
√

2
min

i=1,...,r

δiλ
2
min(Ai)

λmax(Ai)

)

⊂ K
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and applying Lemma 4.1 to this inclusion yields ρ(A) ≥ ρ(A, Y ) ≥ τ2

F

2
√

2
mini=1,...,r

δiλ
2

min
(Ai)

λmax(Ai)
, and

rearranging yields the third inequality of the corollary.

6 Conditioning, Geometry, and Complexity

Renegar’s condition number C(A) is a data-perturbation condition measure that aims to capture how
close the data instance A of (1) is to the set of infeasible instances of (1), where A is replaced by
A + ∆A and K is kept fixed. One can easily conjure up other ways to define perturbations of ho-
mogeneous or non-homogeneous conic linear systems (perturbing K, perturbing span(A), introducing
non-homogeneity, etc.) and other metrics of closeness to infeasible instances. Nevertheless, C(A) is
sufficiently robust a measure to be connected to two other important themes underlying conic linear
systems (1), namely (i) the geometry of the set of feasible solutions (as measured canonically with
the width τF of the set of feasible solutions), and (ii) the worst-case complexity of efficient algorithms
(such as interior-point methods and the ellipsoid method). Indeed, C(A) yields lower bounds on the
width τF (Theorem 4.1) and upper bounds on the complexity of interior-point methods [9] and the
ellipsoid method [3], thus implying in vernacular that “good conditioning implies good geometry and
good complexity.” Concerning other implications among these three notions, results from [3] and [5]
show that “good geometry implies good complexity,” for example. And the contribution of Theorem 5.1
here is that under positive conic curvature of K or its components, that “good geometry implies good
conditioning.” However, the plausible statement “good complexity implies good conditioning and/or
good geometry” lacks a formal mathematical argument. Furthermore, we believe that the truthfulness
of this statement seems reasonably important to ascertain.

Acknowledgement. We are grateful to Santosh Vempala for research discussions leading to the
work contained herein.
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