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ON THE BEHRENS-FISHER PROBLEM: A GLOBALLY

CONVERGENT ALGORITHM AND A FINITE-SAMPLE

STUDY OF THE WALD, LR AND LM TESTS

By Alexandre Belloni∗

IBM T.J. Watson Research Center and MIT
and

By Gustavo Didier

University of North Carolina-Chapel Hill

In this paper we provide a provably convergent algorithm for the
multivariate Gaussian Maximum Likelihood version of the Behrens-
Fisher problem. Our work builds upon a formulation of the log-
likelihood function proposed by Buot and Richards [5]. Instead of
focusing on the first order optimality conditions, the algorithm aims
directly for the maximization of the log-likelihood function itself to
achieve a global solution. Convergence proof and complexity esti-
mates are provided for the algorithm. Computational experiments
illustrate the applicability of such methods to high-dimensional data.
We also discuss how to extend the proposed methodology to a broader
class of problems.

We establish a systematic algebraic relation between the Wald,
Likelihood Ratio and Lagrangian Multiplier Test (W ≥ LR ≥ LM)
in the context of the Behrens-Fisher problem. Moreover, we use our
algorithm to computationally investigate the finite-sample size and
power of the Wald, Likelihood Ratio and Lagrange Multiplier Tests,
which previously were only available through asymptotic results. The
methods developed here are applicable to much higher dimensional
settings than the ones available in the literature. This allows us to
better capture the role of high dimensionality on the actual size and
power of the tests for finite samples.

1. Introduction. The so-called Behrens-Fisher problem may be straight-
forwardly stated as follows.

Given two independent random samples X1, ..., XN1
and Y1, ..., YN2

, test whether
their respective population means µ1 and µ2 coincide in the case where their
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2 BELLONI AND DIDIER

covariances Σ1 and Σ2 are unknown.

Despite the deceiving simplicity of its form, this problem has motivated
a wealth of literature that began with the original works of Behrens [1] and
Fisher [8, 9], and includes Welch [27, 28], Scheffé [22, 23], Yao [30], Robbins,
Simons and Starr [19], Subrahmanian and Subrahmanian [26], Cox [7], to
name a few. For a review of the solutions for the BFP, see for instance Stuart
and Ord [25] and Kim and Cohen [14]. The proposed solutions involve a
myriad of different approaches, ranging from fiducial inference to Bayesian
techniques.

In this paper, we are interested in the multivariate version of the Behrens-
Fisher problem under Normality. In other words, Xi, Yj above should be
interpreted as d-dimensional Gaussian random vectors with (vector) means
µ1 and µ2, and Σ1, Σ2 as their respective d× d covariance matrices. In this
context, the Likelihood Ratio Test is a natural choice in face of the well-
known asymptotic behavior of the test statistic. It turns out, though, that
the maximization of the log-likelihood function without restrictive assump-
tions on the covariances (e.g., Σ1 = Σ2) is a non-trivial matter. In general,
explicit solutions to the maximization procedure do not exist, and due to
non-concavities in the objective function the solution to the system of first
order likelihood equations can lead to local optima, as shown in Buot and
Richards [5]. Numerical algorithms are available in the literature (see, for
instance, Mardia, Kent and Bibby [17], and Buot and Richards [5]), but
their convergence properties are unknown.

The purpose of this paper is two-fold. First, to propose a provably con-
vergent algorithm, called Cutting Lines Algorithm (CLA), for the Gaussian
Maximum Likelihood Behrens-Fisher Problem (BFP, for short). Second, to
use the algorithm to investigate the finite sample properties - size and power
- of the Likelihood Ratio Test and of the asymptotically equivalent Wald and
Lagrange Multiplier Tests in the context of the BFP. Such properties are
generally unknown, especially in high-dimensional contexts.

The CLA avoids the trap of local maxima, which haunts most approaches
in the literature, by aiming directly for the maximization of the log-likelihood
function itself. For this purpose, we make use of the expression for the log-
likelihood function recently proposed by Buot and Richards [5], which is
particularly suitable for numerical methods.

The general maximization strategy may be schematically characterized as
follows.

(i) Lift the log-likelihood maximization problem into a higher-dimensional
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setting by adding artificial variables and constraints. This new prob-
lem, the Lifted BFP, has the same solution as the original BFP;

(ii) Create a family of convex modifications (subproblems) of the Lifted
BFP which we call Ellipsoidal Mean Estimation Problems (EMEP);

(iii) Solve a sequence of EMEP whose solutions (estimators of the mean)
converge to the global solution of the Lifted BFP, i.e., the proper
maximum likelihood estimator of the mean.

Step (i) is a common procedure in Continuous Optimization when one
wishes to find a simpler (but equivalent) description for the problem in a
higher-dimensional setting.

Step (ii) generates a family of convex problems which is computationally
tractable (in particular, first order conditions are not only necessary but also
sufficient). In fact, due to the particular structure of the EMEP, we are able
to propose a specialized method which solves each problem in this family
very efficiently both theoretically and in (computational) practice.

Step (iii) plays the crucial role of avoiding local maxima to ensure the
global optimality. To achieve that, the algorithm relies on the particular
geometry of the non-convexities associated with the problem. Such geome-
try allows for the construction of a sequence of approximations (based on
supporting lines) to the log-likelihood function itself which can be efficiently
optimized. We prove that the proposed method converges to a global solu-
tion. Furthermore, a simulation study provides strong numerical evidence of
the suitability of the CLA for solving high-dimensional problems. Problems
with dimension up to 1000 were solved in a couple of minutes.

We are particularly interested in the finite-sample properties of the Wald,
Likelihood Ratio and Lagrange Multiplier Tests. We show that their respec-
tive test statistics satisfy systematic algebraic inequalities in the context of
the BFP (such result is known for classical linear models; see Savin [21],
Berndt and Savin [2], and Breusch [4]). However, the CLA makes it possible
to go one step further and provide a Monte Carlo study of the actual size and
the power of such tests. Our results illustrate that the Wald Test is the most
sensitive among the three to the impact of dimensionality, followed by the
Likelihood Ratio Test. Especially when the sample size is (relatively) small
with respect to the dimension, the Wald and the Likelihood Ratio Tests
tend to over-reject the null hypothesis when we use the χ2 quantiles given
by Wilks’ Theorem. In contrast, the observed size of the Lagrange Multi-
plier Test seems to be rather robust with respect to dimensionality, with a
slight tendency to under-reject the null hypothesis. Perhaps not surprisingly,
these properties carry over to the power of the tests: for fixed sample sizes,
the Wald Test displays higher power than the Likelihood Ratio Test, which
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in turn displays higher power than the Lagrange Multiplier Test. However,
the similar shapes of the observed power curves of the three tests seem to
suggest that, with appropriate test size adjustment, the three tests may end
up showing similar power properties. We also applied the Bartlett correc-
tion to the Likelihood Ratio Test as proposed by Yanagihara and Yuan [29].
The corrected test tends to under-reject the null-hypothesis, especially for
high-dimensional data. Accordingly, it usually displays lower power than the
Lagrange Multiplier Test.

The paper is organized as follows. Section 2 revisits the reformulation of
the log-likelihood function proposed by Buot and Richards [5]. Section 3
recasts the log-likelihood maximization problem as a non-convex program-
ming problem, and introduces the EMEP. Section 4 studies the geometry
of the non-convexities associated with the log-likelihood function. Section 5
presents the CLA and its convergence analysis. Section 6 studies the finite-
sample properties of the Wald, Likelihood Ratio, Lagrange Multiplier and
the Bartlett-corrected Likelihood Ratio Tests. The Appendix contains: the
pertinent Convex Analysis definitions; an explanation of the relation be-
tween the EMEP and the BFP; a special-purpose algorithm for solving the
EMEP; and an alternative convergent algorithm, called Discretization Al-
gorithm, for solving the BFP.

2. Reformulation of the Likelihood Function. Recall that our goal
is to maximize the log-likelihood function of two independent random sam-
ples {Xi}

N1

i=1 and {Yi}
N2

i=1, where Xi ∼ N(µ,Σ1) and Yj ∼ N(µ,Σ2) are
d-dimensional (random) vectors. From now on we assume that the sample
covariance matrices S1 and S2 are invertible. The maximization problem
means that we should find µ, Σ1, and Σ2 that maximize

(1)

l(µ,Σ1,Σ2) = −
1

2

N1∑

i=1

(Xi − µ)
′

Σ−1
1 (Xi − µ)−

N1

2
log detΣ1−

−
1

2

N2∑

i=1

(Yi − µ)
′

Σ−1
2 (Yi − µ)−

N2

2
log detΣ2,

which is a highly non-linear function of µ, Σ1, and Σ2.
Recently, a more (computationally) tractable reformulation of (1) was

proposed by Buot and Richards [5]. For the reader’s convenience, we repro-
duce it here. Denote the vector sample means by

(2) X̄ =
1

N1

N1∑

i=1

Xi and Ȳ =
1

N2

N2∑

i=1

Yi,
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and the sample covariance matrices by

(3) S1 =
1

N1

N1∑

i=1

(Xi − X̄)(Xi − X̄)′ and S2 =
1

N2

N2∑

i=1

(Yi − Ȳ )(Yi − Ȳ )′.

Let µ̂ be some possible value, or estimator, of µ, and define the matrices,
or covariance estimators, Σ̂1 and Σ̂2 as

(4) Σ̂1 =
1

N1

N1∑

i=1

(Xi − µ̂)(Xi − µ̂)′ and Σ̂2 =
1

N2

N2∑

i=1

(Yi − µ̂)(Yi − µ̂)′

(note that if µ̂∗, Σ̂∗
1 and Σ̂∗

2 are the maxima of l, or equivalently, the max-
imum likelihood estimators of µ, Σ1 and Σ2, then relations (4) hold as a
result, not just as a definition).

Through simple manipulation of the expressions for Σ̂1 and Σ̂2, we get

(5) Σ̂1 = S1 + (X̄ − µ̂)(X̄ − µ̂)′ and Σ̂2 = S2 + (X̄ − µ̂)(X̄ − µ̂)′.

This implies that, once the estimator µ̂ is obtained, Σ̂1 and Σ̂2 are easily
computed by a rank-one update of the sample covariance matrices.

Note that, for some positive definite matrix M and vector v,

(6) det(M+vv′) = det(M1/2(I+M−1/2vv′M−1/2)M1/2) = det(M)(1+v′M−1v).

Thus, by using formula (6), we obtain

(7)
det(Σ̂1) = det(S1)

(
1 + (X̄ − µ̂)

′

S−1
1 (X̄ − µ̂)

)
and

det(Σ̂2) = det(S2)
(
1 + (Ȳ − µ̂)

′

S−1
2 (Ȳ − µ̂)

)
.

Moreover, we have

(8)

N1∑

i=1

(Xi − µ̂)′Σ̂−1
1 (Xi − µ̂) =

N1∑

i=1

Σ̂−1
1 ◦ (Xi − µ̂)(Xi − µ̂)′

= Σ̂−1
1 ◦

N1∑

i=1

(Xi − µ̂)(Xi − µ̂)′

= Σ̂−1
1 ◦ Σ̂1 = trace(Σ̂1Σ̂

−1
1 )

= trace(I) = d,
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where “◦” denotes the trace (element-wise) inner product (i.e. A ◦ B =
trace(A′B)). Thus, by (8) and the analogous expression for Σ̂2, the likelihood
function at (µ̂, Σ̂1, Σ̂2) can be rewritten as

(9) L(µ̂, Σ̂1, Σ̂2) = (2πe)−(N1+N2)d/2 det(Σ̂1)
−N1/2 det(Σ̂2)

−N2/2.

Combining (7) and (9), the original problem of maximizing the likelihood
function in µ, Σ1 and Σ2 can be reduced to the minimization in µ̂ of

(10)
(
1 + (X̄ − µ̂)

′

S−1
1 (X̄ − µ̂)

)N1/2 (
1 + (Ȳ − µ̂)

′

S−1
2 (Ȳ − µ̂)

)N2/2
,

which is the expression Buot and Richards [5] arrived at.

3. Lifting and the EMEP. Expression (10) is already much more
tractable than the original likelihood since it depends only on µ. How-
ever, the likelihood maximization problem can become substantially more
amenable to analysis if it is reformulated as a suitable mathematical pro-
gramming problem. We can do that by lifting it to a higher-dimensional
setting, i.e., by including additional variables and constraints, and recasting
it in the following way.

Definition 3.1 The Lifted Gaussian Maximum Likelihood Behrens-Fisher
Problem is to solve

(11)

min
µ,u1,u2

f(u1, u2) = N1

2 log(u1) + N2

2 log(u2)

u1 ≥ 1 + (X̄ − µ)S−1
1 (X̄ − µ)

u2 ≥ 1 + (Ȳ − µ)S−1
2 (Ȳ − µ)

Since the solutions for the Lifted Gaussian Maximum Likelihood Behrens-
Fisher Problem and the original Gaussian Maximum Likelihood Behrens-
Fisher Problem must coincide, we will use the acronym BFP to refer to the
former from now on.

The advantage to the lifting procedure is to confine the non-convexity of
the problem to just two variables, u1 and u2. Nevertheless, the objective
function still poses a computational challenge since it is non-convex. This
means that we can still expect the existence of local solutions as suggested
in [5], and further analysis is called for.

One may note, though, that the objective function in (11) is increasing in
u1 and u2. Moreover, if one of the variables, say u1, is fixed, then the problem
becomes fairly simple: for each value of u1, we can obtain a solution u∗2(u1).
The same can be done with u∗1 as a function of u2. Therefore, associated with
(11), we could think of a family of tractable “subproblems” (parameterized
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by u1 for example). Next we will show how to relate the solutions of this
family to the solution of the original problem.

Let us focus on the constraints in (11). For a given µ̂ (a “solution”),
consider the squared Mahalanobis distance functions

(12) MX̄(µ̂) = (X̄− µ̂)
′

S−1
1 (X̄− µ̂) and MȲ (µ̂) = (Ȳ − µ̂)

′

S−1
2 (Ȳ − µ̂).

Note the resemblance between such functions and the generalized distance
function G as defined in Kim [15]. They all give ellipsoids in µ̂, but our use
of the functions is different.

Definition 3.2 The Ellipsoidal Mean Estimation Problem with respect to
X at level v1 is to solve

(13) hX(v1) := min
µ
{MȲ (µ) :MX̄(µ) ≤ v1},

(analogously for Y ).

In words, the EMEP with respect to X at level v1 is to find the estimate
µ̂EMEP of µ that minimizes the squared distance MȲ under the constraint
that the squared distance MX̄ is bounded by v1. The use of the word “es-
timate” can be justified in at least two ways. First, Gaussian maximum
likelihood estimation is based upon finding a vector estimate µ̂EMEP that
minimizes a similar quadratic form. Second, the procedure above enjoys the
reasonable property that if X̄ and Ȳ are close (in particular, equal), the
solution µ̂EMEP will also be close to Ȳ (in particular, equal).

Even though the EMEP is simpler than the BFP, there is no closed-
form solution for the former (for given v1). Nonetheless, EMEP is, in fact,
a convex problem and can be solved efficiently by a variety of available
methods like gradient descent, interior-point methods, cutting-planes, etc.
Although all these methods are convergent and a few have good complexity
properties (see [3, 12, 18]), in the Appendix we propose a specific algorithm
which explores the particular structure of the problem. Not surprisingly, it
enjoys better complexity guarantees and better practical performance than
the aforementioned methods.

The BFP and the EMEP are in fact closely related. The BFP consists
of achieving the optimal balance between the EMEP for X and Y simulta-
neously. This happens because the BFP is based upon the minimization of
a function that is monotone in both distance functions. A precise charac-
terization of the relation between the BFP and the EMEP is given in the
following theorem.
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Theorem 3.1 Let (µ̂, û1, û2) be a solution to the BFP. Then, µ̂ is a solution
to the EMEP with respect to X [with respect to Y ] at v̂1 = MX̄(µ̂) [at
v̂2 =MȲ (µ̂)].

Proof. See Appendix B.

Remark 3.1 Assuming that S1 and S2 are positive definite matrices (not
only semi-definite), for each level of v1 the EMEP has a unique solution.
However, this does not guarantee that the BFP also has a unique solution,
since it could achieve the optimum at two different levels of the distance
function.

4. The Underlying Geometry of the Lifted Behrens-Fisher Prob-

lem. In this section we study the nature of the non-convexities in (11), and
we show how the feasible set is related to the EMEP. In particular, we ob-
tain a convenient representation of the border of the feasible set that will
be used in the algorithm developed in Section 5.

We start by considering the projection of the set of feasible point in (11)
into the two-dimensional space of u = (u1, u2):

(14) K =

{

(u1, u2) ∈ IR2 : ∃µ such that
u1 ≥ 1 +MX̄(µ)
u2 ≥ 1 +MȲ (µ)

}

.

Figure 1 illustrates the geometry of K. Since M is a convex function, K is
a convex set. Also, K is unbounded, since (u1, u2) ∈ K implies that (u1 +
γ1, u2 + γ2) ∈ K as well for arbitrarily values of γ1, γ2 > 0. Clearly, u ∈ K
implies that u1 ≥ 1 and u2 ≥ 1.

Since the objective function of (11), f(u) = f(u1, u2) = N1

2 log(u1) +
N2

2 log(u2), depends only on the variables u, the optimal value of (11) equals

(15) min{f(u) : u ∈ K},

which still is a non-convex minimization and potentially has many local
minima.

However, the representation (15) has two desirable features. First, it com-
pletely separates the (non-convex) minimization problem in two variables
from the high dimensionality of µ. This will be key to avoid the curse of
dimensionality. Second, we can write out a compact region that contains the
solution for (15). Define the following problem dependent constants:

(16)

L̄1 = minµ{1 +MX̄(µ)} = 1
Ū2 = minu2

{u2 : (L̄1, u2) ∈ K} = 1 +MȲ (X̄)
L̄2 = minµ{1 +MȲ (µ)} = 1
Ū1 = minu1

{u1 : (u1, L̄2) ∈ K} = 1 +MX̄(Ȳ )
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1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1

1.2

1.4

1.6

1.8

2

The convex set K

u1

u
2

Fig 1. The convex set K consists of every point on and above the red curve.

These quantities define a right triangle

(17) {(L̄1, L̄2), (L̄1, Ū2), (Ū1, L̄2)}

which contains the optimal solution u∗ = (u∗1, u
∗
2) for (15). In fact, ob-

serve that, by monotonicity, all points in K above or to the right of the
hypotenuse of the triangle have a larger objective value than any point on
the hypotenuse. Moreover, the remaining points of K are contained in the
triangle. Therefore the coordinates of the triangle vertices in (17) are lower
and upper bounds on the optimal solution (u∗1, u

∗
2), i.e.,

L̄1 ≤ u
∗
1 ≤ Ū1, L̄2 ≤ u

∗
2 ≤ Ū2.

In particular, if X̄ = Ȳ the triangle degenerates into a single point (as
pointed out in [5], the solution is trivial in this case).

Nevertheless, there is a representation cost associated with (15), in the
sense that there is no closed-form representation for K involving only the
variables u.

For this reason, we will make use of an additional function g that gives
information about (part of) the border of K (which is where the global opti-
mum is expected to be found, given the quasi-concavity of f). The function
g is defined as

g(u1) := min{u2 : (u1, u2) ∈ K}.
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By construction, a point (u1, u2) is in K if and only if u2 ≥ g(u1). It is easy
to show that the function g is convex (its epigraph is exactly the convex set
K) and decreasing in u1.

Note that the function g is directly related to the EMEP with respect to
X and the function hX , since

(18)
g(u1) = 1 + min MȲ (µ) = 1 + hX(u1 − 1)

u1 − 1 ≥MX̄(µ).

In other words, evaluating g at u1 involves solving an EMEP with respect
to X.

5. An Algorithm for the Behrens-Fisher Problem. In this sec-
tion, we propose an algorithm, called Cutting Lines Algorithm (CLA), that
generate an ε-solution for the BFP. This means that the algorithm reports
a feasible solution at which the objective function value lie within at most
ε from the value of the objective function at the optimal solution. Since
the feasible solution is given for arbitrary ε > 0, convergence to an optimal
solution holds.

The CLA builds upon a polyhedral approximation to the set K. The
method optimizes the objective function f over K̂k at each iteration. The
minimizer point (u1, u2) ∈ K̂k is used to improve the polyhedral approxima-
tion for the next iteration.

As mentioned in the introduction, it is possible to propose an algorithm
based upon the discretization of the range of values of u1 where we need
to evaluate g(u1). Such algorithm, which we call Discretization Algorithm
(DA), can be proved to have better worst-case complexity guarantees than
the ones obtained for the CLA. However, Section 6 shows that the practical
performance of the CLA strongly dominates that of the DA, since the latter
requires evaluating the function g - i.e., solving an EMEP; see expression
(18) - at every point of the discretization. Thus, we focus on the CLA and
defer the details of the DA to Appendix D.

5.1. The Cutting Lines Algorithm. A good way to develop an algorithm
for the BFP is to think of constructing sets that (i) approximate K and (ii)
have a simple description involving u. Given the convexity of K, polyhe-
dral approximations to the set K are a natural candidate. Moreover, such
approximations are rather convenient because it is simple to minimize the
objective function f over polyhedral sets in two dimensions (see Lemma 5.1
below).
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5.1.1. Building Polyhedral Approximations to K. Our sequence of poly-
hedral approximations will be based upon the function g. Given the results
for the EMEP, relation (18) implies that for any fixed value of u1, not only
can g(u1) be efficiently evaluated but also a subgradient s ∈ ∂g(u1) (see
Lemma C.1 for details) can be easily obtained. Suppose we choose a set of
points {ui

1}
k
i=1 and gather the triples

{ui
1, g(u

i
1), s

i}, si ∈ ∂g(ui
1), i = 1, . . . , k.

By the definition of subgradient, we have that

g(u1) ≥ g(u
i
1) + si(u1 − u

i
1) for all i = 1, . . . , k and u1 ∈ IR.

Therefore we can build a minorant polyhedral approximation ĝk for g as
follows

(19) ĝk(u1) = max
1≤i≤k

{
g(ui

1) + si(u1 − u
i
1)

}
.

In turn, such function can be used to build a polyhedral approximation for
K defined as

K̂k = {(u1, u2) ∈ IR2 : u2 ≥ ĝk(u1)}.

Figure 2 illustrates these relations1.
The advantage of working with the polyhedral approximation K̂k instead

of K is two-fold. First, K̂k has a much nicer representation (via linear inequal-
ities or extreme points) thanK itself. This is particulary interesting for devel-
oping algorithms, which is our goal here. Second, as we anticipated, the mini-
mization of the desired objective function f(u1, u2) = N1

2 log(u1)+
N2

2 log(u2)

on K̂k is rather tractable, as we show in the following lemma.

Lemma 5.1 Let K̂k ⊂ IR2
++ be a (convex) polyhedral set. Then the function

f(u1, u2) =
N1

2
log(u1) +

N2

2
log(u2)

is minimized at an extreme point of K̂k.

Proof. First, note that since K̂k ⊂ IR2
+, and because the non-negative or-

thant is a pointed cone, K̂k must have at least one extreme point. Second,
the optimal solution cannot be an interior point of K̂k (otherwise we can
strictly decrease both components simultaneously). Third, we recall that f

1Such approximation for convex sets can be traced back to the Cutting Planes Algo-
rithm in the Optimization literature [3, 12, 13].
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1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1

1.2

1.4

1.6

1.8

2

The sets K and K̂

u1

u
2

Fig 2. The convex set K and its outer polyhedral approximation K̂k. The extreme points
of K̂k are the kinks of the graph of the piecewise linear function ĝk.

is a differentiable quasi-concave function. Therefore its gradient is a sup-
porting hyperplane for its upper level sets, which are convex.

Next, suppose that the minimum is achieved at a non-extreme point of
K̂k, say x∗ = αz + (1 − α)y, for α ∈ (0, 1) and extreme points z, y. By the
first order conditions, the gradient of f induces a supporting line for K at
x∗ on which both z and y lie. By the (strict) convexity of the upper level
sets of f , max{f(z), f(y)} < f(x∗), a contradiction.

Since K̂k is an outer approximation of K, minimizing f over K̂k yields a
lower bound on the optimal value of (11) for every k. Figure 3 illustrates
the minorant approximation of f(u1, g(u1)) induced by f(u1, ĝk(u1)).

5.1.2. The Algorithm. The CLA draws upon the minimization of the
objective function over the polyhedral approximation K̂k to Kk, which as
shown in Lemma 5.1, needs to be carried out only over the extreme points
of K̂k. A brief description of the algorithm follows. At iteration k, one has
a set f i, i = 1, ..., k, of values of the objective function at points (ui

1, u
i
2),

i = 1, ..., k, respectively. The values f i are then compared to f̂k := f(ûk
1, û

k
2),

where (ûk
1 , û

k
2) is the solution of the minimization of f over K̂k. If the distance

min0≤i≤k(f
i− f̂k) is small enough (note that f i ≥ f̂k), the algorithm stops.

Otherwise, it takes a new point uk+1
1 , slightly to the right of ûk

1 , and generates
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Fig 3. The outer polyhedral approximation for K leads to a minorant approximation for
f . Therefore lower bounds on the optimal value of (11) are derived if we minimize the

minorant approximation f̂ . The right figure is a zoom in on the dashed square area of the
left figure.

its corresponding uk+1
2 := g(uk+1

1 ) by solving an EMEP. The evaluation of
the objective function f at the pair (uk+1

1 , uk+1
2 ) gives a new fk+1, and the

algorithm starts over.

Cutting Lines Algorithm (CLA)

Input: Tolerance ε > 0, u1
1 = min{Ū1, (1 + ε/N1)L̄1}, ĝ0 = 1, k = 1.

Step 1. Evaluate uk
2 = g(uk

1) and sk ∈ ∂g(uk
1).

Compute fk = N1

2 log(uk
1) + N2

2 log(uk
2);

Step 2. Define ĝk(u1) = max0≤i≤k{u
i
2 + si(u1 − u

i
1)}.

Step 3. Compute f̂k = min{f(u1, u2) : u2 ≥ ĝk(u1), u1 ≥ L̄1} and the
corresponding point ûk = (ûk

1 , û
k
2).

Step 4. If min0≤i≤k(f i − f̂k) ≤ ε, report min0≤i≤k f
i and correspondent

pair (ui∗
1 , u

i∗
2 ).

Step 5. Else set uk+1
1 ← min{Ū1, û

k
1(1 + ε/N1)}, k ← k + 1, and

goto Step 1.

Note that each time a new iteration (say, k+1) starts, an updated polyhe-
dral approximation K̂k+1 is constructed through the introduction of a new
cut, based on the subgradient ∂g(uk+1

1 ). A new cut removes one extreme
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point and creates at most two new extreme points. Therefore, the compu-
tational effort of minimizing f over K̂k grows only linearly with k (in fact,
by keeping track of previous evaluations, re-optimization can be done even
faster).

The next theorem shows that the CLA needs only a finite number of
iterations to compute a ε-solution.

Theorem 5.1 The CLA reports an ε-solution for the original problem in

at most
⌈

(Ū1Ū2)(N1N2)
2ε2

⌉
loops.

Proof. For k ≥ 1, note that uk+1
1 ≤ ûk

1(1 + ε/N1), and suppose first that
uk+1

2 ≤ ûk
2(1 + ε/N2). In this case, we have

f(uk+1
1 , uk+1

2 ) = N1

2 log(uk+1
1 ) + N2

2 log(uk+1
2 )

≤ ε+ N1

2 log(ûk
1) + N2

2 log(ûk
2)

= ε+ f̂k ≤ ε+ f∗,

and we have a ε-solution, since (uk+1
1 , uk+1

2 ) is feasible.
Alternatively, if uk+1

2 > ûk
2(1 + ε/N2), we have uk+1

2 > 1 which implies
that uk+1

1 < Ū1. Therefore uk+1
1 = ûk

1(1 + ε/N1) and the next Cutting Lines

approximation removes at least a rectangle of area ε2

N1N2
ûk

2û
k
1 between the

difference of K̂k and K. Since the area difference between these sets was
bounded by Ū1Ū2/2 at the very first iteration, the algorithm performs at
most ⌈

(Ū1Ū2)(N1N2)

2ε2

⌉

loops.

This computational complexity result immediately yields the following
convergence results.

Corollary 5.1 For εk ↓ 0, let (uk
1 , u

k
2) be the εk-solutions to (15) and let the

vectors (µk, uk
1 , u

k
2) be their induced εk-solutions to the (Lifted) BFP. Then,

every accumulation point of the sequence {(µk, uk
1 , u

k
2)}k∈IN is a solution to

the BFP.

Corollary 5.2 The CLA can be used to generate a sequence of points that
converge to a global solution of the (Lifted) Behrens-Fisher Problem.

5.2. Computational Experiments with CLA and DA. Our complexity
bound for the CLA is worse than that for the DA. However, the DA solves
the EMEP for every point of the discretized domain of u1. In contrast, the
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CLA seeks to produce a certificate of ε-optimality at each iteration by com-
paring the best current solution and the solution to the minimization on K̂k.
In computational practice, this drastically reduces the number of necessary
iterations to find an ε-solution, as can be seen in Table 1.

Table 1 reflects the expected computational behavior of the methods.
As the dimension increases, more effort is needed but the CLA is order
of magnitudes faster than the DA, since the latter requires the complete
discretization of the interval [L1, U1]. Such requirement of evaluating the
function g on O(1/ε) different points (remember that the complexity analysis
is exact in the case of the DA) seems to be a naive approach, indeed.

Medium Size Instances Average Running Times (in seconds) Average Iterations
d N1 N2 Initialization DA CLA DA CLA

20 100 200 0.01 6.89 0.01 6853.2 15.4
30 150 300 0.02 18.97 0.02 10859.6 17.5
40 200 400 0.03 12.92 0.04 9256.8 17.4
50 250 500 0.05 14.37 0.03 8414.6 18.5
60 300 600 0.08 25.85 0.04 10495 17.7
70 350 700 0.13 27.93 0.05 8502.1 17.6
80 400 800 0.18 44.21 0.08 9912.7 18.7
90 450 900 0.24 68.38 0.10 11796.4 18.3
100 500 1000 0.32 74.98 0.13 9859.5 19.0

Large Size Instances Average Running Times (in seconds) Average Iterations
d N1 N2 Initialization DA CLA DA CLA

200 1000 2000 2.07 - 0.81 - 20.8
300 1500 3000 6.64 - 2.68 - 19.8
400 2000 4000 16.08 - 6.31 - 20.1
500 2500 5000 43.35 - 13.16 - 21.2
600 3000 6000 56.62 - 24.46 - 21.5
700 3500 7000 87.88 - 39.54 - 22.0
800 4000 8000 142.05 - 49.73 - 20.9
900 4500 9000 455.23 - 91.05 - 22.1
1000 5000 10000 671.80 - 154.57 - 22.3

Table 1

Computational times (in seconds) and total number of iterations (which equal the number
of EMEP problems solved) of the computational experiments with relative tolerance

ε = 10−3.

The polyhedral approximation used in the CLA provides a way of focusing
the search on a promising region, a concept well exploited in the Optimiza-
tion literature. Table 1 also illustrates the number of loops required by each
algorithm in the test problems.

The number of loops performed by the Discretization Algorithm depends
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only on the precision ε, and on the problem dependent values of L̄1 and
Ū1. On the other hand, these problem dependent quantities do not seem
to affect the CLA. This points to the question of whether there exists a
(better) complexity analysis for the CLA which might be independent of
these quantities.

The implementation of the algorithms is an easy task in any programming
package where matrix inversion and spectral decomposition subroutines for
positive definite matrices are available (e.g., R, Matlab, etc.). We do not
claim to have the most efficient implementation of the methods proposed
here. Nevertheless, our numerical results show that the CLA is computa-
tionally efficient and scales quite nicely as the data dimension d increases.
The underlying reason is the certificate of optimality that the method is
constructing on each iteration. The value f̂min provides a lower bound for
the optimal solution which is used to construct a stopping criterion. For a
problem whose dimension is greater than one thousand, numerical approx-
imations on the computation of the spectral decomposition are a potential
limitation for the method proposed in the Appendix C. An alternative ap-
proach is to compute an inverse matrix at each iteration of the EMEP, which
will lead to a more robust implementation at the cost of additional running
time (see [6] for details).

In our experiments we use medium and large size instances where the
data dimension d varies from 20 to 1000. The results were generated using
a relative precision of ε = 10−3. We report the average over ten different
instances. The DA has proved to be too cumbersome for large instances.

6. Finite Sample Properties of the Wald, Likelihood Ratio, and

Lagrange Multiplier Tests through the CLA. Three commonly used
multivariate tests based upon the maximization of the likelihood function
L(µ, ·, ·) as defined in (9) are the Wald (W ), Likelihood Ratio (LR), and the
Lagrange Multiplier (LM) Tests. For a certain hypothesized restriction on
the parameter space

H0 : c(µ) = q,

the test statistics are defined as

W = [c(µ̂)− q]′(Var(c(µ̂)− q))−1[c(µ̂)− q]

LR = argmax
LR(µ)

L(µ)
,

where LR(µ) = likelihood function under H0, and

LM = argmax[L(µ) + λ′(c(µ)− q)],
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where λ is a vector of Lagrange multipliers.
The W , LR and LM Tests are asymptotically equivalent under the null

hypothesis. However, their behavior can be rather different in small sam-
ples, and their finite sample properties are usually unknown, except for a
few particular cases (see, for instance, Greene [11] and Godfrey [10]). In
this section, we use the CLA to investigate and compare the finite sample
properties - size and power - of these tests. In particular, we are interested
in the sensitivity of the tests to dimensionality.

We emphasize that the CLA allows for the study of the properties of
the tests in high-dimensional contexts. In contrast, the literature on the
BFP typically overlooks the issue and reports results for small dimensional
problems, typically smaller than d = 6 and in general no greater than d = 10.

6.1. Conflict Among Criteria. It is well-known that the W , LR, and
LM statistics for testing linear restrictions in the context of classical linear
models satisfy the inequalities W ≥ LR ≥ LM (see Savin [21], Berndt and
Savin [2], Breusch [4] and Godfrey [10]). Before turning to simulations, we
show that such inequalities also hold in the case of the BFP.

Theorem 6.1 For the BFP,

W ≥ LR ≥ LM.

Proof. To show the first inequality note that, using since log(1+ δ) ≤ δ, we
have

LR ≤ c∗ = min
µ
N1(X̄ − µ)S−1

1 (X̄ − µ) +N2(Ȳ − µ)S−1
2 (Ȳ − µ).

The optimal solution of the right hand side is achieved at µc∗ = (N1S
−1
1 +

N2S
−1
2 )−1(N1S

−1
1 X̄ +N2S

−1
2 Ȳ ). Using µc∗, and the matrix identities

(A+B)−1 = A−1 −A−1(A−1 +B−1)−1A−1 = A−1(A−1 +B−1)−1B−1,

we prove that c∗ = (X̄ − Ȳ )′(S1/N1 + S2/N2)
−1(X̄ − Ȳ ) = W .

Let µ̂ be a solution for the BFP. After simplifications, the LM statistic
can be written as

LM = N1(X̄ − µ̂)′Σ̂−1
1 (X̄ − µ̂) +N2(Ȳ − µ̂)′Σ̂−1

2 (Ȳ − µ̂).

Next note that

(X̄ − µ̂)′Σ̂−1
1 (X̄ − µ̂) = (X̄ − µ̂)′S−1

1 (X̄ − µ̂)−

[
(X̄ − µ̂)′S−1

1 (X̄ − µ̂)
]2

1 + (X̄ − µ̂)′S−1
1 (X̄ − µ̂)
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by using a rank-one update formula2 for Σ̂−1
1 . The result follows by consid-

ering the term for Y as well and noting that log(1 + δ) ≥ δ − δ2

1+δ .

6.2. Monte Carlo Study of the Size of the Test. Inequalities (6.1) imply
that the rejection rate of the W Test is greater than or equal to that of the
LR Test, which in turn is greater than or equal to that of the LM Test. A
more accurate understanding of the extent to which this influences the size
and the power of such tests can be obtained through simulations.

We performed a Monte Carlo study of the finite-sample properties of the
W , LR, and LM tests at sizes α = 0.01, 0.05, 0.10. The rejection regions
were defined based upon Wilks’ Theorem on the asymptotic χ2

d distribution
of the test statistic.

The study also includes the Likelihood Ratio statistic with the Bartlett
correction

B :=
(
1−

ĉ1
N − 2

)
LR,

where

ĉ1 =
ψ̂1 − ψ̂2

d
,

ψ̂1 =
N2

2 (N − 2)

N2(N1 − 1)
{tr(S1S

−1
)}2 +

N2
1 (N − 2)

N2(N2 − 1)
{tr(S2S

−1
)}2,

ψ̂2 =
N2

2 (N − 2)

N2(N1 − 1)
{tr(S1S

−1
S1S

−1
)}+

N2
1 (N − 2)

N2(N2 − 1)
{tr(S2S

−1
S2S

−1
)},

and S = N2

N S1 + N1

N S2.
The Bartlett correction as defined above provides an O(N−2) approxi-

mation to the mean of the χ2
d distribution (more details can be found in

Yanagihara and Yuan [29]). We will refer to the LR Test under the Bartlett
correction as the B Test.

To facilitate comparison with other works on the multivariate BFP (e.g.
Yao [30], Subrahmaniam and Subrahmaniam [26], Kim [15], Krishnamoorthy
and Yu [16]), we performed tests for the low dimensional cases of d = 2, 5
and 10, but we also included the higher-dimensional cases of d = 25, 50, 75,
100 and 200. For each d, the sample sizes used were N1 = 5d, 10d, 20d, and
N2 = 2N1. For a given dimension size d, each covariance matrix Σi, i = 1, 2,
was constructed by creating an initial matrix Si with N(0, 1) entries, and
then setting Σi = SiS

′

i.

2For invertible M and a vector v, the inverse of the rank-one update of M by vv′ can

be written as (M + vv′)−1 = M−1 − M
−1

vv
′
M

−1

1+v′M−1v
.
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Fig 4. The behavior of the size of the tests when the dimension increases and the ratio
between the number of observations and dimension is fixed.
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The results can be seen in Figure 4 (the actual numerical output can be
found in Table E in the appendix). Each entry was generated using 10,000
runs. The W and the LR tests tend to over-reject the null hypothesis while
the LM Test tends to slightly under-reject it. We kept constant the ratio
between the number of observations and the dimension so that we can ob-
serve how the quality of the approximation behaves as the dimensionality of
the problem grows. One may notice how sensitive the W and the LR Tests
are to increases in the dimension. Only for the (relatively) large sample case
N1 = 20d does the LR Test have actual size fairly close to α. On the other
hand, the W Test appears to demand even (relatively) larger samples. For
instance, when d = 100 and α = 0.10, even when N1 = 20d the W test is
off by 3.8 percentage points.

In contrast with the W and the LR Tests, the LM shows remarkable
robustness with respect to dimensionality. For all α, there does not appear
to be any clear (say, monotonic) pattern of change on the actual test size
with respect to increases in dimensionality, or maybe even sample size N1.

For all values of α and different sample sizes, the B Test is roughly as
accurate as the LM Test for low dimensional settings (roughly, d ≤ 20). For
d > 20, though, it grossly over-compensates the over-rejection rates of the
W Test, with the possible exception of the comparatively large sample sizes
N1 = 20d.

Figure 4 illustrates the above comments. Accordingly, the W Test usually
shows the steepest curve of dimension vs actual test size for different N1,
while the LM Test displays approximately horizontal curves, especially for
higher-dimensional settings.

6.3. Monte Carlo Study of the Power of the Test. We performed com-
putational experiments on the power of the W , LR, LM and B Tests for
the cases of dimension d = 10, 50, 100, and sample sizes N1 = 5d, 10d, and
20d, with N2 = 2N1.

The analysis of the power for multivariate tests is naturally more difficult
due to the multi-dimensionality of the parameter space. For this reason,
we chose to investigate and compare the power of the W , LR, LM and B
Tests over a standardized parameter space in the following sense. For each
simulation run, covariance matrices Σ1 and Σ2 were (randomly) generated
through the same procedure as the one for the evaluation of the sizes of
the test. The mean of X, µ1, was set to zero by default. The choice of the
mean(s) of Y , µ2(∆), was made as solution(s) to the squared Mahalanobis
distance equation(s)

(µ1 − µ2(∆))′(Σ1 + Σ2)
−1(µ1 − µ2(∆)) = ∆2,
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where ∆ represents a family of appropriately selected constants. For conve-
nience, such solutions µ2(∆) were always taken on some canonical axis, and
the specific axis chosen changed across simulation runs. The use of randomly
standardized Mahalonobis distances is justified by the fact that the BFP is
defined without information on the population covariances.

The results are depicted in Figure 4, which contains plots for dimensions
d = 10, 50 and 100. Colors represent tests, while geometric figures represent
sample sizes (e.g., a triangle symbolizes N1 = 5d).

Perhaps the most striking feature of all four plots (d = 10, 50 and 100)
is the fact that, for a given sample size N1, the shapes of the power curves
for the four tests look alike. More specifically, given N1, the curve for the
W Test looks like an up-shifted version of the curve for the LR Test, which
in turn looks like an up-shifted version of the curve for the LM Test. The
same is true for the curve for the B Test, which lies mostly below the curve
for the latter. The observed “order” of the curves should not come as a sur-
prise. First, regarding the W , LR and LM Tests, because of the theoretical
inequalities in Theorem 6.1. Second, because the simulation results for the
test sizes show that the W and LR Tests tend to over-reject the null hy-
pothesis (the former, substantially more than the latter), while the LM Test
has size close to α and the B Test tends to under-reject the null hypothesis.
In other words, we are essentially comparing tests of different sizes (see also
the conclusions in Breusch [4] for the case of linear regression). The shape
of the curves suggests the possibility that, if test size adjustment is made
for the W and LR Tests, the power curves of the three tests may get rather
close to each other. Such adjustment would imply, of course, going beyond
Wilks’ Theorem and developing exact quantiles, especially for the W and
the LR Tests.

The plot for the low-dimensional case of d = 10 displays a “well-behaved”
pattern, in the sense that the curves for different tests and for the same
sample size tend to be grouped together. In particular, the curves for sample
size N1 = 40d are almost super-imposed, which means that, power-wise, the
tests are nearly equivalent in this situation. Note that the curves for sample
size N1 = 10d (triangle) lie above the remaining ones close to the origin,
i.e., in the case where the Mahalanobis distance between µ1 and µ2 is small.
Again, this should not come as a surprise, since the simulation results for
the test sizes (i.e., zero Mahalanobis distance between µ1 and µ2) show that
relatively small sample sizes imply a tendency for over-rejection in the case
of the W and LR Tests.

The effect of higher dimensionality can be seen in the two remaining plots
(d = 50 and 100). The main impact seems to be greater vertical distances
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among the curves for the four tests, particularly for the cases of smaller
sample sizes. Even for the higher-dimensional case d = 100, though, the
larger sample size N1 = 20d brings the curves a lot closer to each other. As
one might expect, larger sample sizes compensate for high dimension and
point to the asymptotic equivalence of the W , LR, LM and B Tests.

7. Extension to Behrens-Fisher-like Problems. It should be noted
that the methodology proposed in this paper can be applied to a much
broader class of problems. Strictly speaking, all we need is to be able to
replicate the strategy of constructing lifted problems whose solution lie on
extreme points of a two dimensional convex domain3, and to evaluate the
subproblems which define the convex domain. A sufficient condition for this
is the quasi-concavity of the objective function of the lifted problem and the
convexity of the subproblems.

To set up a broader framework, assume we have two random samples
{Xi}

N1

i=1 and {Yi}
N2

i=1 whose log-likelihood functions are denoted by l1(X;µ, α)
and l2(Y ;µ, β), respectively. The generalized M-estimation problem of inter-
est is defined as

max
µ,α,β

l1(X;µ, α) + l2(Y ;µ, β).

A generalization of the subproblem can be cast in terms of the log-
likelihood functions directly. Assume there exist two monotone (decreasing)
transformations TX , TY : IR→ IR such that TX(l1(X; ·, ·)) and TY (l2(Y ; ·, ·))
are convex functions. The subproblems, analogous to the EMEP, are

hX(u1) = min
µ,α,β

{TY (l2(Y ;µ, β)) : TX (l1(X ;µ, α)) ≤ u1} .

The geometric results in Section 4 still hold with minor modifications. More-
over, under the above convexity assumption, the evaluation of hX(u1) can
be efficiently performed through standard convex programming techniques.
Therefore, the convergence results of Section 5 are still valid.

The above framework encompasses the BFP by taking TX(z) = exp( 2
N1
z)−

1 and TY (z) = exp( 2
N2
z)− 1. The lifted problem is given by equation (11),

whose objective function is concave, and solving the subproblem hX(u1) is
equivalent to solving an EMEP.

We now give a simple example of the application of the methodology
described above to a Behrens-Fisher-like problem.

3Higher-dimensional convex domains would impose an additional burden in terms of
computational complexity.
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Fig 5. Monte Carlo study of the power of the W , LR, LM and B Tests for the size
α = 0.05 with different sample sizes and dimensions equal to 10, 50, and 100.
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Example 7.1 Assume X ∼ N(µ,Σ) but, differently from the BFP, Y fol-
lows a multivariate Laplacian distribution, i.e.,

fY (y) = cL exp(−||y − µ||),

where cL is the normalization constant and ‖ · ‖ is the Euclidean norm. The
related lifted problem can be cast as

(20)

min
µ,u1,u2

f(u1, u2) = N1

2 log(u1) + u2

u1 ≥ 1 +MX̄(µ)

u2 ≥
∑N2

i=1 ‖Yi − µ‖.

Here, the problem objective function is concave (u1, u2), and therefore the
solution must lie on the border of the convex domain of these variables. Such
domain can be written as

(21) K =

{

(u1, u2) ∈ IR2 : ∃µ such that
u1 ≥ 1 +MX̄(µ)

u2 ≥ 1 +
∑N2

i=1 ‖Yi − µ‖

}

.

Moreover, the associated subproblems, using TX(z) = exp( 2
N1
z) − 1 and

TY (z) = z, are convex programming problems and have the form

hX(u1) = min
µ






N2∑

i=1

‖Yi − µ‖ : MX̄(µ) ≤ u1




 and

hY (u2) = min
µ




MX̄(µ) :
N2∑

i=1

‖Yi − µ‖ ≤ u2




 .

Both these problems can be solved via convex quadratic programming, which
can be done quite efficiently even in high-dimensional cases.

APPENDIX A: NOTATION OF CONVEX ANALYSIS

Herein we gather the definitions of relevant concepts in Convex Analysis
for this work. We refer to [20] for a analytic exposition of Convex Analysis
and to [12] for a more geometric one.

A set S is convex if for any x, y ∈ S, α ∈ [0, 1], αx + (1 − α)y ∈ S. An
extreme point of a convex set is a point that cannot be written as a strictly
(α < 1) convex combination of any other distinct points in the set. A set
P is said to be polyhedral if P = {x ∈ IRn : Ax ≤ b}, where A is a matrix
and b a vector. It follows that polyhedral sets are convex and their extreme
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points are its corners. The recession cone CS of a convex set S is the set of
directions that go to infinity in S, formally, CS = {d : d+ S ⊂ S}.

A function g : IRn → IR is said to be convex if for any x, y ∈ IRn, and
α ∈ [0, 1], g(αx + (1− α)y) ≤ αg(x) + (1 − α)g(y). A function f : IRn → IR
is quasi-concave if for any x, y ∈ IRn, and α ∈ [0, 1], f(αx + (1 − α)y) ≥
min{f(x), f(y)}, or equivalently, the upper level sets of f are convex sets.

Associated with a convex function g : IRn → IR, we can define its subdif-
ferential at x as ∂g(x) = {s ∈ IRn : g(y) ≥ g(x)+〈s, y − x〉 , for all y ∈ IRn}.
The elements of the subdifferential, also called subgradients, play the role
of the gradient in case g is nondifferentiable. Note that ∂g(x) is always
non-empty.

APPENDIX B: THE RELATION BETWEEN THE BFP AND THE
EMEP

Proof of Theorem 3.1. Without loss of generality, we will develop the
argument only for the EMEP with respect to X.

Let µ̂EMEP be a solution to the EMEP with respect to X at some positive
v1. By the monotonicity of log, this means that the expression

(22)
N1

2
log(1 + v1) +

N2

2
log(1 +MȲ (µ))

is minimized at µ̂EMEP.
Now, let (µ̂, û1, û2) be a solution to the BFP problem. This means that

the expression

(23)
N1

2
log(1 +MX̄(µ)) +

N2

2
log(1 +MȲ (µ))

is minimized at µ̂ and we have û1 = 1 +MX̄(µ̂). Since expression (23) is
an upper bound for expression (22) when we set v1 := MX̄(µ̂), µ̂ is also a
solution to the EMEP with respect to X at v1.

APPENDIX C: SOLVING THE EMEP

Consider the convex problem in (13). There are a variety of “general
purpose” convergent algorithms that can solve it. Here, we propose a specific
algorithm tailored for the particular structure of the EMEP.

Let λ be the (nonnegative) LM associated with the inequality constraint.
The first order conditions are necessary and sufficient, and are given by

2S−1
2 (Ȳ − µ) + 2λS−1

1 (X̄ − µ) = 0, and

λ(MX̄(µ)− v1) = 0.
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Assuming that λ > 0 (otherwise, the solution is just µ̂ = Ȳ ), the optimal
µ̂ is a function only of λ:

(24) µ̂(λ) = (S−1
2 + λS−1

1 )−1(S−1
2 Ȳ + λS−1

1 X̄).

Therefore, in order to solve the EMEP, it suffices to compute a root λ∗ of
the following non-linear univariate function:

(25) m(λ) =MX̄(µ̂(λ))− v1.

The algorithm we propose here is based upon the algorithm proposed by
Ye [31], who in turn built upon earlier work by Smale [24].

Our algorithm has two main parts. The first part consists of a binary
search over intervals of increasing length to find which interval Ii∗ contains
what Smale [24] calls an approximate root :

Definition C.1 A point λ0 is said to be an approximate root of an analytic
real function m : IR→ IR if

|λk+1 − λk| ≤ (1/2)2
k−1−1|λ1 − λ0|.

In the second part of the algorithm, Newton’s method is used over the
interval Ii∗ to find the approximate root λ∗. For the sake of exposition, we
focus on the case of m : IR→ IR (although the results in [31] hold in much
greater generality). Recall that the Newton iterate for a function m from a
current point λk is:

λk+1 = λk −
m(λk)

m′(λk+1)
.

Newton’s method converge quadratically from the very first iteration. In
[24], Smale gives sufficient conditions under which a particular point is an
approximate root. Although it is hard to verify Smale’s condition in general,
Ye provided a constructive method to find such a point for a particular class
of functions. Ye’s results in [31] apply in our case. Our algorithm is as follows.
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Binary Search and Newton Method

Input: Upper and lower bounds on the value of the root [a, b], b ≥ a ≥ δ,
tolerance δ > 0.

Step 1. Define a partition of [a,b] through intervals of the form
Ii = [a(1 + 1/12)i, a(1 + 1/12)i+1).

Step 2. Perform binary search on these intervals to find Ii∗

that contains the true root λ∗.

Step 3. Let λ0 = a(1 + 1/12)i, k = 0.

Step 4. Perform Newton’s method from λk: λk+1 ← λk − m(λk)
m′(λk)

Step 5. Stop if k > 1 + log2 (1 + max{0, log2(b/δ)}) steps.

Step 6. Else set k ← k + 1, and goto Step 4.

Theorem C.1 After the computation of a spectral decomposition of the ma-

trix S
1/2
1 S−1

2 S
1/2
1 , and given a desired precision δ > 0 and an upper bound

b for the solution, the algorithm finds a δ-approximate solution λ̂ such that
|λ∗ − λ̂| < δ in at most

O

(
d log log

b

δ

)

arithmetic operations.

Proof. Making the following change of variables/notation

w := S
−1/2
1 (µ−X), M := S

1/2
1 S−1

2 S
1/2
1 = PDP T ,

v = 2S−1
2 S

1/2
1 (Ȳ − X̄), and s = P T v

problem (18) is equivalent to

h(v1) = min wTMw − vTw
‖w‖2 ≤ v1

up to a constant value (which does not matter for the optimization).
Under the new notation we can rewrite the function m as

m(λ) = sT (D + λI)−2s− v1 =
d∑

i=1

s2i
(Di + λ)2

− v1.
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The function m(λ) is analytic and its derivatives can be easily computed as

m(k)(λ) = (−1)k(k + 1)!
d∑

i=1

s2i
(Di + λ)k+2

.

Note that m′ < 0 and m′′ > 0 (i.e., m is decreasing and convex). Thus, we
can evaluate m and m′ in O(d) operations. This implies that each Newton
step can be implemented in O(d) arithmetic operations.

Let λ0 = a(1 + 1/12)i
∗

be the left endpoint of the interval selected by
binary search. From Ye [31] it follows that λ0 satisfies Smale’s sufficient
condition to be an approximate root. Therefore Newton’s Method converges
quadratically from the very first iteration from λ0. From the convexity of m,
the convergence is monotone, i.e., 0 < λ0 < λk < λk+1 < λ∗ ≤ b for every k
(in particular, we have |λ1 − λ0| < b). This implies that we need at most

k = 1 + log2(1 + max{0, log2(b/δ)})

Newton steps to achieve a |λk−λ∗| < δ. Moreover, the total number of subin-
tervals is 1

log(1+1/12) log(b/a). The binary search can thus be implemented in

O(log log(b/a)). The result follows by noting that we can take a ≥ δ.

Remark C.1 Even when we need to solve the EMEP for many different
levels of the Mahalanobis distance function, the spectral decomposition of

S
1/2
1 S−1

2 S
1/2
1 needs to be performed only once. This feature of the algorithm

makes it a good auxiliary method for the CLA, described in Section 5.

The following lemma illustrates how to obtain subgradients for the func-
tion hX with no additional computational effort, which is of interest for the
CLA.

Lemma C.1 Let λ∗ be a root of the function m as defined in (25). Then
−λ∗ is a subgradient of hX at v1.

Proof. Recall m(λ∗) = 0 implies that µ(λ∗) minimizesMȲ (µ)+λ∗MX̄(µ).
For any v we have

hX(v1) = MȲ (µ̂(λ∗)) =MȲ (µ̂(λ∗)) + λ(MX̄(µ̂(λ∗))− v1)
= MȲ (µ̂(λ∗)) + λ∗(MX̄(µ̂(λ∗))− v) + λ∗(v − v1)
≤ hX(v) + λ∗(v − v1)

where we used weak duality (min max ≥ max min) as follows

hX(v) = minµ maxλ≥0MȲ (µ) + λ(MX̄(µ)− v)
≥ maxλ≥0 minµMȲ (µ) + λ(MX̄(µ)− v)
≥ MȲ (µ̂(λ∗)) + λ∗(MX̄(µ̂(λ)) − v).
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Therefore, we have

hX(v1)− λ
∗(v − v1) ≤ hX(v)

for every v, which implies that −λ∗ ∈ ∂hX (v1).

APPENDIX D: THE DISCRETIZATION ALGORITHM (DA)

Consider the problem (11) for a fixed value of u1 = ū1. In this case, the
computational problem reduces exactly to solving the EMEP with respect
to X at fixed squared distance level ū1 − 1. As shown in Section 3, such
problem can be solved directly with the algorithm proposed in Appendix C.

Therefore, given the desired precision, one can discretize the range of the
variable u1, [L̄1, Ū1], and solve the EMEP for each one of these values. Such
scheme yields the following algorithm.

Discretization Algorithm

Input: Relative tolerance ε > 0, u1
1 = (1 + 2ε/N1)L̄1, k = 1.

Step 1. Evaluate uk
2 = g(uk

1) and compute fk = N1

2 log(uk
1) + N2

2 log(uk
2);

Step 2. If (1 + 2ε/N1)u
k
1 > Ū1, compute fk+1 = Ū1L̄2, goto Step 4;

Step 3. Else set uk+1
1 ← (1 + 2ε/N1)u

k
1 , k← k + 1, goto Step 1;

Step 4. Report min1≤i≤k f
i and the correspondent pair (ûi∗

1 , û
i∗
2 ).

The following complexity results hold for the Discretization Algorithm.

Theorem D.1 The Discretization Algorithm reports an ε-solution for the
original problem performing exactly ⌈log(Ū1/L̄1)/ log(1 + 2ε/N1)⌉ loops.

Proof. Let u∗ = (u∗1, u
∗
2) be a optimal solution. There exists a k such that

uk
1 < u∗1 < (1 + 2ε/N1)u

k
1 . We consider fk+1 as our candidate. We have

(26)

f∗ = N1

2 log(u∗1) + N2

2 log(u∗2)

≤ fk+1 = N1

2 log(1 + 2ε/N1) + N1

2 log(uk
1) + N2

2 log(uk+1
2 )

≤ ε+ N1

2 log(uk
1) + N2

2 log(uk+1
2 ) = ε+ f∗

where we also used that uk+1
2 ≤ u∗2, since g is decreasing.
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The second statement of the Theorem follows by noting that we have
uk

1 = L̄1(1 + 2ε/N1)
k ≤ Ū1 and by taking logs to bound k.

By choosing a sequence εk → 0 we obtain a sequence of εk-solutions that
converge to the optimal solution of the BFP. One drawback to this method
is that it requires solving the EMEP at every point of the discretization. In
practice, such requirement may be cumbersome.

APPENDIX E: MONTE CARLO STUDY OF SIZE

Small Size Instances Size of the Test α

α = 0.10 α = 0.05 α = 0.01
d N1 N2 W LR LM B W LR LM B W LR LM B

2 10 20 0.160 0.133 0.102 0.092 0.106 0.077 0.046 0.046 0.039 0.020 0.005 0.009
2 20 40 0.138 0.122 0.106 0.103 0.081 0.067 0.050 0.051 0.023 0.013 0.007 0.009
2 40 80 0.120 0.114 0.110 0.107 0.069 0.061 0.055 0.054 0.017 0.014 0.011 0.011
5 25 50 0.171 0.133 0.098 0.090 0.101 0.073 0.047 0.046 0.035 0.019 0.005 0.008
5 50 100 0.124 0.110 0.094 0.090 0.068 0.055 0.041 0.041 0.017 0.011 0.007 0.008
5 100 200 0.113 0.106 0.098 0.096 0.063 0.057 0.053 0.052 0.015 0.013 0.010 0.010
10 50 100 0.175 0.131 0.094 0.084 0.102 0.072 0.044 0.041 0.035 0.018 0.008 0.008
10 100 200 0.137 0.118 0.099 0.093 0.074 0.062 0.047 0.047 0.019 0.012 0.009 0.009
10 200 400 0.116 0.107 0.100 0.098 0.062 0.056 0.051 0.051 0.014 0.011 0.009 0.009

Medium Size Instances Size of the Test α

α = 0.10 α = 0.05 α = 0.01
d N1 N2 W LR LM B W LR LM B W LR LM B

25 125 250 0.196 0.141 0.096 0.077 0.118 0.079 0.043 0.034 0.035 0.018 0.007 0.007
25 250 500 0.137 0.109 0.088 0.078 0.071 0.056 0.039 0.036 0.019 0.014 0.008 0.007
25 500 1000 0.120 0.110 0.099 0.091 0.064 0.055 0.049 0.046 0.015 0.011 0.009 0.008
50 250 500 0.232 0.158 0.096 0.065 0.144 0.089 0.040 0.027 0.041 0.018 0.005 0.005
50 500 1000 0.147 0.117 0.091 0.079 0.083 0.061 0.044 0.038 0.021 0.013 0.008 0.007
50 1000 2000 0.126 0.111 0.100 0.092 0.070 0.062 0.053 0.049 0.016 0.012 0.011 0.010
75 375 750 0.262 0.170 0.098 0.064 0.167 0.098 0.048 0.029 0.059 0.025 0.008 0.004
75 750 1500 0.166 0.131 0.097 0.084 0.098 0.072 0.048 0.038 0.025 0.016 0.009 0.007
75 1500 3000 0.133 0.119 0.102 0.092 0.073 0.064 0.053 0.049 0.018 0.014 0.010 0.009
100 500 1000 0.284 0.175 0.090 0.054 0.179 0.097 0.043 0.025 0.060 0.025 0.007 0.004
100 1000 2000 0.175 0.134 0.101 0.076 0.104 0.071 0.047 0.036 0.026 0.016 0.008 0.006
100 2000 4000 0.139 0.117 0.099 0.087 0.073 0.061 0.050 0.042 0.017 0.013 0.009 0.007

Large Size Instances Size of the Test α

α = 0.10 α = 0.05 α = 0.01
d N1 N2 W LR LM B W LR LM B W LR LM B

200 1000 2000 0.373 0.213 0.095 0.040 0.251 0.123 0.043 0.015 0.101 0.030 0.007 0.002
200 2000 4000 0.203 0.136 0.085 0.060 0.112 0.073 0.042 0.029 0.032 0.016 0.009 0.005
200 4000 8000 0.153 0.128 0.099 0.085 0.084 0.064 0.049 0.039 0.019 0.014 0.010 0.007

Table 2

Monte Carlo study of size for the Wald (W ), Likelihood Ratio (LR), Lagrangian
Multiplier (LM), and the Barlett Correction (B) of the Likelihood Ratio Tests (runs per

entry = 10,000).
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