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We present an overview of a system we have developed for generating short-term production 
schedules for a large steel manufacturer. We have developed a decomposition based approach 
which uses mixed-integer programming to generate a plan for production on the downstream cast-
ing processes, and constraint programming to generate a schedule upstream of these casting proc-
esses, taking into account detailed scheduling constraints and preferences. One drawback to this 
approach is that downstream production plans can be generated which cannot be scheduled on the 
upstream processes, since downstream planning does not take into account bottlenecks that may 
occur when scheduling upstream. We investigate an integration mechanism, which uses constraint 
programming to build local estimations of upstream capacity utilization, which are used in the in-
teger programming formulation for downstream production planning. We present results illustrat-
ing the effectiveness of this approach. 
 
Keywords: Applications

1.  Introduction 
In this paper we present an overview of a system we have developed for generating short-term 
production schedules for a large steel manufacturer. The scheduling of steel production involves 
solving two related problems for the upstream and downstream processes of manufacturing. The 
downstream problem involves the selection and sequencing of groups of contiguous jobs on a 
number of machines subject to shift-level capacity constraints on the number of orders of each 
product type, tight inventory constraints and sequence-dependent setup times. The upstream proc-
esses are scheduled on unary capacity resources subject to alternate recipes and resources for each 
job and precedence constraints with tight minimum and maximum wait times. We have investi-
gated a decomposition-based approach that uses mixed-integer programming and constraint pro-
gramming to schedule the downstream and upstream processes respectively. One drawback to this 
approach is that bottlenecks on the upstream processes are not taken into account during the down-
stream process scheduling. We discuss some techniques we have explored to take into account 
such bottlenecks in a decomposition-based approach to steel production scheduling.  

In the sections that follow, we present an overview of the processes in steel manufacturing and 
discuss the formulation of the scheduling model. We then present the two-stage decomposition 
based approach and discuss integration strategies to improve its performance in the presence of 
upstream bottlenecks. Finally, we present some experimental results.  

2.  Steelmaking processes 
The scope of the scheduling problem addressed by the system covers the production of solid steel 
slabs from molten iron. The main processes involved in the manufacturing of steel slabs are illus-
trated in Figure 1. There are four main process areas are: 

1. The Blast Furnace (far left in Figure 1) where iron is heated to a very high temperature to 
become molten. There is a continuous flow of molten iron from the blast furnace to the 
downstream processes. This flow is given as input to the scheduling problem formulation. 



2. The Basic Oxygen Furnace is the first process that all production must pass through after 
leaving the blast furnace. At this process, molten iron starts to become differentiated with 
respect to grade and chemical composition. 

3. The Refining Processes consist of a number of steps such as reheating, ladle furnace and 
stirring. Not all production will pass through all of these steps, and these steps are not or-
dered (the steps that are used depend on the chemical composition of the final products.) 

4. The Continuous Casters (far right in Figure 1): All production passes from the refining 
stage to the final continuous casting process. In this process, molten steel is poured into a 
long, adjustable copper mold. As the steel passes through the mold, it is cooled by water 
jets and solidifies into slabs of a specific dimension. 

Figure 1: An illustration of the basic processes involved in the manufacturing of steel. 

3.  Scheduling model formulation 
3.1 Components of the model 
Steel is usually produced on a make to order basis. During the manufacturing of steel products, 
orders for steel slabs are batched into units of “charges”. All distinct operations from the basic 
oxygen furnace and the refining process stages take place on a single charge of steel. At the con-
tinuous casting stage, operations take place on a sequence of (4-12) contiguous charges, which is 
called a “cast”. The batching of orders into charges and the sequencing of charges into casts is 
provided as input to the scheduling system.  These batching and sequencing steps are tackled as 
complex, multi-criteria optimization problems, the descriptions of which are outside of the scope 
of this paper.  
 
3.2 Model of a single cast 
Figure 2 presents a Gantt chart view illustrating how the concept of charges and casts are reflected 
in the formulation of the scheduling model. The Figure shows the schedule for the operations in-
volved in the production of a single cast of steel. The interesting aspects of this formulation to note 
are that: 

1. Each set of operations, for example A1, A2, A3 and A4 in Figure 2, represent the set of op-
erations required to produce a single charge of steel. This corresponds to a single job in the 
scheduling model. 

2. In the final casting process a cast is produced consisting of a sequence of contiguous 
charges. This sequence is given as input to the problem. The processing of consecutive 
charges in a single cast on the casting processes must be without interruption. In Figure 2, 
the operations A4, B3 and C2 are scheduled as a cast on the casting process. Hence the start 
time of operation B3 must occur at the end time of operation A4, and the start time of op-
eration C2 must occur at the end time of operation B3. 
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3. There are tight wait time constraints between consecutive operations in the same job1. This 
gives rise to precedence constraints with maximum delays, for instance the maximum de-
lay between the end of A1 and start of A2 is 20 minutes. 

4. At each process there are a number of machines that can be used to process an operation. 
The scheduler determines which machine an operation is assigned to2. Each machine has 
different operating characteristics and a different physical location. As a result, the proc-
essing time of an operation at a process will depend on which machine it is assigned to.  

5. For each charge we are given a preferred recipe specifying a sequence of process steps that 
the charge must pass through. We are also given between 0 and 3 alternate recipes that can 
be used. In practice, most (90-95%) of charges will be assigned to their preferred recipes. 

 

Figure 2: A Gantt chart illustration of the operations (activities) involved in manufacturing a single 
cast in a steel plant, from the basic oxygen furnace (BOF) to the refining processes (reheating 
(RH), and ladle furnace (LF)) to the casting process. 
 

3.3 Hot metal inventory constraints 
As we mentioned earlier, there is a continuous flow of molten iron from the blast furnace. This is 
specified as a problem input in terms of the number of tons per hour of molten iron flow. We con-
sider some quantity of molten iron to be consumed in the first operation of each job at the basic 
oxygen furnace process. Between the blast furnace and the basic oxygen furnace there is finite ca-
pacity buffer, where the molten iron is stored until some operation is scheduled that consumes it. 
We have minimum and maximum inventory level constraints on the quantity of molten iron that 
can be allowed to accumulate in this buffer. 

3.4 Model of cast scheduling 
In section 3.2 we presented the basic scheduling model for the production of a single cast. In the 
full problem we are required to schedule many casts (60-100) on a number (3-9) of distinct casting 
machines over a 1-2 day horizon. The system is given as input a larger set of casts than can be 
scheduled within the horizon. The scheduler determines which casts to schedule in the short term 
subject to: 

1. Shift level capacity constraints: each charge has attributes such as product type and grade. 
Constraints state the minimum and maximum number of charges that can be produced per 
shift by each attribute. (A shift is a period of 8 hours, and there are 3 shifts per day.) 

                         
1 These arise as a result of the movement of the molten steel between processes. If the steel cools down, it is 
necessary to reheat it, which is expensive in terms of energy consumption. 
2 There is an exception for the casting process, where every charge in a cast executes on the same casting 
machine that is given as input to the scheduler. 
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2. Each charge is associated with a preferred start date. We are required to maximize the 
number of charges that are processed on their preferred dates. 

There are also sequence dependent setup times between consecutive casts processed on the same 
casting machine. Finally the cast schedule needs to take into account the hot metal inventory level 
constraints described earlier. 
 
 

 
Figure 3: Illustration of a Gantt chart specifying a cast schedule. 

The cast schedule specifies which casts are to be processed at what time on the available cast-
ing machines over the horizon of the schedule subject to constraints described in this section. 
Figure 3 illustrates a simple cast schedule for 3 casting machines. Note that on caster-3 it is possi-
ble to schedule three casts F, G and H consecutively with no setup time between them. Although 
there is no explicit objective to minimize setup time used in the schedule, in practice the maximum 
hot metal inventory constraint and constraints on the minimum number of charges to schedule per 
shift require us to use as little setup time as possible. 

4.  Solution Approach 
4.1 Basic approach overview 
The solution approach we have developed exploits the fact that we have fairly tight maximum wait 
time constraints between all consecutive pairs of operations in a single job for a charge (this may 
be as little as 20-40 minutes.) As a result, the schedule for a single cast over all processes will nec-
essarily be localized in time. Our solution approach decomposes the full problem into two sub-
problems that are solved sequentially: 

1. Downstream cast scheduling: Cast scheduling determines which casts we are going to 
schedule and when; satisfying hot metal inventory constraints, shift level capacity con-
straints, sequence-dependent setup times between casts and preferred start times of casts. 
We do not consider the scheduling of any upstream processes of casting at this stage. We 
model this problem using a time-indexed integer programming formulation with a time 
granularity of 15-30 minutes and solve it using ILOG CPLEX3. 

2. Upstream detailed scheduling: From the solution of the cast-scheduling problem we cre-
ate a constraint-programming model for scheduling the processes upstream of casting, tak-
ing into account detailed scheduling constraints and preferences (such as minimum and 
maximum delays between operations, resource exclusion constraints, state resource con-
straints, preferences on recipe and resource assignments.) This model is formulated at a 
fine level of time granularity (30 seconds.) Since the cast schedule has already been de-
termined, we do not need to take into account any of the cast scheduling constraints in this 
model4.  

                         
3 For the purposes of cast scheduling, we assume all charges will be scheduled on their preferred route. The 
upstream detailed scheduling stage may reassign routes. 
4 The detailed scheduler is developed using a C++ constraint-programming library for manufacturing sched-
uling developed at IBM Research. 
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The assumption we are making for this decomposition to work is that since the schedule for a sin-
gle cast over all processes is localized in time (due to the maximum wait time constraints in a job), 
we can create the cast schedule for all casts independently of the processes upstream of the caster, 
and then use constraint programming to find a feasible upstream process schedule.  

 
4.2 Basic cast scheduling integer programming model 
We use a time-indexed formulation to generate a cast schedule, modeling the shift level capacity 
constraints and inventory constraints as side constraints. We divide the scheduling horizon into a 
set of equal, contiguous time periods (of usually between 15 and 30 minutes). Each time period is 
labeled by an index t taking a value from 1 to T.  Let xit be a decision variable whose value is 1 if 
cast i is scheduled to start processing in time period t, and whose value is 0 otherwise. Let pi de-
note the number of time periods required to process cast i and let rij indicate the number of setup 
time periods between cast i and cast j if cast i directly follows cast j in the schedule. For each cast i 
we pick at most one starting time period: 
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xit
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For each caster C, given a set S(C) of casts assigned to the caster, we can process at most one cast 
during each time period:  
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The sequence-dependent setup time between each pair of casts i and j assigned to the same caster 
is modeled as follows: 
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We introduce indicator variables yikts associated with each cast i and time period t, having the value 
1 if the kth charge in cast i starts processing in time period s (s ≥ t)5. The hot metal inventory con-
straint (stating that the inventory level is maintained within some limits) is modeled as follows6: 
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I0 is the initial inventory level and P is the hourly production rate of inventory. R(t) denotes the set 
of casts whose processing time periods intersects the time period t. Wik is the amount of inventory 
consumed by the kth charge of cast i.  Finally, given a set of product types PT, where each product 
type α∈PT represents the set of jobs (charges) of product type α, and a set of shifts S, where each 
shift σ∈S represents the set of time periods in shift σ, we model the capacity constraints on the 
minimum (Nασ, min) and maximum (Nασ, max) number of jobs of product type α in shift σ: 
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The objective is usually to minimize the hot metal inventory level (subject to constraint 4).  
 
4.3 Constraint programming model 
Given a cast schedule, the goal of the detailed scheduler is to schedule all upstream processes tak-
ing into account detailed constraints and preferences7. A thorough description of the detailed 
                                                                          
 
5 Note if xit is 0 then yikts is 0.  This indicator variable is not strictly required (it can be directly deduced from 
each xit) but is introduced here to help clarify the discussion. 
6 The constraint presented here models hot metal inventory being consumed at the casting process, in order 
to simplify the presentation. In the full model, we take into account the fact that the inventory is consumed 
further upstream by taking into account the lead-time between casting and the upstream processes. 



scheduler is beyond the scope of this paper. However, the scheduler is required to determine the 
following for the upstream processes: select one from a number of alternate recipes for each charge 
to follow in the schedule, select one from a number of non-substitutable resources for each job at 
each process stage, sequence operations on each resource at each process subject to unary resource 
capacity and temporal constraints, and take into account preferences on recipe and resource as-
signments. The constraint programming based solver is based on the precedence constraint-posting 
framework described in [3], uses some simple texture-measurement based heuristics for recipe and 
resource assignment selection [2], as well as edge-finding, timetable and disjunctive resource con-
straint propagation [1,5]. Temporal constraint propagation is performed using a variation of the 
incremental longest-paths algorithms developed in [4]. 
 
4.4 Integration issues 
One drawback of our decomposition-based approach arises from not taking into account upstream 
processes in the formulation of the downstream cast-scheduling problem; we encountered unfore-
seen bottlenecks on some of these upstream processes during detailed scheduling. Sometimes this 
results in the solution to the cast scheduling solution being infeasible on the upstream processes. 

One solution is to extend the cast-scheduling model to perform some scheduling of the up-
stream processes. However, the time-indexed formulation of the cast-scheduling problem is at a 
relatively coarse level of time granularity (15-30 minutes), relative to the time granularity of the 
detailed scheduling constraints (at the 30 second level.) Using a finer time granularity in the cast-
scheduling model in order to accommodate such constraints significantly increases the size of the 
model and the time taken to find a solution. 

 
Figure 4: An illustration of the estimated capacity utilization on the upstream process BOF for a 
cast starting on the Caster process in time period 5. 

We developed an alternative approach to avoiding upstream bottlenecks during cast scheduling 
by adding capacity constraints on the upstream processes to the cast-scheduling integer program-
ming model. In order to formulate such capacity constraints, we need to be able to estimate for 
each cast how much capacity of the upstream processes they will utilize, and when. This is illus-
trated in Figure 4, where we represent part of the time-indexed cast-scheduling formulation involv-
ing a single cast of 3 charges, A, B and C, starting in time period 5 on the Caster and using 3 time 
periods (5-7) of Caster capacity. In this example if charge A in the cast starts in period 5 on the 
Caster, we estimated that it will use 1 time period of upstream BOF capacity in period 2. Note that 
upstream scheduling may later determine that the actual BOF capacity used by these charges is 
somewhere else in the schedule. However, since we have tight maximum wait time constraints 
between consecutive operations in a job for each charge, our working assumption is that we can 
estimate upstream capacity utilization that is accurate with respect to the final upstream schedule. 

We generate a capacity utilization profile for each of the upstream bottleneck processes used 
by each of the charges in each cast8. From the capacity utilization profiles we can formulate a 
function S(i,s,t,Pr) which specifies the set of charges in cast i that (are estimated to) utilize some 
upstream process capacity Pr in time period s, given that the cast is scheduled to start processing in 
                                                                          
7 In practice we allow the detailed scheduler some flexibility to move casts on the casters subject to the cast 
sequence determined by the high level planning. 
8 Note that the processes upstream of casting do not have sequence dependent setup times. 
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time period t (s ≤ t)9. We add capacity constraints to the cast-scheduling integer programming for-
mulation for each time period t and upstream process Pr as follows: 

 
 
 
 
(6) 
 

The term Cap(Pr,s) denotes the available capacity of the upstream process Pr in time period s. 
We investigated two ways of estimating upstream capacity utilization. The first estimate 

(which we refer to as min-lead-time) is based on calculating the minimum lead-time for each 
charge in a cast between the upstream processes and casting process. For instance in Figure 4 this 
lead-time is 3 periods for charge A and is 1 period for charge C. We then construct a capacity pro-
file based on the assumption that the lead-time is minimized between processes. An example of a 
capacity profile for real cast data using the min-lead-time estimate is illustrated in Figure 5. 

The second estimate (which we refer to as detailed-schedule) calculates a measure of expected 
capacity utilization by generating a detailed schedule for each cast over all processes upstream of 
casting, independent of all other casts in the problem. This single cast schedule is found using the 
constraint programming based solver for upstream scheduling. An example of a capacity profile 
using the min-lead-time estimate for the same cast data as was used in Figure 5 is illustrated in 
Figure 6. Note that the detailed-schedule estimate here finds a capacity estimation that uses a 
slightly greater time extent than min-lead-time, but never uses more than 1 unit of capacity. 

 
Figure 5: Min-lead-time upstream capacity estimation for a single cast. 

 
Figure 6: Detailed-schedule upstream capacity estimation for a single cast. 

5. Experimental results 
We present experimental results for 3 instances of real production data, comparing the min-lead-
time and the detailed-schedule capacity utilization estimations. Results are presented in Table 1. 
We compare the number of jobs scheduled by the cast scheduler over a 2-day horizon and the CPU 
time required by the cast scheduler to generate each plan. For these data sets, the upstream detailed 
scheduler was able to find a feasible schedule for all the casts in the cast schedule with a CPU time 
                         
9 In practice we don’t generate an estimated capacity utilization profile for every possible start time period 
for a cast. It is usually sufficient to generate a single profile for a period of time, such as a shift, where the 
capacity constraints in the schedule do not change. 
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of usually less than 1 minute. Using the detailed-schedule capacity estimation, we were always 
able to find schedules with more jobs (charges) in the horizon than were found using the min-lead-
time capacity estimation, using less CPU time. In practice, when using the min-lead-time capacity 
estimation we were usually not able to match the performance of the human experts in generating 
production schedules, with respect to number of jobs scheduled. With the detailed-schedule capac-
ity estimation, we were able to significantly improve upon the performance of the human experts. 

Table 1: Experimental results for cast scheduling. 

6. Conclusions 
The scheduling of steel production involves solving two related problems for the upstream and 
downstream processes of manufacturing. The downstream, cast-scheduling problem requires the 
selection and sequencing of groups of contiguous jobs (casts) on a number of machines subject to 
shift-level capacity constraints, inter-process inventory constraints and sequence-dependent setup 
times. The upstream processes are scheduled on unary capacity resources subject to alternate reci-
pes and resources for each job and precedence constraints with tight minimum and maximum wait 
times. We have presented a decomposition-based approach that uses mixed-integer programming 
to generate a production plan for downstream cast scheduling at a coarse level of time granularity, 
and constraint programming to schedule upstream processes subject to detailed scheduling con-
straints at a fine level of time granularity. In order to improve the performance of this approach, 
we found it necessary to take into account bottlenecks, which could appear on the upstream proc-
esses into the downstream planning model. We developed an approach for adding constraints to 
this downstream model by first generating a detailed upstream schedule for each cast in isolation 
using constraint programming, and using such schedules to estimate what the capacity utilization 
will be for each cast on the upstream processes. We have presented a small set of experimental 
results that indicate this approach shows some promise.  
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Instance Number of Jobs (Charges) Scheduled CPU Time (sec) for Cast Scheduling 

 min-lead-time detailed-schedule min-lead-time detailed-schedule 

1 122 138 (11.59%) 1406 160 

2 162 163 (0.61%) 596 215 

3 113 134 (15.67%) 158 146 


