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ABSTRACT
We consider a capacity planning optimization problem in a general
theoretical framework that extends the classical Erlang loss model
and related stochastic loss networks to support time-varying work-
loads. The time horizon consists of a sequence of coarse time inter-
vals, each of which involves a stochastic loss network under a fixed
multi-class workload that can change in a general manner from one
interval to the next. The optimization problem consists of deter-
mining the capacities for each time interval that maximize a utility
function over the entire time horizon, finite or infinite, where re-
wards gained from servicing customers are offset by penalties as-
sociated with deploying capacities in an interval and with changing
capacities among intervals. We derive a state-dependent optimal
policy within the context of a particular limiting regime of the opti-
mization problem, and we prove this solution to be asymptotically
optimal. Then, under fairly mild conditions, we prove that a simi-
lar structural property holds for the optimal solution of the original
stochastic optimization problem, and we show how the optimal ca-
pacities comprising this solution can be efficiently computed.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic processes, Markov
processes, Queueing theory; G.1.6 [Optimization]: Linear pro-
gramming, Convex programming

General Terms
Theory, Algorithms, Performance

Keywords
Stochastic loss networks, Stochastic dynamic programming, Asymp-
totic optimality, Erlang loss formula, Erlang fixed-point approxi-
mation, Capacity planning, Time-varying workloads

1. INTRODUCTION
Many resource allocation problems, which generally involve re-

sources of different capabilities that are used to provide service to
 
 

 

 
.

various classes of users for finite periods of time (often randomly
distributed due to inherent variability and uncertainty), can be mod-
eled and analyzed as network problems. The connection stems
from the observation that in a network with fixed source-destination
pairs (users) and fixed routes (combinations of resources required
for service), satisfying the traffic requirements of each user amounts
to utilizing a certain fraction of the capacity of each of the resources
(links) on the source-destination route. In particular, stochastic loss
networks have been well established as an effective framework for
modeling and analyzing the allocation of multiple resources among
multiple classes of non-backlogging workloads for almost a cen-
tury. The classical Erlang formula, which provides the probabilistic
characterization of a stochastic loss network, has been thoroughly
studied and applied in a highly diversified set of research fields.
Due to the computational complexity of the exact Erlang formula
and related measures, a fixed-point approximation has been pro-
posed and extensively studied as an efficient numerical procedure
for calculating performance metrics associated with the stochastic
loss network, which in turn has been successfully used in various
applications of stochastic loss networks.

On the other hand, there are a large number of applications in
various fields that require the solution of resource allocation prob-
lems over relatively long time horizons during which the multi-
class workload varies among relatively coarse intervals comprising
the time horizon. This is generally referred to as the class of re-
source capacity planning problems and they arise in a wide vari-
ety of application domains such as telephony and data networks,
distributed computing and data centers, inventory control and man-
ufacturing systems, and call and contact centers, just to name a
few. The traditional Erlang loss model and its fixed-point approx-
imations do not support the type of time-varying workloads en-
countered in these important application areas. Furthermore, some
fundamental issues of theoretical and practical importance are en-
countered upon extending stochastic loss networks and the domains
to which they can be applied. This includes characterizing how
performance and optimization results vary under forms of non-
stationary workload processes, understanding the degree to which
the Erlang formula and some of its variants can be and need to be
effectively extended, and characterizing the relationship between
the loss probabilities and other performance metrics.

To address these fundamental issues and to model and solve a
general class of resource capacity planning optimization problems,
we consider two key extensions of classical stochastic loss net-
works. First, we allow the multi-class workload to vary over time.
More specifically, we consider the resource capacity planning op-
timization problem in a more general theoretical framework that
consists of a sequence of relatively coarse time intervals, or epochs,
each of which is comprised of a stochastic loss network under a



fixed multi-class workload, and where this multi-class workload
can change in a general manner from one epoch to another. This
is achieved by introducing a corresponding sequence of Markov-
modulated processes that govern the state of the multi-class, multi-
epoch workload process and the changes in this state of the work-
load process at the end of each epoch. All epochs, possibly of
different lengths, are relatively coarse and sufficiently long for the
stochastic process modeling the loss network and its performance
metrics to reach stationarity within each epoch. The multiple time
scales involved in the applications of interest provide both theo-
retical and practical support for our stationary stochastic approach.
Hence, our general framework makes it possible for the stationary
performance results of stochastic loss networks, including the Er-
lang formula and its fixed-point approximations, to continue to be
applied in order to characterize the behavior of the stochastic loss
network within each epoch comprising the time horizon.

Second, in addition to the performance analysis aspects of our
general framework as extensions of previous work in the literature,
we seek to determine the optimal capacity levels for each epoch
with respect to an objective function defined over the entire time
horizon. More specifically, the resource capacity planning opti-
mization problem consists of determining the resource capacities
throughout each epoch that maximize the expectation of a utility
function over the time horizon of interest, which may be finite or
infinite. A global utility function is based, without loss of gener-
ality, on expected utility in which rewards are gained for servicing
customers who are accepted into the system at the time of their ar-
rival and penalties are incurred as the result of deploying resource
capacity levels throughout an epoch and as the result of increasing
or decreasing capacity levels from one epoch to the next. We there-
fore formulate and solve a stochastic dynamic programming prob-
lem to determine the optimal capacities throughout each epoch that
maximize the average utility over time.

Our optimization results are based on two different forms of
analysis, one based on asymptotic properties and the other based
on general structural properties. By exploiting and extending the
limiting regime theory developed by various researchers, most no-
tably Kelly [15, 16] and Whitt [23] (also refer to [17]), we derive
a state-dependent threshold-based capacity planning policy within
the context of the limiting regime through linear programming and
we prove that this policy is asymptotically optimal. Then, under
quite mild conditions on the general form of the utility function
which often hold in the application domains motivating our study,
we prove that the optimal solution of the corresponding stochas-
tic dynamic program has similar threshold-type structural proper-
ties for the capacity levels, and we derive a procedure based on
these results for efficiently calculating the optimal capacity levels.
Our results are established for both the finite-horizon and infinite-
horizon instances of the stochastic dynamic program.

While the problems we consider are important from the theoreti-
cal perspectives of investigating stochastic loss networks in general,
and Erlang fixed-point approximations in particular, and of investi-
gating the corresponding optimal resource allocation and stochas-
tic control problems, our analysis and results can support a wide
range of practical resource allocation problems in various applica-
tion domains involving time-varying workloads. In such cases, we
can model the network problems in terms of a sequence of time in-
tervals at relatively coarse time scales during which the workload
process is stationary and across which the workload process can
change in a general manner governed by a sequence of Markov-
modulated processes. For example, consider the case of a wireless
network operator that is required to satisfy calls of various types
(viz. data, voice, and video) over a common set of links with finite

bandwidth constraints. As the mean traffic intensities of calls in
data, voice and video vary with time in each day and from week-
days to weekends, the natural concern of the operator would be to
appropriately allocate these bandwidth resources over the various
call-classes so as to maximize net income. The related problem
of resource reservation and allocation for data networks has been
studied in a different context for TCP call book-ahead by Green-
berg, Srikant and Whitt [13] and Wischik and Greenberg [25].

Another emerging application area motivating our study is work-
force management where, e.g., an information technology (IT) ser-
vices company offers a collection of IT service products (routes)
each of which requires a set of resources with certain capabilities
(links). The customer demand for such IT service products can vary
over relatively coarse intervals of time and the IT services company
seeks to maximize its profits over a long-term horizon comprised
of multiple instances of these time intervals. Assuming the product
offerings remain fixed over the time horizon of interest (which can
be relaxed as part of future work), the IT services company can ad-
just its per-class resource capacities in response to the time-varying
multi-product workloads in order to maximize its profits over the
long run. A related problem in multi-item inventory systems has
also received attention in the research literature [26, 19].

Related Work. Historically, the Erlang formula [11] has been
used to study the drop rate of calls in busy telephone networks with
constrained link capacities. Given a telephone network and a pre-
diction of expected demand, the formula estimates the steady-state
probability that a call will be dropped by the network. While the
initial results of Erlang were for the particular case of Poisson ar-
rivals and exponential durations, the results of Sevastyanov [22]
demonstrate that the Erlang formula holds even in the presence
of non-exponential finite-mean distributions for the call durations.
The results are known to hold even in the presence of dependencies
among duration times for a particular route (cf. Burman et al. [9]).
The recent results of Bonald [8] further suggest that relaxations can
be made to the call arrival process, merely requiring that users gen-
erate sessions according to a Poisson process and, within each ses-
sion, blocked users may retry with a fixed probability after an idle
period of random length. Under these mild conditions, the Erlang
formula is known to be insensitive to all traffic characteristics be-
yond the traffic intensity such as the number of calls per session, the
call duration times or the idle time distribution. These results sug-
gest that the Erlang formula is an effective and sufficiently accurate
way to model the loss behavior of networks with finite resources.

On the other hand, the exact calculation of the loss probability,
for example, the Erlang formula, is of limited use in large networks
since its computation is known to be �P -complete in the size of
the network [18] and thus computationally intractable for many of
the applications motivating our study. An Erlang fixed-point ap-
proximation of the loss probabilities has been developed to address
this computational complexity through a product-form expression
of the blocking probabilities on the individual links comprising a
route [23, 15, 16]. In other words, it is as if the call loss is caused
by independent blocking events in each of the links on the route.
Kelly [15, 16] considers the set of implicit functions mapping the
blocking probability of each link to the blocking probabilities of
other links via the Erlang function. The Erlang fixed-point approx-
imation provides a tractable way of estimating the loss probabili-
ties in large networks. Furthermore, a few researchers, including
Kelly [15, 16] and Whitt [23] (also refer to [17]), have proven that
in the limiting regime as the traffic intensities and link capacities
grow together in a proportional manner, the Erlang fixed-point ap-
proximation is asymptotically exact.

Summary of Contributions. We extend traditional stochastic



loss networks, including the Erlang model and its fixed-point ap-
proximations, to support multi-class workloads that vary over rel-
atively coarse intervals of time. A general systematic framework
is developed for capacity planning optimization problems that in-
cludes: Asymptotic properties of optimal resource allocation solu-
tions and proving the asymptotic optimality of these stochastic net-
work control solutions in the limiting regime; Structural properties
of optimal stochastic dynamic programming solutions and proving
the general optimality of these stochastic network control solutions
under mild conditions on the objective function; General optimal-
ity results that go beyond stochastic loss networks and even beyond
resource capacity planning problems. A collection of numerical re-
sults have been obtained that confirm and quantify our theoretical
results.

Paper Organization. Section 2 presents our general theoreti-
cal framework and some preliminary technical results. The main
results of the paper are then provided in Sections 3 and 4, which
consider our asymptotic and general resource allocation problems,
respectively. Section 5 presents a representative sample of our nu-
merical results, and Section 6 provides concluding remarks.

2. TECHNICAL PRELIMINARIES
In this section we present notational conventions used through-

out the paper, the stochastic loss models and stochastic optimiza-
tion problems considered in our study, and some preliminary tech-
nical results. Let Z

+ and Z+ denote the set of positive and non-
negative integers, respectively, with R

+ and R+ denoting the cor-
responding sets of reals. Bold letters shall be used for matrices and
vectors. Column vectors are assumed unless noted otherwise. The
transpose of a matrix or vector M shall be denoted by MT .

We consider a stochastic loss network consisting of a set of links,
indexed by j = 1, . . . , J , and a set of routes R that are defined as
a collection of links and are indexed by r = 1, . . . , |R|. A call for
route r requires capacity Ajr from link j, Ajr ∈ Z+, where each
link j has capacity Cj . We assume that calls for route r arrive from
an independent Poisson process with rate λr. Such a call arrival is
blocked and lost if the available capacity on any link j is less than
Ajr , ∀j = 1, . . . , J , and otherwise the call reserves the available
capacity Ajr on each link j for a duration following a general dis-
tribution with mean μ−1

r , ∀j = 1, . . . , J . The traffic intensity for
route r is denoted by νr = λr/μr . Call arrival and duration times
are assumed to be mutually independent. It is important to note that
many of our results can be extended to handle relaxations of some
of the above assumptions of the Erlang loss model, e.g., see [8],
and in particular the results of Section 4 hold for general stochastic
networks (not even limited to loss networks) under the assumptions
specified therein.

Define

A � [Ajr]j=1,...,J;r=1,...,|R|,

C � (C1, C2, . . . , CJ),

ν � (ν1, . . . , ν|R|).

Let Mr denote the number of active calls using route r and define
M�(M1, . . . ,M|R|). Then it is well known that M has a unique
stationary distribution π and it is given by

π(m) = G(C)

|R|Y
r=1

νmr
r

mr!
, m ∈ S(C), (1)

where

S(C) = {n ∈ Z
|R|
+ : Am ≤ C} (2)

and G(C) is the normalization factor

G(C) =

0
@ X

m∈S(C)

|R|Y
r=1

νmr
r

mr!

1
A

−1

. (3)

Further, the stationary probability that a call for route r is lost can
be expressed as

Lr = 1 − G(C)−1G(C − Aer), (4)

where er ∈ S(C) is the unit vector corresponding to a single active
call using route r. Refer to, e.g., [17] and the references therein.

One can obviously see from (1) – (3) that the computational com-
plexity of calculating the exact value of G(C), and in turn the ex-
act stationary distribution, even for moderate values of J and |R|,
grows very quickly and this causes such calculations to be compu-
tationally intractable. In fact, calculating π(m) is known to be �P
complete [18]. This computational complexity has been a primary
motivation for the well-known Erlang fixed-point approximation in
which the stationary loss probabilities Lr for routes r are given by

Lr = 1 −
JY

j=1

(1 −Bj)
Ajr , (5)

where the blocking probabilities Bj for links j satisfy the system
of nonlinear equations

Bj = E

0
@(1 −Bj)

−1

|R|X
r=1

Ajrνr

JY
i=1

(1 −Bi)
Air , Cj

1
A , (6)

with

E(ν,C) =
νC

C!

 
CX

n=0

νn

n!

!−1

(7)

being the Erlang formula for the loss probability of an isolated link
of capacity C under traffic from a Poisson stream of intensity ν.
The corresponding effective traffic intensity for route r is given by

γr = (1 − Lr)νr.

Define

L � (L1, . . . , L|R|),

B � (B1, . . . , BJ ),

γ � (γ1, . . . , γ|R|).

It is well-known that there exists a solution B ∈ [0, 1]J of the
Erlang fixed-point equations (6) and that this solution converges to
the exact solution (1) – (3) of the Erlang loss model in the limit as
the traffic intensity vector ν and capacity vector C are increased to-
gether in fixed proportion; see [23, 15]. The asymptotic exactness
of the Erlang fixed-point approximation follows from an instance
of the central limit theorem for conditional Poisson random vari-
ables in which ν and C grow together. Namely, the |R| Poisson
random variables being truncated by a polytope involving the ca-
pacities C are approximated by |R| independent normal random
variables truncated by the polytope.

Motivated by the applications and discussion in the introduc-
tion, we now extend the foregoing stochastic loss network frame-
work (including its notation based on a single stationary interval)
to support time-varying multi-class workloads. Our general the-
oretical framework is based on a sequence of time intervals, or
epochs, where: (i) each epoch consists of a stochastic loss net-
work with fixed workload and capacity vectors, including those



presented above; (ii) the workload can change from one epoch to
the next; and (iii) the capacity vectors are the control variables of
interest that can be adjusted in response to such workload changes.
We consider a time horizon consisting of N ≥ 1 epochs, indexed
by n = 0, . . . , N − 1, with N finite or infinite. The dynamics of
the time-varying workload is governed by a sequence of Markov-
modulated processes with transition probability matrices Pn of or-
der U < ∞ and an initial probability vector α. (For convenience,
we shall refer to the Markov-modulated process Pn.) More specif-
ically, the system starts epoch n = 0 in state i with probability
α(i), remains in state i for a length of time T0, and then at the end
of epoch n = 0 the system transitions to state i′ with probabil-
ity P0,ii′ , for all i, i′ = 1, . . . , U . These dynamics continue for
epoch n = 1, . . . , N − 1 starting in any state i where the system
remains in state i for a length of time Tn and at the end of epoch
n the system transitions to state i′ with probability Pn,ii′ , for all
i, i′ = 1, . . . , U .

The length Tn of each epoch n is assumed to be sufficiently
large in comparison with the mean interarrival and duration times
of calls. Under this assumption, it is known that the time for the
system to reach stationarity is also small in comparison with Tn,
and hence stationary statistics can be used to closely approximate
the system behavior at any time within the interval. See, e.g., [12]
and [24] for a detailed analysis of the accuracy of these assump-
tions in similar stochastic systems. Furthermore, from a different
perspective, the modulating Markov process and the call arrival
and duration times can be treated as processes of different time
scales, for which the multi-scale limit theorems in [2] and [27]
have demonstrated the efficiency and accuracy of stationary ap-
proaches such as ours across a wide range of stochastic systems.
From a practical perspective, the various applications motivating
our study involve changes in multi-class workloads at time scales
much coarser than the interarrival and duration times of customer
requests, where resource capacity adjustments in response to work-
load changes can be made at relatively finer time scales. Mean-
while, resource capacity allocations tend to be stable if the work-
load does not change.

Throughout each epoch n in any state i = 1, . . . , U the stochas-
tic loss network has (nonnegative) input parameters

A(i) � [Ajr(i)]j=1,...,J;r=1,...,|R|,

Cn(i) � (Cn,1(i), . . . , Cn,J (i)),

νn(i) � (νn,1(i), . . . , νn,|R|(i))

under which the stochastic network yields the (nonnegative) results

Ln(i) � (Ln,1(i), . . . , Ln,|R|(i)),

γn(i) � (γn,1(i), . . . , γn,|R|(i)),

Bn(i) � (Bn,1(i), . . . , Bn,J (i)).

We note that the sequence of stochastic transition probability matri-
ces Pn, whenN <∞, can be stationary or nonstationary, periodic
or aperiodic, recurrent or transient, and so on; our sole assumption
in this case is that each Pn is stochastic. On the other hand, when
N is infinite, we assume that Pn = P for all n, that P is ergodic,
and that νn(i) = ν(i) for all n and all i = 1, . . . , U .

Our general theoretical framework is also based on a sequence of
stochastic optimization problems to determine the capacity vectors
that should be deployed within each epoch n and across epochs in
order to maximize a utility function over the entire time horizon,
where rewards (revenues) are gained for accepted calls, penalties
(costs) are incurred for the capacity vector deployed, and penalties
(costs) are incurred for changes in the capacity vector. We formu-

late this net-utility maximization problem as a stochastic dynamic
program over the horizon of N epochs in terms of the following
revenue and cost functions. Let Rn(i,Cn) denote the expected
revenue rate for epoch n in state i given a capacity requirement
matrix A(i), a traffic intensity vector νn(i) and a capacity vector
Cn. Further let K denote the J-vector of cost rates for link capac-
ities, I the J-vector of cost rates for increasing link capacities, and
D the J-vector of cost rates for decreasing link capacities.

In our main formulation of interest, we assume that the revenue
is linear with respect to the number of calls accepted, that the ex-
pected revenues for epoch n in each state i are given by

Rn(i,Cn)Tn = w · γTn, (8)

and that the expected profits for epoch n in state i are expressed as

Pn(i) = Rn(i,Cn)Tn − (K · CnTn + I · x+
n + D · x−

n ), (9)

where

Cn+1 = Cn + xn, (10)

w is the |R|-vector of base revenue rates, x+ = (x+
1 , . . . , x

+
J )

with x+ = max{x, 0}, and x− = (x−
1 , . . . , x

−
J ) with x− =

max{−x, 0}. For each epoch, the expected revenues as a func-
tion of the capacities deployed throughout the epoch depend upon
the structural properties of γ , whereas the expected costs consist of
a linear function of the capacities deployed throughout the epoch, a
linear function of any increases in capacities, and a linear function
of any decreases in capacities. In Section 4, a few of these details
of our formulation are relaxed and generalized in order to study an
even broader class of capacity planning optimization problems.

Our objective is to maximize the expected profit over the entire
time horizon with respect to the capacity vector decision variables
that can be adjusted in response to workload changes. The cor-
responding capacity planning optimization problem based on the
expected total discounted profit over the entire time horizon, with
discount factor β, is in general given by the formulation

max
(x0,...,xN−1)

E

"
N−1X
n=0

e−βnPn(in)

#
(11)

s.t. x � (x0, . . . ,xN−1) ≥ 0, (12)

where the expectation is over (Ω,F , P). This stochastic dynamic
program is quite general [21, 6] and it can be used to solve the
capacity planning optimization problems from a broad spectrum of
different applications that fit our general theoretical framework.

The capacity planning policies of interest specify the capacity
vectors that should be deployed throughout the entire time horizon
including the changes in these capacity vectors over time. Our main
results in Sections 3 and 4 will establish that the optimal capacity
planning policy solving the stochastic dynamic program (11),(12)
has an important structural property, often refered to as a threshold-
based policy and in the present context is defined as follows.

DEFINITION 2.1. A threshold-based capacity planning policy,
denoted by C, specifies the N × J · U capacity matrix C in terms
of the J · U capacity vector C0 that is employed throughout epoch
0, the actions to increase and decrease capacities from C0 to C1,
the J · U capacity vector C1 that is employed throughout epoch 1,
the actions to increase and decrease capacities from C1 to C2, and
so on for all epochs n = 0, . . . , N −1 and all states i = 1, . . . , U .
The capacity vector levels are called the policy thresholds.

Correspondingly, we denote the expectation under any capacity
planning policy C by the operator EC [·].



The class of optimal threshold-based policies considered in this
paper are related to the classical optimal base-stock policies from
inventory management systems, which consist of ordering up to the
optimal base-stock level whenever the inventory drops below this
level [28]. Our optimal threshold-based policies, however, have a
number of important differences with the traditional optimal base-
stock policies. This includes the additional flexibility of reducing
the capacity vector levels down to the optimal policy thresholds
whenever the capacity vector exceeds these thresholds.

3. ASYMPTOTIC OPTIMALITY
In this section we consider the stochastic optimization problem

of Section 2 in a particular limiting regime of our original formula-
tion. This limiting regime, proposed by Kelly [15, 16, 17], charac-
terizes the asymptotic dynamics of the stochastic loss network, as
well as the special structural properties of the Erlang functions, all
within a very efficient framework. This limiting regime has been
the standard model for the asymptotic behavior of stochastic loss
networks, and the basic ideas have been adapted in the study of gen-
eral models for stochastic loss networks; see, e.g., [8]. We derive
an optimal solution of the stochastic dynamic program in this lim-
iting regime, for both finite and infinite horizons, we establish that
the corresponding optimal policies have threshold-based structural
properties, and then we prove that this solution is asymptotically
optimal with respect to the original formulation of Section 2.

3.1 Stochastic Dynamic Program
Consider the stochastic optimization problem (11),(12) in the

limiting regime as the traffic intensity vector νn and capacity vec-
tor Cn for every epoch n are increased together in fixed proportion.
Kelly [15, 17] has shown that the blocking probabilities of the sta-
tionary single-epoch Erlang loss model in this limiting regime are
functions of the solutions of the so-called convex dual problem for-
mulation

min
y

|R|X
r=1

νr exp(−yT A · er) + y · C

s.t. y ≥ 0,

where Bj = 1 − exp(−y∗j ) and y∗ is the optimum of the convex
problem. In fact, this is the dual to the following (primal) convex
program

max
x

|R|X
r=1

xr log νr − xr log xr + xr

s.t. x ≥ 0, Ax ≤ C,

which is formulated to identify the most probable state in the Erlang
loss model. There is a unique optimum x∗ of the primal problem
that can be expressed in the form

x∗
r = νr

JY
j=1

(1 −Bj)
Ajr

where (B1, B2, . . . , BJ ) ∈ [0, 1]J is any solution to

|R|X
r=1

Ajrνr

JY
i=1

(1 −Bi)
Air

j
= Cj if Bj > 0,
≤ Cj if Bj = 0,

(13)

or, equivalently in terms of Lr ,

|R|X
r=1

Ajrνr(1 − Lr)

j
= Cj if Bj > 0,
≤ Cj if Bj = 0.

(14)

The conditions in (14) have the useful interpretation that the capac-
ity Cj of any link j for which Bj > 0 must be completely utilized
with respect to the superposition of the traffic intensities νr thinned
by their stationary loss probabilities Lr over all routes r ∈ R.

Note that equation (14) provides the feasible polytope for νr(1−
Lr) in the limiting regime, and thus, in this form, the dual problem
can be treated as a linear program. Then from linear programming
theory (e.g., refer to [10, 7]), we know that νr(1 − Lr) is linear in
C which together with (8) establishes the following result.

LEMMA 3.1. For any epoch n = 0, 1, . . . , N −1 and state i =
1, 2, . . . U in the limiting regime, the revenue function Rn(i;C) is
linear in C.

Now, for each epoch n, we can write the revenue function as
Rn(i,C) = Qn(i)T · Cn for some appropriate Qn(i) ∈ R

J ,
which together with (9) provides the expected profit for epoch n in
state i. The associated Bellman optimality equations (see, e.g., [21,
6]) are then given by

Jn(i,Cn) = max
xn

Pn(i,Cn,xn) (15)

Pn(i,Cn,xn) = e−β
UX

j=1

Pn,ijJn+1(j,Cn + xn)

+ Hn(i,Cn,xn) (16)

for all n = 0, . . . , N − 1, where

Hn(i,C,x) � Rn(i,C)Tn − K · CTn − I · x+(i) − D · x−(i)

and Jn(i,Cn) is the value function for maximizing expected profit
over the time horizon from epoch n to epoch N−1 starting in state
i with capacity Cn assuming JN (i,CN ) = 0. It is easy to see that
Hn(i,C,x) is a concave function in C for each n = 0, . . . , N−1.
Following a standard recursive argument (refer to, e.g., [21, 6]), it
can be shown that Jn(i,Cn) is also concave in Cn and that the
optimal capacity planning policy is a threshold-based policy.

Let us next turn to determine the optimal capacity vector thresh-
olds, first considering the case where N is finite. The above prob-
lem then can be solved using standard dynamic programming al-
gorithms. More importantly, however, based upon the observation
that the capacity decisions do not affect the traffic intensity, we can
further simplify the problem. Letting un(i) and dn(i) denote the
positive and negative part of xn(i), then the solution to the follow-
ing linear program will provide the optimal solution to (11),(12).

max

N−1X
n=0

UX
i=1

e−βn

 
n−1Y
�=0

P�

!
Hn(i,C(i),u(i) − d(i))

s.t.
|R|X
r=1

Ajr(i)νn,r(i)(1 − Ln,r(i)) ≤ Cn,j(i)

u(i) ≥ 0,d(i) ≥ 0.

To see this is true, we only need to verify that whenBn,j(i) > 0 for
some n, j, i, the constraint inequalities are tight. Suppose otherwise
the existence of a triplet (n, j, i) such that Bn,j(i) > 0 while

Ajr(i)νn,r(i)(1 − Ln,r(i)) < Cn,j(i).

Define a new capacity vector C̃ that coincides with C at each com-
ponent except (n, j, i), where

C̃n,j(i) = Ajr(i)νn,r(i)(1 − Ln,r(i)).

Then we can see that C̃ is a feasible solution, but it yields a higher
objective value, and thus renders a contradiction.



Now, consider the case of infinite N for which Pn = P (see
Section 2) and assuming that Tn = T for all n = 1, 2, . . ., where T
represents the duration for each epoch. The value function Jn(i,Cn)
is then easily shown to be independent of n such that for any state
i and any capacity vector C it is given by

J(i,C) = max
xk

∞X
k=0

e−βk
UX

j=1

Pk
ijH(j,C +

k−1X
�=0

x�,xk) (17)

where

H(i,C,x) � R(i,C)T − K · CT − I · x+(i) − D · x−(i).

From standard dynamic programming arguments (see, e.g., [21,
6]), we know that J(i,C) satisfies the Bellman equation

J(i,C) = max
x

(
H(i,C,x) + e−β

UX
j=1

PijJ(i,C + x)

)
. (18)

Although this is a typical stochastic dynamic program, the mul-
tidimensional aspects of the problem cause it to be very difficult
to solve. When we consider C taking on only integer values, the
problem is equivalent to solving the following linear program

min
UX

i=1

X
C

γ(i)
JY

j=1

η
Cj

j J(i,C)

s.t. J(i,C) ≥ max
x

(
H(i,C,x) + e−β

UX
j=1

PijJ(j,C + x)

)
(19)

for some β, η1, · · · , ηJ ∈ (0, 1). Known techniques for infinite-
dimensional linear programs [1] can be employed to solve or ap-
proximate this problem. Another alternative is to truncate the linear
program and use ordinary methods to solve the truncated version.
Most importantly, however, the special structure of the objective
function enables us to show that the ergodic version of the above
optimization problem has finite solutions and the optimal solution
can be obtained as the limit of the discounted problem.

THEOREM 3.1. There exists a constant ψ and a function JE(i,C)
that satisfies the following relationship

ψ + JE(i,C) = max
x

(
H(i,C,x) +

UX
j=1

PijJE(i,C + x)

)
. (20)

PROOF. Let Jβ(i,C) denote the solution of (18), emphasizing
the discount factor β. Now fix some state, say (1,0), and define

Gβ(i,C) � Jβ(i,C) − Jβ(1, 0), ∀i = 1, 2, · · · , U.
From our assumptions on P, we know that Gβ(i,C) satisfies

(1 − e−β)Jβ(1, 0) +Gβ(i,C)

= max
x

(
H(i,C,x) + e−β

UX
j=1

PijJβ(j,C + x)

)
. (21)

It then follows from (17) that Jβ(i,C) increases with decreasing
β. To see this, suppose x∗ is the optimal vector for β = β1, and
thus we have for β2 < β1

∞X
n=0

e−β2n
UX

j=1

Pn
ijH(j,C +

n−1X
�=0

x∗
� ,x

∗
n)

≥
∞X

n=0

e−β1n
UX

j=1

Pn
ijH(j,C +

n−1X
�=0

x∗
� ,x

∗
n),

which implies Jβ2(i,C) ≥ Jβ1(i,C). This monotonicity property
guarantees the convergence of Jβ(i,C) as β → 0. Then equation
(21) renders (20) as long as (1 − e−β)Jβ(1, 0) does not go to in-
finity as β → 0. Meanwhile, letting R∗ denote the total possible
revenue collected in each epoch, we obviously have for any i,C

∞X
n=0

e−βn
UX

j=1

Pn
ijH(j,C +

n−1X
�=0

x�,xn)

≤
∞X

n=0

e−βnR∗ = R∗(1 − e−β)−1.

Hence, (1 − e−β)Jβ(1,0) can be bounded from above by R∗ as
β → 0, and the theorem statement follows.

3.2 Optimality of Solution
We next establish that the capacity planning policy C

∗ obtained
from the results in the previous section is asymptotically optimal
with respect to the original, general stochastic loss network for-
mulation of Section 2 (as opposed to the limiting regime of this
formulation). To do so, consider a sequence of stochastic loss
networks, indexed by k = 1, 2, . . ., in which the traffic inten-
sity vector is scaled by k, namely the traffic intensity for route
r ∈ R in the kth loss network is kνr. For any feasible capacity
planning policy Y(k) that employs the capacity vector Yn,(k) =
(Yn,(k)(1), . . . ,Yn,(k)(U)) throughout epoch n in the kth stochas-

tic loss network, define xn,(k)�Yn+1,(k) − Yn,(k) and let J
Y(k)
(k)

be the corresponding discounted total profit given by

J
Y(k)
(k) = EY(k)

"
N−1X
n=0

UX
i=1

e−βn

 
n−1Y
�=0

P�

!
H

Y(k)
n,(k)(i,Yn,(k),xn,(k))

#
,

where EY(k) denotes expectation taken under the policy Y(k).

DEFINITION 3.1. A capacity planning policy C
∗
(k) is called asymp-

totically optimal if for any feasible policy Y(k), we have

lim sup
J

Y(k)
(k)

J
C∗
(k)

(k)

≤ 1, as k → ∞. (22)

This definition indicates that the profit J
C
∗
(k)

(k) is the best profit one
can achieve asymptotically (i.e., as the system grows large) and
that this asymptotically maximal profit is achieved by the sequence
of capacity planning policies {C

∗
(k)}. Note that this definition of

asymptotic optimality is consistent with what has been established
in the research literature, e.g., refer to [20, 4, 2].

Now we present our main result on asymptotic optimality.

THEOREM 3.2. The capacity planning policy C
∗ is asymptoti-

cally optimal.

PROOF. For any sequence of policies Y(k�), let J
Y(k�)

(k�)
be a sub-

sequence of J
Y(k)
(k)

where the corresponding capacity vector Yn,(k�)

is such that, as k� → ∞, Yn,(k�)(i)/k� converges component-
wise. The proof proceeds based on the two different cases of con-
vergence.

Let us first consider the case where Yn,(k�)(i)/k� converges
componentwise to a finite real number for any epoch n and i =
1, 2, · · · , U , namely there exists a Yn(i) such that

lim
�→∞

Yn,(k�)(i)/k� = Yn(i).



It is well-known (cf. [23, 15]) that there exists a vector BY =
(BY

1 , . . . ,B
Y

J) ∈ [0, 1]J satisfying the conditions (13),(14), where

the blocking probability B
Y(k�)

n,j,(k�)
(i) for link j of each loss network

k� converges to BY

n,j(i) for all j = 1, . . . , J . From the continuity
of the objective function, we have

lim
�→∞

J
Y(k�)

(k�)

k�
= EY

"
N−1X
n=0

UX
i=1

e−βn

 
n−1Y
�=0

P�

!
HY

n(i,Yn,xn)

#
,

where HY
n is evaluated with respect to Yn and xn, and, by the

definition of C
∗, we conclude

lim
�→∞

J
Y(k�)

(k�)

J
C∗
(k�)

(k�)

= lim
�→∞

J
Y(k�)

(k�)
/k�

J
C∗
(k�)

(k�)
/k�

≤ 1,

which establishes the desired result for this case.
Lastly, let us consider the case where there exists at least one n0

such that

lim
�→∞

Yn0,(k�)(i)/k� = ∞.

This implies B
Y(k�)
n0 (i) = 0, and thus from (8) the revenue func-

tion is linear subject to the traffic intensity vector. It follows that

H
Y(k�)

n0,(k�)
(i,Yn0,(k�),xn0,(k�))/k� → −∞ since the numerator is

bounded from above by k�w · νn0(i)Tn0 − K · Yn0,(k�)(i)Tn0 ,
and therefore we have

J
Y(k�)

(k�)

J
C∗
(k�)

(k�)

=
J

Y(k�)

(k�)
/k�

J
C∗
(k�)

(k�)
/k�

→ −∞, as 
→ ∞,

which satisfies (22) and completes the proof.

The above formulation and Theorem 3.2 apply to the finite-horizon
version of our stochastic dynamic programming problem in the
limiting regime. The corresponding infinite-horizon result follows
from the arguments used to establish Theorems 3.1 and 3.2 under
the appropriate limits. In the interest of space, we omit these de-
tails.

4. GENERAL OPTIMALITY
The previous section provides a solution to the stochastic capac-

ity planning problem (11),(12) in the limiting regime of our orig-
inal formulation over a time horizon of N epochs, for both finite
and infinite N , and establishes that this solution is asymptotically
optimal with respect to the original formulation. In this section,
we return to the general stochastic capacity planning optimization
problem (11),(12). However, since alternative objective functions
of general stochastic loss networks may be of interest both in theory
and in practice, we broaden our scope even further to consider a re-
lated stochastic optimization problem in a very general setting (not
even restricted to stochastic loss networks), for which the original
formulation is a special case. We prove that optimal solutions of
finite-horizon and infinite-horizon versions of this problem have a
threshold structure, similar to that determined in the previous sec-
tion. Then we discuss some of the implications of these results,
including how our results can be used to efficiently compute the ca-
pacity (threshold) values of the optimal policy. Finally, we briefly
discuss two specific applications that exploit our general stochastic
optimization results, the first based on the Erlang fixed-point ap-
proximation within the context of a network setting and the second
based on a related application in manufacturing systems.

4.1 Stochastic Dynamic Program
For any state i of the Markov-modulated process Pn starting at

any epoch n and any nonnegative capacity vectors C and x, define

HN
n (i,C,x)�Rn(i,C)Tn −K ·CTn − I · x+ −D · x−, (23)

where N is the total number of epochs. (We include N in our nota-
tion because we will consider the limit asN → ∞ in Theorem 4.2.)
Let JN

n (i,Cn) be the value function for maximizing the expected
discounted profit of the stochastic optimization problem of interest
over the time horizon from epoch n to epoch N−1 starting in state
i and epoch n with capacities Cn and traffic intensities νn. Then
we can formulate our general stochastic optimization problem in
terms of the Bellman optimality equations

JN
n (i,Cn) = max

xn

PN
n (i,Cn,xn), (24)

PN
n (i,Cn,xn) = e−β

UX
j=1

Pn,ijJ
N
n+1(j,Cn + xn)

+ e−βHN
n (i,Cn,xn), (25)

where we assume JN
N (i,CN ) = 0.

The general setting for the stochastic optimization problems of
interest in this section are based on the following assumptions.

ASSUMPTION 4.1. For each fixed i = 1, . . . , U and every epoch
n, assume Rn(i,C) is concave in C and that

lim
C→∞

Rn(i,C)

K · C = 0,

where convergence is componentwise.

ASSUMPTION 4.2. Assume the values ofRn(i,C), K, I and D
are such that the smallest capacity vector Y = C + x maximizing
e−βHN

n (i,C,x) is finite and nonnegative, and thus e−βHN
n (i,C,x)

is nonnegative for every i = 1, . . . , U in any epoch n.

Assumption 4.1 is a reflection of the typical reality in practice
that the marginal effect of increasing capacity on revenue does not
increase and eventually diminishes. The assumptions in 4.1 are also
related to common assumptions in much of the relevant economic
theory on utility functions. Assumption 4.2 is a reflection of the
typical reality in practice that the revenue functions and cost func-
tions must allow for a profitable solution, because otherwise the
optimal solution is to completely avoid the capacity planning op-
portunity in order to prevent financial ruin. The assumptions in 4.2
further exclude the case where the revenue functions take on the
special form of linear combinations of I ·x+ and D ·x−, in which
case the problem can be easily reduced to the form considered in
Section 3.

We now can present our first main result of this section for the
finite-horizon version of the optimization problem, where all vector
limits are with respect to componentwise convergence.

THEOREM 4.1. Suppose Assumptions 4.1 and 4.2 hold. Then,
for each fixed i and all n = 0, . . . , N − 1 < ∞, there exists a
finite capacity vector that realizes the global optimal solution of
problem (24),(25) starting at epoch n and this optimal solution
is the capacity planning policy X

∗
n,N that employs the capacity

vector X∗
n,N = (X∗

n,N(1), . . . ,X∗
n,N (U)) where X∗

n,N (i) is the
smallest capacity vector Y = C + x that maximizes PN

n (i,C,x),
i = 1, . . . , U .



PROOF. Obviously, Assumption 4.1 implies that e−βHN
n (i,C,x)

is concave in Y = C + x and that

lim
Y=C+x→∞

e−βHN
n (i,C,x) = −∞

for each fixed i and any n = 0, . . . , N − 1.
The proof proceeds by induction where we first consider the ba-

sis step n = N − 1. From (25) and the corresponding properties
of e−βHN

n (i,C,x) together with JN
n+1(i,C) = 0, it follows that

PN
n (i,C,x) is concave in Y = C + x and that

lim
Y=C+x→∞

PN
n (i,C,x) = −∞.

These properties and (24) imply that JN
n (i,C) is concave in C and

that

JN
n (i,C) ≥ JN

n+1(i,C) ≥ 0. (26)

Since PN
n (i,C,x) is a positive linear combination of the quanti-

ties e−βHN
n (i,C,x) and the JN

n+1(i,C), it follows from (26) and
Assumption 4.2 that

PN
n−1(i,C,x) ≥ PN

n (i,C,x) ≥ 0.

Hence, there exists a finite capacity vector that realizes the global
maximum of PN

n (i,C,x), and the optimal policy for the problem
starting at epoch n = N−1 is X

∗
n,N where X∗

n,N(i) is the smallest
capacity vector Y = C + x that maximizes PN

n (i,C,x) since
JN

n+1(i,C) = 0.
Next, as part of the induction step, suppose the above statements

are true for n + 1 and consider the problem starting at epoch n.
Then the four induction step properties

(i) JN
n+1(i,C) is concave in C,

(ii) PN
n (i,C,x) ≥ PN

n+1(i,C,x) ≥ 0, (27)

(iii) PN
n+1(i,C,x) is concave in Y = C + x,

(iv) lim
Y=C+x→∞

PN
n+1(i,C,x) = −∞

together with (25) imply that PN
n (i,C,x) is concave in Y = C+x

and that

lim
Y=C+x→∞

PN
n (i,C,x) = −∞.

It follows from these properties and (24) that JN
n (i,C) is concave

in C. Now observe that

JN
n (i,C)− JN

n+1(i,C) ≥ max
x

{PN
n (i,C,x)−PN

n+1(i,C,x)},

which together with the induction step property (27) imply that

JN
n (i,C) ≥ JN

n+1(i,C) ≥ 0.

It follows from this property and Assumption 4.2 that

PN
n−1(i,C,x) ≥ PN

n (i,C,x) ≥ 0,

since PN
n (i,C,x) is a positive linear combination of the quantities

e−βHN
n (i,C,x) and the JN

n+1(i,C). Hence, there exists a finite
capacity vector that realizes the global maximum of PN

n (i,C,x),
and the optimal policy for the problem starting at epoch n is X

∗
n,N

where X∗
n,N (i) is the smallest capacity vector Y = C + x that

maximizes PN
n (i,C,x), which completes the proof.

We next establish our second main result of this section for the
infinite-horizon version of the stochastic optimization problem, where
all vector limits are with respect to componentwise convergence.

THEOREM 4.2. Suppose Assumptions 4.1 and 4.2 hold. Then,
letting N → ∞, the sequences {JN

0 } and {PN
0 } converge point-

wise to limits J∞
0 and P∞

0 , respectively, where for all i = 1, . . . , U
J∞

0 (i,C) is concave in C,

lim
C→∞

J∞
0 (i,C) = −∞,

P∞
0 (i,C,x) is concave in Y = C + x, and

lim
Y=C+x→∞

P∞
0 (i,C,x) = −∞.

Hence, there exists a finite capacity vector that realizes the global
optimal solution of the infinite-horizon problem (24),(25) and this
optimal solution is the capacity planning policy X

∗ that employs
the capacity vector X∗(i) whenever the system is in state i where
X∗(i) is the smallest capacity vector Y = C + x that maximizes
P∞

0 (i,C,x), i = 1, . . . , U .

PROOF. The statements concerning the limits J∞
0 and P∞

0 and
the properties of J∞

0 (i,C) and P∞
0 (i,C,x) follow directly from

Theorem 4.1 provided there exists a finite nondecreasing function
BJ (C) such that JN

0 (i,C) ≤ BJ (C) for allN and all i = 1, . . . , U .
From the induction step of Theorem 4.1, we know there exists a fi-
nite nondecreasing function BP (C,x) such that PN

0 (i,C,x) ≤
BP (C,x) for all N and all i = 1, . . . , U . Replacing the right-
hand side of (24) with BP (C,x) and applying the induction argu-
ments of Theorem 4.1 to this revised optimization problem reveals
the existence of a finite nondecreasing function BJ (C) such that
JN

0 (i,C) ≤ BJ (C) for all N and all i = 1, . . . , U .
We next note that

X∗
0,∞(i) = lim

N→∞
X∗

0,N(i)

and there exists a constant N0 such that X∗
0,N (i) = X∗

0,∞(i) for
all N ≥ N0. Then, if C ≤ X∗

0,∞(i),

JN
0 (i,C) = PN

0 (i,C,X∗
0,∞(i) − C)

and otherwise

JN
0 (i,C) = PN

0 (i,C,0),

for all N ≥ N0. Letting N → ∞ and substituting

P∞
0 (i,C,X∗(i) − C) = P∞

0 (i,C,X∗
0,∞(i) − C)

and X∗(i) ≤ X∗
0,∞(i) yields

J∞
0 (i,C) = P∞

0 (i,C,X∗(i) − C)

if C ≤ X∗(i), and otherwise

J∞
0 (i,C) = P∞

0 (i,C,0).

It follows from the definition of X∗(i) that

J∞
0 (i,C) = max

x
P∞

0 (i,C,x)

and the limitP∞
0 (i,C,x) is given by (25) in terms of the J∞

0 (i,C+
x) and e−βH∞

0 (i,C,x). This together with the statements con-
cerning the limit J∞

0 , the properties of J∞
0 (i,C) and well-known

results from the infinite-horizon stochastic dynamic programming
theory (see, e.g., [21, 6]) complete the proof.

4.2 Discussion of Optimal Solutions
In Theorems 4.1 and 4.2 we establish that the optimal solution of

our capacity planning problem is an optimal threshold-based pol-
icy in the case of finite and infinite time horizons, respectively. This
structural property is important because threshold policies are easy



to implement in practice. For each state, we need only solve a se-
quence of convex programs to obtain the optimal capacity threshold
values, as discussed in more detail below, and then set the capacity
of every link to match these optimal thresholds. Furthermore, the
threshold-based structural property, together with related proper-
ties of the value functions such as convexity (concavity) and semi-
modularity (refer to Theorems 4.1 and 4.2), play important roles in
developing the complete set of structural properties for the optimal
solutions and for the general optimization problems themselves.

To compute the capacity vector X∗
n,N = (X∗

n,N (1), . . . ,X∗
n,N(U))

deployed throughout each epoch n = 0, . . . , N − 1 under the opti-
mal capacity planning policy X

∗
n,N for the finite-horizon problem,

we start with the problem at epoch n = N − 1 in any state i =
1, . . . , U . From Theorem 4.1 we have that the vector X∗

N−1,N (i)
is the solution of a convex (concave) program which can be com-
puted in an efficient manner using known methods in convex opti-
mization; e.g., refer to [3, 5]. Then we recursively continue in this
manner to solve the problem for each epoch until we obtain the set
of capacity vectors comprising the optimal capacity planning policy
X

∗
n,N for all n = 0, . . . , N − 1. Analogously, from Theorem 4.2,

the optimal capacity vector X∗(i) for each state i = 1, . . . , U
in the infinite-horizon problem can be obtained by solving a con-
vex (concave) program. Upon computing these solutions for all
i = 1, . . . , U , we obtain the set of capacity vectors comprising the
optimal capacity planning policy X

∗.

4.3 Applications
Lastly, let us turn to briefly consider two specific examples for

which our general stochastic optimization results above can be ap-
plied. The first example is based on the Erlang fixed-point approx-
imation in a communications network setting where the expected
revenue rate Rn(i,C) for a network service provider given a traf-
fic intensity vector νn(i) and a nonnegative capacity vector C is as
expressed in (8). Although this function Rn(i,C) obtained from
the Erlang fixed-point approximation is generally not concave in C,
there are regions in which the function Rn(i,C) satisfies the con-
cavity part of Assumption 4.1 [16]. Furthermore, generally speak-
ing, it is possible to define revenue functionsRn(i,C) based on the
Erlang fixed-point approximation that are concave in C by using al-
ternative formulations from that in (8). It is also well-known that
the Erlang loss formula for a single link of capacity C, as provided
in (7), is convex in C for every traffic intensity ν [14]. In all such
cases where Rn(i,C) is concave with respect to C, it is impor-
tant to identify values of costs K, I and D so that Assumptions 4.1
and 4.2 are satisfied, because otherwise the optimal solution would
be for the service provider to always maintain a capacity vector of
0 and not serve any traffic. Once Assumptions 4.1 and 4.2 have
been verified, the results of Theorems 4.1 and 4.2 provide the op-
timal policy and the corresponding convex programming solutions
for the capacity vectors of this optimal policy that should be fol-
lowed by the network service provider in the case of finite-horizon
and infinite-horizon versions of the capacity planning optimization
problem, respectively.

The second example is a multi-product production inventory sys-
tem, where the capacities of different classes are the base-stock lev-
els for different products [28]. Let us denote these levels as

Sn = (Sn,1, Sn,2, · · · , Sn,J ).

Multi-class inventory system workloads are classified by the dif-
ferent combinations of products they require, analogous to the link
requirements of routes. Upon treating the replenishment lead time
as the random duration of our model, we can see that the multi-
product production-inventory system fits quite well within our model

Network 1 Network 2
K (15860, 10660, 21060) (15860, 10660, 21060,

10660, 15860, 15860)
w (60, 80) × 103 (192, 252, 168, 115.5) × 103

I (1000, 1500, 750) (1000, 800, 600, 800, 750, 900)
μ (1, 1) (1, 1, 1, 1)
Tn 65 65
β loge(0.8) loge(0.8)

Table 1: Base model parameters for Network 1 and Network 2.

formulation. For a related study of such inventory systems, see,
e.g., [26]. In addition, a more popular performance metric that has
been extensively studied in the operations management literature is
the average amount of backlogged units in a system where back-
logging is allowed. The backlogs are characterized by complex
combinations of maximum and addition operators of the system
statistics and base-stock levels. However, it has been shown that
under mild conditions, the average backlogs are convex functions
of Sn; see, e.g., [19]. Hence, we can define a concave profit func-
tion with respect to Sn. Upon combining this with inventory costs
and the costs incurred for increasing and decreasing the base-stock
levels, we can use the formulation of (24) and (25) to determine
the optimal base-stock level Sn for each epoch n, where it can be
easily verified that the Assumptions 4.1 and 4.2 are satisfied.

5. NUMERICAL EXPERIMENTS
In this section, we present a representative sample of numeri-

cal experiments with some of our optimal capacity planning solu-
tions. A stochastic dynamic program will be solved based on the
Erlang fixed-point approximation, either in the limiting regime or
in its standard form, and the optimal capacity allocations for time-
varying workloads will be calculated and discussed.

We consider two stochastic loss networks.

• Network 1: A 3-link network with capacities C1, C2 and
C3 supporting calls on routes r1, r2 ∈ R according to the
capacity requirement matrix

A =

»
1 0 1
1 1 0

–
,

where Arj = 1 if route r requires a unit of capacity on link
j as defined in Section 2.

• Network 2: A 6-link network with capacitiesCi, i ∈ {1, . . . , 6},
supporting calls on routes rj , j ∈ {1, . . . , 4}, according to
the capacity requirement matrix

A =

2
664

1 0 1 0 0 0
1 1 0 1 0 0
0 1 0 0 1 0
0 0 0 1 0 1

3
775 .

The base settings for all other model parameters are provided in
Table 1.

For Network 1, we study the trajectories of the optimal capacity
vectors corresponding to the stochastic optimization in (11),(12)
under the following 3 traffic intensity demand profiles for a time
horizon of N = 5 epochs:

• Profile 1: (80, 90), (75, 60), (60, 75), (55, 45), (40, 45)

• Profile 2: (35, 45), (55, 45), (60, 70), (70, 80), (80, 90)
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Figure 1: Optimal Revenues R(n) for (top) demand Profile 2
on Network 1, and (bottom) demand Profile 1 on Network 2.

• Profile 3: (75, 60), (60, 55), (75, 60), (60, 55), (75, 60)

The corresponding demand profiles for Network 2 are given by

• Profile 1: (80, 90, 70, 65), (70, 80, 60, 65), (60, 70, 55, 50),
(55, 45, 55, 40), (35, 45, 50, 40)

• Profile 2: (35, 45, 50, 40), (55, 45, 55, 40), (60, 70, 55, 50),
(70, 80, 60, 65), (80, 90, 70, 65)

• Profile 3: (35, 45, 50, 40), (70, 80, 60, 65), (35, 45, 50, 40),
(70, 80, 60, 65), (35, 45, 50, 40)

The optimal solutions are obtained by dynamic programming
over a quantized set of possible capacity vectors. The complex-
ity of the dynamic program scales as Ω(NumLevel6 × ξ3) where
NumLevel is the number of quantization steps and ξ is the com-
plexity of the operation to calculate the Erlang fixed point. In our
experiments, the Erlang fixed point calculation using the linear ap-
proximation from Section 3, i.e., in the limiting regime, yielded
results that were two orders of magnitude faster than solving the
Erlang fixed-point equations (6). This leads to an overall potential
savings of 106 in the computational complexity of using the lin-
ear approximation for the case of Network 1 and a corresponding
savings of 1012 for the case of Network 2.

Our first set of experiments compares the results from the opti-
mal solutions for the Erlang fixed-point approximation in the limit-

ing regime and for the Erlang fixed-point approximation expressed
in (6) under different scalings of the traffic intensities. More specif-
ically, in Figure 1, we demonstrate the strong accuracy of the solu-
tion based on the linear approximation with respect to the solution
based on the Erlang fixed-point approximation under the scaling
factors k = 1, 10, 100. Our results for Profile 2 on Network 1
and Profile 1 on Network 2 are presented where, in all cases, the
expected revenues are calculated using the corresponding optimal
solutions. It is interesting to observe that, even for relatively small
values of k, the expected revenue results from the linear approxi-
mation hew very closely to those from the Erlang fixed-point ap-
proximations. The same observations can be made for the optimal
capacities in the corresponding stochastic optimization problems.
Theoretically, the convergence is on the order of 1/

√
k, which is

not a very fast rate, but this result is obtained without making any
use of the correlation information that is quite rich in the stochastic
systems under consideration. We suspect that the real convergence
rate will be much higher, which, of course, warrants further study
and a detailed analysis of the asymptotic behavior of the stochastic
loss networks.

Our next collection of experiments examines the key character-
istics and trends of the optimal capacity thresholds from the so-
lution of the stochastic capacity planning optimization problem in
terms of the different demand profiles, networks and model param-
eters. Based on the results in Figure 1, we shall focus on the op-
timal solutions using the Erlang fixed-point approximation in the
limiting regime. Figure 2 presents a representative sample of our
results for Profiles 1 – 3 in Network 2 under the base model pa-
rameter settings in Table 1. The leftmost plots of Figures 3 – 5
provide the corresponding base case results for Profiles 1 – 3, re-
spectively, in Network 1. For comparison, the rightmost plots in
these figures present the corresponding results for the case where
the call duration rates μ = (1, 1) are changed to μ′ = (1, 2),
i.e., the mean duration for r1 is twice that of r2, and the center
plots provide the corresponding results for the case where the ca-
pacity costs K = (15860, 10660, 21060) are changed to K′ =
(31720, 10660, 21060), i.e., the cost of C1 is doubled.

We first observe that, as one would expect, the trajectories of
the optimal capacity vectors over the entire time horizon follow the
demand pattern of the traffic intensity vectors; see Figure 2 and
the leftmost plots of Figures 3 – 5. Some of the interactions among
different optimal capacity solutions are investigated through a com-
parison of the effects of doubling the cost for class 1 capacity. In
comparing the leftmost and center plots of Figures 3 – 5, we ob-
serve that while doubling the cost K1 of link 1 may affect the op-
timal capacities of link 1 to the greatest extent, it also impacts the
optimal capacities of links 2 and 3 over the time horizon, and it does
so in different ways under the different demand profiles. These re-
sults indicate the delicate interplay among the effects of capacity
allocation to various links in the stochastic loss network.

The interactions among different optimal capacity vectors are
further investigated through a comparison of the effects of changing
the mean call duration lengths. For the case of unequal durations
in the rightmost plots of Figures 3 – 5, we observe that since the
mean call duration length for route r1 is twice that of route r2, the
expected loss probability L1 for calls on this route will be greater
and, as such, revenues from calls on route r1 can be intuitively ex-
pected to be lower than those from calls on route r2. Hence, we
would expect the optimal solution to shift more capacity towards
link 1 and link 2 which can be seen to use the more remunerative
route r2 from the matrix A. These effects can be indeed observed
by comparing the optimal trajectories of C1 and C2 in the leftmost
and rightmost plots of Figures 3 – 5. We further observe a shift



in optimal capacity allocation away from C3 upon comparing the
leftmost and rightmost plots of Figure 4, with more subtle changes
exhibited in the leftmost and rightmost plots of Figures 3 and 5.

6. CONCLUSIONS
Motivated by applications from many different areas, we ex-

tended the study of the classical stochastic loss network. From
the modeling perspective, by allowing the workload process to be
modulated as a Markov process with time-varying transition prob-
abilities, we expand the domain of problems that can be modeled
by loss networks. From the perspective of solution techniques, we
integrate the traditional loss network methodologies, such as the
Erlang fixed-point method, with stochastic dynamic programming
to conduct a systematic analysis and control of generalized stochas-
tic loss networks. This systematic analysis includes the asymptotic
behavior of systems in the limiting regime and the structural prop-
erties of very general optimization problem solutions.

The systematic treatment also allows us to further extend our
analysis to include additional features that are often encountered
and important in applications. For example, quality of serice (QoS)
constraints are very commonly adapted in service-related perfor-
mance analysis and optimization. In the time-varying stochastic
loss networks studied in this paper, we can also introduce con-
straints on the loss rate for each class of customer requests in the
profit maximization problem. By the same arguments as those
in Section 3, we can show that the solutions to the linear pro-
grams with additional constraints is still asymptotically optimal for
stochastic systems with the corresponding constraints on the per-
class loss rates, and we are in the process of generalizing this result
to the general concave utility function version of the optimization
problem. Another research topic we are focusing on is to further
relax the distributional constraints on the Erlang model, especially
in the case of the asymptotic analysis. We also intend to explore the
rich theory of the central limit theorems and multivariate Gaussian
processes to obtain fixed-point methods under much more general
assumptions on the arrival process.
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Figure 2: Optimal Capacities under demand Profiles 1–3 on Network 2.
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Figure 3: Optimal Capacities under demand Profile 1 on Network 1, for the base case (left),K ′
1 = 2K1 (center) and μ′

2 = 2μ2 (right),
respectively.
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Figure 4: Optimal Capacities under demand Profile 2 on Network 1, for the base case (left),K ′
1 = 2K1 (center) and μ′

2 = 2μ2 (right),
respectively.
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Figure 5: Optimal Capacities under demand Profile 3 on Network 1, for the base case (left),K ′
1 = 2K1 (center) and μ′

2 = 2μ2 (right),
respectively.


