
RC24243 (W0704-095) April 18, 2007
Computer Science

IBM Research Report

Experiences with Building Security Checking and
Understanding Tool

Ted Habeck, Larry Koved, Orlando Marquez, Vugranam C. Sreedhar,
Michael Steiner, Wietse Venema, Samuel Weber

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Gabriela Cretu
Columbia University

New York, NY 10027

Krishnaprasad Vikram
Cornell University
Ithaca, NY 14850

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Experiences With Building Security Checking and
Understanding Tool

Ted Habeck
Larry Koved

Orlando Marquez
IBM TJ Watson Research Center

Hawthrone, NY 10532
{habeck,koved,omarquez}@us.ibm.com

Vugranam C. Sreedhar
Michael Steiner
Wietse Venema
Samuel Weber

IBM TJ Watson Research Center
Hawthrone, NY 10532

{vugranam,msteiner,wietse}@us.ibm.com,
samweber@watson.ibm.com

Gabriela Cretu∗

Columbia University
New York, NY 10027

gcretu@cs.columbia.edu

Krishnaprasad Vikram∗

Cornell University
Ithaca, NY 14850

kvikram@cs.cornell.edu

Abstract
In this paper we present our experience in building security check-
ing and understanding tools for Java, PHP, and JavaScript lan-
guages. The main theme of our work is how to make security acces-
sible to application developers, who are typically not well versed
in the nuances of secure software development. Therefore, from a
tooling perspective, we provide extensions to an integrated devel-
opment environment (IDE) based on the Eclipse Platform that has
the ability to fix and address security problems and issues in a man-
ner consistent with that is currently expected for syntax errors. We
provide “easy buttons” and “quick fixes” requiring as few clicks in
the IDE as possible to perform reasonable security problem fixes.
We rely heavily on static and dynamic analysis, and a repetoire of
security policies and coding practices to drive the usability of our
tools. We also discuss some of the technical and non-technical chal-
lenges that we encountered during the development of our tools.

1. Introduction
For several years, members of IBM Research’s Security and Pri-
vacy Department have been prototyping and building security
checking and understanding tools. Our ultimate goal is to encour-
age, and improve the ability of, code developers to consider se-
curity issues as the software is being developed, rather than as an
afterthought. Application developers are typically unaware of the
nuances of secure software development. We strive to provide ac-

∗ The work described in this paper was partly done during the author’s
summer internship at IBM TJ Watson Research Center

tive assistance to this large and growing community. It is here that
we feel that we can have the greatest impact.

Static analysis techniques have been in existence over the past
few decades and have been successfully applied to many applica-
tions, including code optimization and bug finding. We have imple-
mented several sophisticated static analyses, including context sen-
sitive analysis and typestate analysis. We have found, however, sig-
nificant technical and non-technical challenges in creating “usable”
security tools. We observe that these sophisticated analyses need to
become transparent in order to be acceptable to our end users. The
consistent feedback we have received from our customers is that an
analysis tool will be only useful if it is well integrated into the user’s
existing processes, providing security-relevant information without
interfering with normal development. Careful consideration must
be given to the organizational and of the social aspects of security
development, how it is deployed and integrated into development
environments and the build and testing processes.

One typical approach to enabling security in an application is
illustrated below in the context of defining the security policies
for a Java library so that the library can be run when the security
authorization subsystem [14] is turned on.

Write the Java library
Enable Java security subsystem (the SecurityManager)
Write test cases
repeat {

Run test cases
Review SecurityExceptions thrown
Inspect the stack trace
Identify the CodeBase missing the Permission
Insert privileged code if appropriate and/or
Grant permissions ? use policy tool or text editor

} until(test cases run without SecurityExceptions)

Clearly, the above approach for adding permissions for large Java
applications is not practical. Furthermore, adding appropriate Java
permissions is just one of a number of steps that developers have to
perform.

The main theme of our work is how to make security acces-
sible to application developers, who are typically not well versed
in the nuances of secure software development. Therefore from a
tooling perspective, we want our tools to be part of an integrated
development environment (IDE) which has the ability to fix and
address security problems and issues in a manner consistent with
that is currently expected for syntax errors. We want to provide
“easy buttons” and “quick fixes” requiring as few clicks in the IDE
as possible to perform reasonable security problem fixes. Figure 1
illustrates this aspect in our current SWORD4J tool (see Section 2).
In the figure we highlight a security problem in dealing with privi-
leged instructions (similar to highlighting syntax errors), and quick
fixes are provided to fix the problem.

Providing such easy buttons and quick fixes for security errors
is quite challenging. In contrast to syntax and type checking, which
are driven by well defined language grammars and typing rules,
security policies and coding rules are not universally accepted and
rarely formalized. Over the past few years we have developed and
implemented many security and coding rules, and it is these rules
that drive the usability of our tools.

Our current security checking and understanding tools (SCUT)
are implemented as plug-ins to the Eclipse IDE. Eclipse was cho-
sen as our target because of its user community acceptance and
support for extensions. In particular, it includes assets such as Java
Development Tool (JDT), CodeReview and Rational Application
Analysis, and PHP Development Tool (PDT). Our experience with
building and deploying such tools has been quite promising techni-
cally, resulting in novel analyses and influencing the development
community.

In the rest of paper we present our past and present experience in
building security checking and understanding tools for the Java lan-
guage, the PHP language, and the JavaScript language. We will dis-
cuss some of the pain points that we encountered, both in terms of
using analysis frameworks, and in terms of deploying and integrat-
ing the analysis framework with our Eclipse Platform. In Section 2
we will describe our experience with building a security analysis
tool for Java, called SWORD4J. In Section 3 we will discuss our
current effort with building a security analysis tool for PHP. In Sec-
tion 4 we will discuss security for JavaScript language. In Section 5
we will discuss our current and future plan for building a robust and
a usable security checking and understanding tool that is based on
Eclipse development model. In Section 6 we discuss related work
and conclude in Section 7.

2. SWORD4J: Security for Java
The Security Workbench Development Environment for Java
(SWORD4J) is a security checking and understanding tool that
we are developing for addressing security issues and problems in
Java applications.1 SWORD4J makes use of novel, state-of-the-art
analysis techniques for detecting security errors. When a security
error is detected by our analysis engine, we inform the end user
(1) the nature of the security error identified, (2) the implications
of the issues if not fixed (including extensive documentation), and
(3) where possible, simple actions in the UI to fix the security er-
ror, including automatically updating the security policy or code
refactorings.

Consider the problem of setting Java permission that we briefly
discussed in the Introduction. When Java’s security authorization is
enabled, before any potentially sensitive operations are performed,
such as file writes or network accesses, authorization checks are
made to ensure that the code ultimately responsible for the action
has the appropriate authority to do so. Authority is granted or de-
nied via Permission objects. Authorization is transitive, as code

1 Available for download at http://alphaworks.ibm.com/tech/sword4j

Figure 2. Architecture of SWORD4J

that isn’t allowed network access shouldn’t be able to gain access
merely by calling innocent third-party code which does such ac-
cess. Complicating matters is a mechanism whereby certain code
can be deemed “privileged”, and able to do operations that its
callers cannot necessarily perform [14].

Security practices call for code being granted only the minimum
authority necessary to perform its function. However, the transitive
nature of authorization makes this extremely difficult for most
modern applications, which are built on top of multiple framework
layers: sufficient and necessary permissions must be determined
for not only those operations the application specifically intends
to do under all possible execution paths, but also those done by all
the underlying framework and libraries. A small application code
update might invoke one additional framework method, but cause a
cascade of permission requirements. Recall from the Introduction,
developers often determine permission requirements by repeatedly
testing the application, inspecting security exceptions that occur,
tweaking permissions in response, and then repeating the tests
until the application appears to run successfully. This process is so
burdensome that most developers simply disable authorization or
grant their code universal access. In SWORD4J we use both static
and dynamic analysis techniques to ease the process of defining the
security policy for the code.

SWORD4J uses a static analysis framework called Java Byte-
code Analyzer (JaBA) as its core analysis engine. JaBA supports
several of the classical analysis techniques such as inter- and intra-
procedural data flow and control flow analyses, and this framework
also underlies SWORD4J. The overall architecture of SWORD4J
is shown in Figure 2.

Naturally, an analysis engine for determining Java 2 Permission
requirements (security policies) of code [19] is key. There is sup-
port for determining code that could be be refactored and made
privileged [26]. Modifications have been made to support the com-
monly used and complex frameworks of Eclipse and OSGi [2].
SWORD4J also implements two tainted data detection algorithms,
one based on mutability analysis [27], and the other an interpro-
cedural tainted data flow analysis, details of which are beyond the
scope of this paper. Yet another component is responsible for dy-
namic analysis, launching the inspected application and monitoring
its behaviour.

Some notable SWORD4J features, motivated by usabilty issues
and supported by the above analyses, are:

Figure 1. A screen shot of SWORD4J illustrating “easy button” and “quick fixes”.

• Our target developers work with complex frameworks, such as
Eclipse and OSGi [2]. These frameworks have security con-
siderations that go beyond basic Java security. Our initial Per-
mission analysis implementation showed that the these frame-
works complicated permission determination sufficiently that
we needed to build special analysis support in order to produce
understandable feedback in such environments. Additionally,
we automatically compute the analysis scope to so as to include
exactly the classes which the user intends to inspect. Path sen-
sitive filtering reduces the false positive rate. The end result is
that, according to our user feedback, programmers are usually
able to define Java security policies for their code and insert
them into the appropriate policy files with only a few mouse
clicks. In future work, we plan to add support for automatic
refactoring of the code that the programmer has determined can
be made privileged [26, 14].

• Support for enabling the Java authorization security subsys-
tem. We found that determining how to enable the security sub-
system was sufficiently time consuming for intended audience
that it would pose a barrier for adoption. By simplifying this
process, we allow developers to direct their time into the more
important tasks.

• Native code and reflection cause issues for static analysis. This
was the motivation behind our dynamic analysis engine imple-
mentation. If a permission was missed by our static analysis,
this can be caught during runtime, localized to the specific code
responsible and reported accurately to the user. For some run-
time environments, such as OSGi, there are multiple policy files
to be updated. The tooling is better able to accurately determine

which of the many policy files needs to be updated, at a much
reduced time for the developer.

• SWORD4J implements detection of best practice violations,
such as not making public fields final. These are reported to
the user in a similar manner to syntax errors, as the code is
developed.

• One of the key mechanisms to protect Java code is to digitally
sign it and verify the signature at runtime. This signature is part
of the mechanism used to locate appropriate security policies
for the code. SWORD4J includes a graphical user interface
for digitally signing JAR files. This eliminates the need for
developers to learn and switch to a separate signing tool. Just as
with providing the means for enabling the Java runtime security,
we wanted to minimize the learning required for developers to
secure their code and deploy it.

• Managing the digital certificates used by the code signing fea-
ture described above. This enables developers to view and edit
keystore entries, including changing certificate aliases, remov-
ing certificates, copying certificates between certificate stores,
and importing certificates from the file system.

To summarize SWORD4J is a collection of Eclipse plugins
designed to aid developers in performing security related tasks.
We are continuing to expand our current repertoire of security
related analysis for Java, including integrating it with a Rational
application analysis tool calledCode Review, which contain many
best practices and correctness rules for Java programs.2

2 http://www-128.ibm.com/developerworks/rational/library/05/higgins/

Figure 3. A Web application framework

3. PHP Analysis
PHP is an extremely popular server-side scripting language for
building Web applications. In this section we will describe our ex-
perience with building tools for PHP applications. Before describ-
ing our experience let us briefly look at how a typical Web applica-
tion scenario looks like.

3.1 Web Application

In a typical Web application scenario (see Figure 3), a user will
interact with a browser via keyboard and mouse, generating key-
board and mouse events (step (1)). The events are intercepted by
the browser environment and depending on the kind of events, the
browser performs some action. Often, a user will enter a URL (Uni-
form Resource Locator) or click on a Web link to request a Web
page from a (Apache) Web server using HTTP (Hyper Text Trans-
port Protocol). The HTTP request (step 2) is sent over the Inter-
net and arrives at the appropriate Apache Server (as determined
by the URL). The Apache server directly handles static page re-
quests (step 3’), and we will not be concerned with such static page
requests. Often a page that is requested contains PHP scripts that
may be stored in a disk on the server. The PHP script is loaded
by PHP engine (step 3) and the script is then executed. The PHP
engine may access database (step 4) or local file system (step 4’)
or invoke Web Services using WSDL (Web Service Description
Language) interface (step 4”). The PHP engine then constructs a
HTML page dynamically (step 5) and send the page back to the
browser that requested the page. The browser constructs a DOM
(Document Object Model) for the new page, and may render the
page on the browser User Interface (step 8). The new page may
contain JavaScripts that this then interpreted on the browser by the
JavaScript Engine (step 6) and the JavaScript engine may then up-
date the DOM. Security problems could arise at any step during the
life cycle of a Web application running on Web application frame-
work shown in Figure 3.

Unlike Java, both PHP and JavaScript run for short durations
when certain Web events happen, such as, user clicking a Web
link or request arriving at a Web server. Both PHP and JavaScript
have many similar characteristics, for instance, both languages are
weak and dynamically typed, heavily use strings as a means to
communicate with other language components or the environment,
and due to some of the intrinsic characteristics of the languages,

Figure 4. SCUT for PHP

programs written in them tend to expose security vulnerabilities
that can easily be attacked.

From a tooling perspective we maintain the importance of pro-
viding the same IDE experience for PHP and JavaScript as for Java
that we have developed for SWORD4J and Code Review. Our ex-
perience with building SCUT for PHP and JavaScript is still in its
early phases, and it is not as mature as SWORD4J. In this section
we will discuss our experience with the PHP language and in Sec-
tion 4 we will discuss our experience with the JavaScript language.

Our current prototype for PHP tool is shown in Figure 5. This
screenshot shows our Code Review functionality, which checks
code for compliance with best practice, correctness and other se-
curity rules, and can support both PHP and Java. Two PHP rules
are shown: 1) a best practice rule that states that users should ini-
tialize all variables, which avoids certain well-known security PHP
issues (described later), and 2) a correctness rule, which detects if
$this is assigned an arbitrary value.

Our current focus in PHP space has been understanding the se-
mantics of the language and developing coding practices for writing
secure PHP code. PHP provides many analysis challenges, usually
resulting from language attempts to provide convenient function-
ality. There is a close correlation between features which are dif-
ficult to analyze and security failures, which we do not believe is
accidental. In the next section we will overview interesting PHP

<?php
$username = $_GET[’uname’];
$query = "SELECT id FROM users WHERE uname=’$username’" ;
$result = mysql_query($query);
echo $result ;
?>

Figure 5. A simple PHP program which queries a database

characteristics and their impact on both security and analysis. In
Section 3.3 we will discuss some of the data flow analyses that we
are currently implementing in our tool.

3.2 PHP Characteristics

Variables in PHP do not need to be explicitly typed, and the type of
a variable is determined at run-time. The same variable might hold
values of different types at different program points. When a value
is used, it is converted automatically and silently to the “correct”
type. For instance, the expression1+"apple" will evaluate to 1.
Clearly, this hinders type analysis, and is responsible for many pro-
gram correctness issues. In the following sections we will discuss
some of the intrinsic features of PHP that impacts security.

3.2.1 Dynamic Scoping

As in most programming languages, PHP variables can have local
or global scope. However, in PHP variable reference can change
scope from local to global. This is best illustrated by an example.
Consider the following program:

foo();

function foo() {
$a = true;
while ($a)
{

echo "Hello.\n";
GLOBAL $a;

}
echo "Goodbye.\n";

}

When executed, this program will output

Hello.
Goodbye.

The reason for this is that when the functionfoo is executed, the
variable $a (by default local) is initialized to the value true. The
while loop’s test will read this value and execute its body. The
statementGLOBAL $a states that further references to $a will be
to the global variable $a, not the local. When the while loops test
is again executed, it will obtain the uninitialized value of the global
$a, and terminate the loop. In summary, the expression “$a” in
the while loop’s test will refer to two distinct variables during the
program’s execution.

3.2.2 Attacks

Although not an issue specific to PHP, in practice injection attacks
are a major concern for PHP programmers. An injection attack
essentially consists of malicious injection of strings into a PHP
program in such a way that the injected string will induce an
unintended or unexpected interpretation of the PHP program. To
illustrate a SQL injection, consider the PHP program in Figure 5.

Consider the$query variable that contains the string"SELECT
id FROM users WHERE uname=’$username’" . The sub-string
’$username’ is interpreted as a variable by the PHP engine.
Therefore, the PHP engine will replace$username with its value

and reconstruct a new string. For instance, if the string value of
$username is "monkey OR 1=1", the string value of the variable
$query is then"SELECT id FROM users WHERE uname=monkey
OR 1=1". This will result in the data for all users being extracted
and returned, instead of just the single user’s data, as the program-
mer intended.

One way to mitigate this attack is to “filter” or “sanitize” the
input so that only “valid” data is accepted. Unfortunately it is dif-
ficult or even impossible to define sanitization functions that will
be universally effective: each security sensitive operation needs a
different sanitization functions. An important principle for defend-
ing against attacks is to ensure that “tainted data” or unsanitized
data never reaches resources that can compromize the security of
the application, which we will discuss later in the paper.

3.2.3 Initialization Issues

Early versions of PHP provided a feature whereby, when PHP was
invoked from a Web server, the fields of any incoming HTML
forms would be automatically extracted, and global variables with
the field names would be assigned to the values of the fields. For in-
stance, if a HTML form with fields “partNum” and “quantity” was
received, then the global variables “$partNum” and “$quantity”
would be set. This resulted in serious security problems in prac-
tice, because the fields of HTML forms are not controlled by the
application developer, but can be set arbitrarily by the sender. For
instance, an attacker could send a message containing the HTML
form with fields “username” and “validated” with the result that
those global variables will be given attacker-chosen values.

Unfortunately, many scripts are written assuming this behavior,
so this behavior could not be removed. Instead, the language de-
signers made this behavior optional, controlled by an initialization
setting, “registerglobals”. However, this means that the language
semantics is dependent upon a setting which is under installation
control: the same script can be secure on one server but not another,
due to this setting being different.

Another similar initialization issue is the “magicquotes” func-
tionality. In response to many security failures caused by SQL in-
jection attacks, the designers of the language created the “magicquotes”
initialization property. When enabled, all input to a PHP program
will be inspected and any “special” characters in it will be automat-
ically quoted. The idea was that if special characters were quoted
by the PHP runtime, then the PHP programmer would not have to
do any validation of their own before passing the input as part of a
SQL query. Unfortunately, this turned out to be overly optimistic:
the quoting needed depends upon the particular use of the data, so
that the automatic quoting not only was rarely sufficient, but pre-
vented proper validation from being performed. The result is that
some scripts will be secure only if magic quoting is disabled, while
others will be somewhat secure only if it is enabled.

3.2.4 Dynamic Includes

As can be seen in Figure 7(a), include statements, like any other
statement, can occur inside if-statements and functions, and their
arguments can be arbitrary values, not necessarily constants. Pro-
grammers of most traditional languages might expect that this abil-
ity to include files determined dynamically at run-time will be little-
used, since it might appear obviously beneficial to make it clear
what code a script will execute. In reality, however, PHP actively
encourages dynamically including files.

Many PHP scripts are intended for use by administrators or
privileged users. If an attacker can cause one of these scripts to be
executed unexpectedly, a security violation can result. If the target
of an include statement can be affected by user input and this input
is not properly validated, then such an attack can be mounted. From
our perspective, dynamic includes also pose a problem for analyses.

s3: $ln = mysql_connect(’localhost’, ’user’, ’password’);
mysql_select("MYDATABASE", $ln) ;
while (?) {

s4 : mysql_query("CREATE DATABASE my_db",$ln)
if (?) {

mysql_close($ln) ;
s5 : $ln := mysql_connect(’myhost’,’my_user’,’my_password’);

}
}

(a)
$ln1 = mysql_connect(’localhost’, ’user’, ’password’);
mysql_select("MYDATABASE", $l) ;
while (?) {

$ln2 = phi(ln1:o,ln4:o)
s4 : mysql_query("CREATE DATABASE my_db",$ln2)
if (?) {

mysql_close($ln2) ;
s5 : $ln3 := mysql_connect(’myhost’,’my_user’,’my_password’);

}
ln4:o = phi(ln2:o,ln3:o)

}
(b)

Figure 6. (1) An example illustrating typestate and alias interac-
tion, (b) corresponding TSSA form.

Whenever an include statement is encountered, all possible targets
of the include have to be considered in order for the analysis to
be sound. In the worst case, any file in the file system could be a
potential target.

3.3 Data Flow Problems

In this section we highlight several data flow issues that affect
security of PHP applications.

3.3.1 Resource Analysis

In PHP aresourcevariable holds a reference to an external re-
source. The type of a resource is called a resource type. Resource
variable and type are ad hoc concept in PHP.3 In PHP “resource”
is a surface type and, because of PHP’s dynamic typing, only type
hints can be provided in code. One can useis_resource($x) to
check if$x is a resource type, andget_resource_type(resource $handle)
to returns the string representation of resource$handle. Since we
are interested in protecting these resources, we focus many of our
analyses on resources (e.g., typestate and taint analysis).

We use typestate verification techniques based on static single
assignment (SSA) form for verifying correct usage of resources
in PHP. Typestate verification consists of statically determining if
a given program can execute operations on variables and objects
that are not in a valid typestate. For instance, consider the example
shown in Figure 6 (adopted from Field et al. [12]). The operation
f.read is valid only if the typestate off is open. Note that certain
operations in a program canalter the typestate of a variable. The
operationf.close changes the typestate off from open to close.

One of the hardest problems in precise typestate verification
is the interaction between aliasing and typestate checking. Previ-
ous two-phase approaches, consisting of alias analysis followed by
typestate analysis, can sometimes lead to imprecise typestate veri-
fication. To illustrate the imprecision, consider the example shown
in Figure 6(a). Using alias analysis we can see that the referenceln
at statement s4 can point to either database connection created pro-
gram points s3 and s5. Using typestate analysis we can see that the
connection created at s3 and s5 could be in a closed state at s4, indi-
cating a possible typestate error. Unfortunately previous two-phase
approaches are not be able to discover thatln can never point to
a closed object at s4. Field et al. proposed a polynomial algorithm
that integrates alias analysis and typestate analysis to derive a more

3 http://www.php.net/manual/en/resource.php gives the current resources
supported in PHP.

Figure 7. (a) A simple example (b) SSA form (c) TSSA form.

precise typestate verification for certain classes of problems. The
integrated approach consists of tracking both aliasing information
and typestate information at every point in the program. We use
a simpler sparse technique using typestate SSA (TSSA) form for
typestate verification. The TSSA form for the above example is
shown in Figure 6(b). The annotations such as:o indicate the “in-
put” typestate at each statement. From the typestate annotation we
can see that there are no typestate errors in the program. Our ap-
proach is inspired by optimistic sparse conditional constant propa-
gation [34], and uses a two-phase approach for typestate verifica-
tion.

Let T be the set of typestates. We use two distinguished types-
tates:> and⊥, that are ordered (v) with respect to elementst of
T as follows:(1) ⊥ v t, (2) t v >, and (3) ⊥ v >. In
other words, the setT ′ = >∪⊥∪T forms a lattice, with meet (∧)
operation shown below (wheret, t′ ∈ T):

> ∧ t = t

⊥ ∧ t = ⊥
⊥ ∧ > = ⊥
t ∧ t

′
= ⊥ if t 6= t′

= t if t = t′

Intuitively, ⊥ is an undefined typestateand it is an error to
operate on variables whose typestate is⊥. The typestate> is
an undetermined typestate. For simplicity, we assume that the set
of typestate elements inT are not comparable with one another.
However one can easily extend the framework described here by
assuming a lattice structure forT . Notice that the typestate lattice
defined above is very similar to a constant propagation lattice [34].

3.3.2 Vulnerabilities and Attacks

Understanding the flow of data with in a PHP program is a cor-
nerstone for detecting security vulnerabilities. We are currently de-
veloping data flow analysis techniques to detect and prevent such
security attacks. We have developed a new combined typestate and
tainted flow analysis for detecting security vulnerabilities.

The best method that PHP programmers have of defending
against attacks using registerglobals is to ensure that they never
make use of a possibly uninitialized variable. For this and other
reasons, one of the major security problems is statically detect-
ing the use of uninitialized values. This is made more difficult

by the fact that PHP variables can be explicitly uninitialized us-
ing the unset operation. Consider the example shown in Fig-
ure 7(a). The variable$admin is not initialized, and the input query
admin=1&user=guest can trigger a security violation. We devel-
oped a sparse typestate analysis based on Static Single Assign-
ment (SSA) form for detecting such uninitialized variables. The
SSA form for the example is shown in Figure 7(b). We define two
typestatesL andH (for low security and high security labels). We
associate typestatesL to $admin1 since it is not initialized, and
associate typestateH to $admin2 since it is initialized. We then
propagate the two typestates to theφ-node and ‘merge’ them to
get a new typestate⊥ for $admin3. We introduce a simple lattice
structure for typestate propagation so that we can merge them at the
φ-nodes. The lattice element⊥ essentially is an undefined typestate
and a sensitive operation should not operate or depend on undefined
typestates. Sinceinclude(’sensitive.php’) is control depen-
dent on an ‘undefined’ predicate$admin3? we report a security
error. In PHP a variable can be explicitlyunset, and any further
use of such unset variable can trigger a security vulnerability. Us-
ing our sparse type state analysis we can track the use of such unset
variables.

3.3.3 PHP Runtime Analysis

We are implementing simple runtime taint analysis that is similar
to the basic Perl/Ruby tainting support: when tainted data is used
in specific contexts such as shell or sql commands, the run-time
system raises an exception [?].4 Programmers may turn on run-
time taint checks to find out if they use tainted data in sensitive
contexts. And when an application is written with taint support
in mind, website operators may turn on run-time taint checks to
provide an additional barrier against penetration. Our system can
work with unmodified third-party extensions.

Previous approaches to PHP taint analysis explicitly permit
the use of tainted data in, for example, html, shell, or sql com-
mands. When such a command contains “forbidden” characters,
these systems either “neuter” the command before execution, or
they abort the command altogether. The main problems with auto-
matic cleansing are not technical but psychological:

Education: Automatic cleansing systems don’t make program-
mers aware that network data is inherently untrustworthy[15].
Instead, they teach the exact opposite: don’t worry about data
hygiene. This leads to a false sense of security, because auto-
matic cleansing of shell or sql commands solves only part of
the problem.

Expectation: Automatic cleansing systems have to be perfect. For
example, if the safety net catches some but not all cross-site
scripting or SQL injection attacks, then the system has a secu-
rity hole.

These two problems are probably the major contributors to the
demise of PHP’s ill-fated “safe mode” feature. There are some
technical problems too with automatic cleansing approaches: (1)
The automatic cleansing safety net has to keep track of exactly
which characters in a substring are derived from untrusted input, so
that it can later recognize malicious content in, for example shell or
sql commands. (2) Different contexts need different definitions of
what could be ”malicious” content. In particular, providers of PHP
extensions need to implement their own special-purpose code to
detect or neuter untrusted substrings in inputs, or to mark untrusted
substrings in result values.

We have implemented a simple runtime taint analysis by modi-
fying the Zend PHP runtime engine. The basic idea of runtime taint

4http://perldoc.perl.org/perlsec.html

analysis is to mark certain external inputs as tainted, and to disal-
low the use of tainted data in certain operations that change PHP’s
own state (e.g., include, eval, etc.), or that access or modify external
state (e.g., file access, network access, HTML output, shell or data-
base command). Although the exact details of what is tainted and
what is forbidden may evolve over time, the general mechanism is
well understood.

The following is a high-level view of what would happen when
taint checking is turned on at run-time:

• Each ZVAL (the PHP internal representation of a string, number
or other data object) is marked tainted or not tainted. That is, we
don’t taint individual characters within substrings. In the future,
we may explore the possibility of multiple shades of taint.

• Primitives and functions such asecho, eval, ormysql_query()
detect whether they are given tainted input. Depending on run-
time settings, either the program terminates with a run-time
error, or it proceeds after logging a warning.

• The PHP run-time system propagates taintedness across expres-
sions. If an input to an expression is tainted, then the result of
that expression is tainted too. There are exceptions to this rule:
some primitives and functions always produce untainted results,
and some always produce tainted results.

• The PHP application programmer untaints data by explicit
assignment with an untainted value. For example, the result
from htmlentities() ormysql_real_escape_string() is not
tainted. This is sufficient for our purpose: to help programmers,
by pointing out that they need to explicitly sanitize user data.

Our approach is the result of trade-offs between usability, im-
plementation cost, maintenance cost, run-time cost, and impact on
third-party extensions [25]. For example, we chose against fine-
grained tainting not only for performance reasons but also because
it would require invasive changes to third-party extensions; and we
chose against the use of conditional expressions to untaint variables
because we can’t reliably determine if the intention of a test is to
sanitize input.

Our goal is to add run-time taint checking to PHP, not to provide
a sandbox for the execution of hostile code. It is just a tool to help
programmers find out what data needs to be sanitized. It avoids
changes to third-party extensions, and is turned off by default. It
is therefore completely backwards compatible with earlier versions
of the PHP runtime.

4. JavaScript Analysis
With the advent of DHTML and Ajax, JavaScript has become an
increasingly important programming language. Similar to popular
server-side scripting languages such as PHP, JavaScript is dynam-
ically typed. In addition, JavaScript allows types themselves to be
changed at runtime. It also provides a variety of ways to evaluate
arbitrary strings as code during runtime. This is further complicated
by the strong coupling with the other components of DHTML, i.e.,
(X)HTML 5, CSS6 and the underlying DOM7 of the browser envi-
ronment, These provide various ways for dynamic code evaluation
and self-modification, i.e., using (dynamically generated) event
handlers. Similarly, constructs such aswith and closures makes
the determination of scopes non-trivial. More detailed discussion
on how to capture self-modification and general issues with related
static analysis can be found, e.g., in Yu et al [36] and Dolby [10],
respectively.

5 http://www.w3.org/MarkUp/
6 http://www.w3.org/Style/CSS/
7 http://www.w3.org/DOM/

http://www.w3.org/MarkUp/
http://www.w3.org/Style/CSS/
http://www.w3.org/DOM/

Our interest in analyzing JavaScript stems from the fact that
JavaScript code exhibits considerable control over the browser. Due
to weak security-models in browsers, this often leads to lack of sep-
aration and opens the door for a variety of attacks. This is in par-
ticular dangerous in situations such as portals or mashups where
sensitive information from multiple and potentially mistrusting or
malicious information providers is aggregated on a single page.
For example, in a mashup providing a one-stop car purchase portal
combining information from different dealers, insurance compa-
nies and the user’s bank, dealers should not be able to modify each
others car prices nor should they be able to spy on a user’s bank
account. Even for environments such as enterprise portals, where
information comes arguably from the same trust domain, the sen-
sitivity of salary data and the like makes isolation a necessity to
provide security-in-the-depth and to protect against programming
errors such as cross-site scripting (XSS) attacks.

Our approach currently focuses on portals and is roughly com-
prised of the following steps: (1) For each portlet fragment, we
check a number of syntactic constraints8 and mark each fragment
with its corresponding security domain by wrapping it in a special
div elementportlet-root; (2) After aggregation of the portlet
fragments into a whole HTML page, we convert the page into an
equivalent JavaScript program, i.e., one which renders the exact
same content; (3) Together with an object model of the browser’s
DOM, also defined in JavaScript, we perform a static analysis of
isolation and integrity constraints using a predecessor of IBM Re-
search’s WALA9 libraries; (4) Finally, we rewrite certain code con-
structs, e.g., to separate name spaces. Converting everything into
JavaScript allows for a unified analysis approach. For instance,
having converted the HTML into equivalent JavaScript, the analy-
sis engine automatically constructs an object model for the DOM
tree for the page, which is used to perform precise alias analy-
sis of DOM objects. Uniformly using JavaScript also enables easy
customizations to particular browsers which are usually not 100%
standards-conformant and provide various security-sensitive exten-
sions.

Two examples of constraints we perform in step (3) are the
restriction of DOM tree walking of a portlet to its domain and the
protection of the integrity of system code.

To restrict tree-walking, we perform a pointer analysis on all
operations that climb up in the tree — descending is always
safe – and make sure that the points-to set does not include the
portlet-root element. Together with the constraints guaranteed
by construction in step (1), the name space separation ensured by
step (4), this will guarantee the invariant that a portlet can only
access its own DOM elements.

Of course, above algorithm also relies on the integrity of the
system libraries, which brings us to the second example of analy-
sis. To maintain code integrity, we have to insure that no user
code can redefine system code or objects. Furthermore, we have
to make sure that system functions only receive objects as parame-
ters which meet the expectation, i.e., the parameter to the method
appendChild of DOMNode must be a properDOMNode generated by
DOMDocument.createElement or equivalent. This is necessary to
prevent a rogue element from subverting the browser “inside-out”.
To achieve this, an information-flow lattice has to be enforced to
prevent user information from flowing into system code. Obviously,

8 For example, JSR 186 [1] would not prevent two malicious portlets to
wrap a form element of a third good portlet with another form and hence hi-
jack any information submitted from the good portlet even when JavaScript
would be disabled; an attack which is possible with at least one commer-
cially available portal server.
9 http://wala.sourceforge.net/

given the multiple ways JavaScript allows to aliasing functions and
variables, we have to be careful to do appropriate alias analysis.

So far we mostly side-stepped the issue of runtime code evalu-
ation: We restrict executed code in event handlers to calls to stati-
cally fixed functions and baneval in its various incarnations.eval
is mostly unnecessary and indicates the presences of bad coding;
even for handling of JSON10 objects, a common use-case foreval,
a JSON parser instead ofeval is preferable from a security-in-
the-depth perspective. One could, though, allow it by using code
rewriting techniques such as in BrowserShield [30].

Of high importance, of course, is performance. The static analy-
sis poses rather hefty computation cost on the server side. While
various caching optimizations could improve the situation incre-
mentally, it is an interesting research question whether the analysis
could be done directly on the generation code, e.g., JSP or PHP, and
be done correspondingly offline. Alternatively, the code generation
could generate additional information facilitating the analysis akin
to proof carrying code [22]. For example, the original code gener-
ation could be based on a language such as Java as used in GWT11

and ensure partial guarantees such as static type-safety and corre-
spondingly simplify runtime analysis. This would also be helpful if
the component is generated remotely, e.g., via WSRP [20].

Our work currently focuses on verification in the deployment
and runtime system. However, it also seems beneficial to expose
similar JavaScript analysis directly to the developers to inform
them early about violation of our imposed restrictions, help them in
restructuring their code correspondingly and complement existing
code assists and best practice verification such as [10] and jslint12.

5. An Integrated Analysis Framework
Over the past few years we have used various static analysis frame-
work as a means for checking and understanding security problems
and issues in Java, PHP, and JavaScripts. We want to provide the
same look and feel for security checking and understanding of code
for Java, PHP, Javascript, and other languages. To this end, we are
currently building an Integrated Analysis Framework (IAF) that is
based on extending Eclipse Development Tool (EDT) models such
as Java Development Tool (JDT), PHP Development Tool (PDT),
and JavaScript Development Tool (JSDT). Currently, JDT model is
quite mature, whereas PDT model and JDT models are still under
development.

Before diving into our IAF, we will first present the current
JDT Core Java Model (CJM) and Abstract Syntax Tree (AST) or
Document Object Model (DOM). CJM is a hierarchical model,
consisting of core elements such as IJavaProject, IType, IMethod,
etc. Figure 8 illustrates the core elements of CJM.IWorkspace is
the root of the heirarchy and from which we can drive other core
elements. The following is a snippet of code to get handle to Java
compilation unit model (keep in mind JDT CJM provides several
ways to get an handle to aICompilationUnit).

IWorkspaceRoot wsRoot =
ResourcesPlugin.getWorkspace().getRoot();

IProject project = wsRoot.getProject("MyProject");
project.open(null);
IJavaProject myProject = JavaCore.create(project);
IType myType = javaProject.findType("MyClass");
ICompilationUnit myICU = myType.getCompilationUnit();

Given a handle toICompilationUnit one can start parsing it
to construct an AST for that compilation unit as follows:

10http://www.json.org/
11http://code.google.com/webtoolkit/
12www.jslint.com

http://wala.sourceforge.net/
http://www.json.org/
http://code.google.com/webtoolkit/
file:www.jslint.com

Figure 8. An example illustrating Eclipse Java model

ASTParser parser = ASTParser.newParser(AST.JLS3);
parser.setSource(unit);
parser.setResolveBindings(true);
CompilationUnit myCU = parser.createAST(null);

In the above code snippet,CompilationUnit is an AST node,
and extends the rootorg.eclipse.jdt.core.dom.ASTNode of
the AST/DOM model. One can useASTVisitor interface to visit
nodes of the AST (and perform operations on the AST nodes).
ASTParser, ASTNode, and theASTVisitor forms the core inter-
faces for manipulating Java sources in Eclipse, and can be used
in many source code manipulation applications (such syntax high-
lighting). We are currently building our IAF using JDT core ele-
ments.

Our PHP model is deliberately designed to be as similar to
Java’s as possible, in order to ease development of language-
independent code. As with Java’s model, parser, node and visitor
objects are provided and form the core of our manipulations. Sig-
nificant differences, naturally, do arise. In Java type information is
determined statically, and can be easily obtained and made avail-
able in the AST. Since in PHP not only is type information not
static, but even the files which constitute the program not statically
determinable, the PHP model cannot provide the same level of in-
formation initially. Instead, later analysis passes annotate the AST
nodes with such information. Support for PHP has been integrated
into Rational’s Code Review functionality, so that when analyses
discover possible flaws in PHP code, they can be easily displayed
and referenced in the editor, as shown in Figure 4

Figure 9 illustrates the basic flow of our framework. Our PDT
core model and PDT DOM/AST model<<adopt>> the core con-

Figure 9. Basic elements of SCUT

cepts of the JDT core model and JDT DOM/AST model, respec-
tively.13

We have made several design choices for implementing IAF
based on the following observation of the Eclipse core models:

13At present we are mostly focusing on PHP and Java tools, and we hope
to do the same for JavaScript analysis in the near future.

• Our current focus is on analyzing source code, and so we do
not directly analyze bytecode (one can easily use a decompiler
to reconstruct the source code from bytecodes).

• Conserving memory usage is very important in our framework
since memory footprint is critical to adoption by the develop-
ment community at large. Therefore it is very important not to
create unnecessary data structure that could increase memory
usage. Eclipse AST/DOM provides infrastructure for generat-
ing abstract syntax tree. We perform most of our intraproce-
dural analysis over AST, using concepts from attribute gram-
mars that was developed over 30 years ago. In contrast, the
WALA and JaBA frameworks create independent data struc-
tures, such as WALA and JaBA IRs, that exist independently of
the Eclipse AST. This creates unnecessary duplication and so
consume more memory than needed.

• From an end user or application developer perspective it is
important that an analysis framework can map analysis out-
put back to the source code and other artifacts structures. The
Eclipse platform provides several other structures that relate
various assets, including source code, requirement models, test
cases, etc. By implementing IAF as part of Eclipse core exten-
sions we benefit from having access to these other structures
within Eclipse, and this allows us to create a more user friendly
security tool.

• It is not practical to do whole program analysis, given that we
are targeting to analyze extremely large programs. At any in-
stance we can only load a part of the program, and so our
analysis should be incremental and modular. Unfortunately, for
many non-trivial program analyses such as typestate analysis
and context sensitive analysis, devising modular and incremen-
tal analysis can often lead to unsoundness or imprecise results.
For many libraries and plug-in modules that rarely change we
can perform off-line analysis and store analysis summaries in
a database repository. We are currently designing our analysis
summary storage format that will be stored in Apache Derby
database. From an end user perspective we want our IAF load
and start time for these libraries to be no more than a moderate
increment over the the base load and start time of the Eclipse
platform.

Our IAF is still under active development and we hope to pub-
lish more on our experience with IAF in the near future.

6. Related Work
During recent years there has been an explosion of interest in both
program analysis and security, and the current body of work is
therefore too large to give more than a cursory overview. In this
section we’ll describe closely relevant work in the areas of secu-
rity models, web application vulnerability detection, and program
analysis.

6.1 Security Models

Before it is possible to detect possible security vulnerabilities, it is
necessary to define an intended security policy. The classic works
upon which such policies are based are the Bell-LaPadula model
(for confidentiality) [4], and the Biba model (for integrity) [5].

These models classify both people (or users or process) and in-
formation (or objects or resources) into different levels of trust and
sensitivity that represent security classifications. Typically users
and processes are givenclearance levelthat indicates the level of
trust, and information haveclassification levelthat indicates the
sensitivity of the information. Before a user (or a process) is al-
lowed to access information at a particular security level, the user
should have clearance to access the information at that level.

A simple security model with two security levelsL andH, can
be defined using a lattice with partial orderL v H. Parts of pro-
gram elements can be labeled with eitherH or L. For confiden-
tiality, information fromH labeled elements cannot flow intoL
labeled elements [4], and for integrity information fromL labeled
elements cannot flow inH labeled elements [5].

Our analysis based on TSSA is ahybrid analysisthat includes
both typestate analysis and information flow analysis. It is impor-
tant to remember that traditional typestate analysis do not use lat-
tice more, and whereas traditional information flow analysis do not
use typestate model.

6.2 Security Vulnerability Detection

Bisbey et. al, [6] proposed in 1978 to use what we would now
call program analysis to detect security vulnerabilities in source
code. Unfortunately, the technology available at the time was not
adequate for this proposal to be realized. Since then, much work
has been done in this area, including such work as [8, 3, 11, 37, 31].

In [29] and [28], Reimer et al. detect programming errors in
J2EE Web applications, and apply their tool to large, commercial
applications. Their system allows application-specific rules to be
constructed from a set of general templates.

Huang et al. [15] use information flow based type systems for
detecting flow insensitive security bugs. They also use typestate
analysis for detecting flow sensitive bugs. The sections in the code
that are considered by the static analysis to be vulnerable are in-
strumented at the runtime. The vulnerabilities that they consider
are XSS and SQL injection. Huang et al. do not handle pointer ref-
erence, which simplifies much of their analysis.

Pixy [16, 17], is a tool for detecting security vulnerabilities
that is based on information flow taint analysis. Pixy analysis is
flow sensitive and limited context sensitive. Pixy analysis include
literal analysis and alias analysis, but limited to non-object-oriented
features of PHP.

Nguyen et al. [23] and Pietraszek and Berghe [24] use fine
grain dynamic taint analysis for tracking tainted data at substring
level. They then use fine grain taint analysis to detect injection
attacks. Both approaches modify the PHP interpreter to track taint
information for string data.

Minamide [21] approximates the string output of PHP programs
using a context-free grammar. The approach does static checking
of properties and validation of the Web pages that are generated
dynamically, and use the result to detect cross-site scripting vulner-
ability. Once again Minamide does not deal with objects and ref-
erences and ignore the relationship between arguments and return
value inside functions.

Su and Wassermann [33] first define a formal model of com-
mand injection attacks in web application. They then propose an
algorithm for preventing these attacks based on context-free gram-
mars and compiler parsing techniques. They also assume that the
input that gets propagated into the database query or the output
document changes the syntactic structure of the query or document.

Xie and Aiken [35] use a symbolic execution to model dynamic
features of PHP inside basic blocks . Block summaries are then
used to hide complexity of symbolic execution and from intra- and
inter-procedural analysis.

SQLrand [7] avoid SQL injection attacks by separating com-
mands encoded in the program code from user input data. It is
based on the assumption that keywords of SQL statements are fixed
as constants in the script code and should not be given by the user
input. Source code is instrumented by replacing all keywords with
encoded versions. The modified statements are intercepted by an
SQL proxy, which filters illegal SQL encoded statements.

In [18], instructions are encrypted when they are stored in mem-
ory and decrypted before being loaded into the processor. Without

knowing the key, code that is changed by malicious users would be
incorrectly decrypted and the application would crash.

6.3 Typestate Analysis and SSA Form

The original work on typestate focused on finding flow-sensitive
errors [32]. DeLine and Fahndrich extended the classical typestate
theory to objects [9]. They use pre- and post-conditions to express
allowed transition rules between the typestates of the object, and
typestates to express predicates (or constraints) over the objects
concrete state, which includes the field states. They handle alias-
ing by using adoption and focus operations with linear type system.
The type checker assumes must-alias properties for a limited pro-
gram scope, and so are able to handle strong updates during types-
tate transitions. Aiken et al. enable strong updates during typestate
transition by using an inference algorithm for inferring restricted
and confined pointers. Foster et al. present a mechanism to add
type qualifiers as first class element in C language [13]. Type qual-
ifier are similar to typestates and can be used for detecting flow-
sensitive type errors. Fink et al. present a staged approach and com-
bine some of the previous work on typestate analysis. The resulting
framework for verification of typestate properties is a staged veri-
fication system in which faster verifiers run at earlier stages which
reduce the workload for later, more precise, stages. Our work dif-
fers from most previous work on typestate analysis in that we com-
bine sparse evaluation and typestate analysis to construct TSSA
form and SPIG. Our typestate verification using TSSA form is in-
spired from Wegman and Zadeck optimistic constant propagation
algorithm [34]. We introduce a lattice structure for typestates, and
use properties of SSA form and optimistic constant propagation al-
gorithm to obtain a faster and precise typestate verification in the
presence aliasing. We are currently extending the sparse typestate
analysis for non-shallow programs.

Our sparse property implication analysis and SPIG can be ap-
plied to solve many data flow problems that have property impli-
cation property. We are currently using SPIG for taint analysis and
for interprocedural typestate verification.

7. Conclusions
Developing security checking and understanding tool is a challeng-
ing task. It is not only important to come up with the right analysis
techniques to solve security problems, it is also important to ensure
the analysis is well integrated into the development process and
be made transparent to the application developer. In this paper we
have only touched upon the “tip of the iceberg” in terms of our ex-
perience with building usable security tools. We are continuing to
expand our repertoire of security related tasks that can help appli-
cation developer to build secure software for Java, PHP, JavaScript,
and other languages. Also, our objective is to give the same user
experience when developing with multiple languages.

References
[1] Alejandro Abdelnur and Stefan Hepper. Java Portlet specification.

Java Specification Requests 168, Java Community Process, October
2003.

[2] The OSGi Alliance.OSGi Service Platform, Release 3. Ios Pr, Inc,
2003.

[3] K. Ashcraft and D. Engler. Using programmer-written compiler
extensions to catch security holes, May 2002. In IEEE Symposium
on Security and Privacy, Oakland, California.

[4] E. D. Bell and L. J. LaPadula. ”Secure Computer Systems:
Mathematical Foundations and Model”. InTechnical Report M74-
244, Mitre Corporation, 1973.

[5] K. J. Biba. ”Integrity Considerations for Secure Computer Systems”.
In Technical Report M74-244, Mitre Corporation, 1975.

[6] Richard Bisbey and Dennis Hollingworth. Protection analysis:
Final report. Technical Report ISI/SR-78-13, Information Sciences
Institute, University of Southern California, Marina del Rey, CA,
May 1978. http://csrc.nist.gov/publications/history/
bisb78.pdf.

[7] S. Boyd and A. Keromytis. ”SQLrand: Preventing SQL injection
attacks”. InProceedings of the 2nd Applied Cryptography and
Network Security (ACNS) Conference, 2004.

[8] Hao Chen and David Wagner. MOPS: an infrastructure for examining
security properties of software. InProceedings of the 9th ACM
Conference on Computer and Communications Security, pages 235–
244, Washington, DC, November 18–22, 2002.

[9] R. DeLine and M. Fahndrich. Typestates for objects. In18th
European Conference on Object-Oriented Programming, 2004.

[10] Julian Dolby. Using static analysis for IDE’s for dynamic languages.
In The Eclipse Languages Symposium, October 2005.

[11] David Evans and David Larochelle. Improving security using
extensible lightweight static analysis.IEEE Softw., 19(1):42–51,
2002.

[12] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate
verification: Abstraction techniques and complexity results. InIn
Proceedings. of Static Analysis Symposium,, volume 2694, pages
439–462. LNCS Springer, 2003.

[13] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-Sensitive
Type Qualifiers. InProceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 1–12, Berlin, Germany, June 2002.

[14] Li Gong and Roland Schemers. Implementing protection domains in
the javatm development kit 1.2. InNDSS. The Internet Society, 1998.

[15] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo. ”Securing
Web Application Code by Static Analysis and Runtime Protection”.
In WWW ’04: Proceedings of the 13th International Conference on
World Wide Web, 2004.

[16] N. Jovanovic, C. Kruegel, and E. Kirda. ”Pixy: A Static Analysis
Tool for Detecting Web Application Vulnerabilities”. InProceedings
of the IEEE Symposium on Security and Privacy, 2006.

[17] N. Jovanovic, C. Kruegel, and E. Kirda. ”Precise Alias Analysis for
Static Detection of Web Application Vulnerabilities”. InProceedings
of the 2006 workshop on Programming languages and analysis for
security, 2006.

[18] G. S. Kc, A. D. Keromytis, and V. Prevelakis. ”Countering
Code-Injection Attacks with Instruction-Set Randomization”. In
Proceedings of the 10th ACM Conference on Computer and
Communications Security, 2003.

[19] Larry Koved, Marco Pistoia, and A Kershenbaum. ”Access Rights
Analysis for Java”. InProceedings of the 17th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, 2002.

[20] Alan Kropp, Carsten Leue, and Rich Thompson. Web Services for
Remote Portlets Specification. Oasis standard, OASIS, August 2003.
Version 1.0.

[21] Y. Minamide. ”Static Approximation of Dynamically Generated
Web Pages”. InWWW ’05: Proceedings of the 14th International
Conference on World Wide Web, 2005.

[22] George C. Necula. Proof-carrying code. In24th Symposium on
Principles of Programming Languages (POPL), pages 106–119,
Paris, France, January 1997. ACM Press.

[23] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
”Automatically Hardening Web Applications Using Precise Taint-
ing”. In Proceedings of the 20th IFIP International Information
Security Conference, 2005.

[24] T. Pietraszek and C. V. Berghe. ”Defending against Injection Attacks
through Context-Sensitive String Evaluation”. InProceedings of the
Recent Advances in Intrusion Detection (RAID), 2005.

http://csrc.nist.gov/publications/history/bisb78.pdf
http://csrc.nist.gov/publications/history/bisb78.pdf

[25] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against
injection attacks through context-sensitive string evaluation. InRAID,
pages 124–145, 2005.

[26] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar. ”Interprocedural
Analysis for Privileged Code Placement and Tainted Variable
Detection”. InProceedings of 19th European Conference on Object-
Oriented Programming, 2005.

[27] S. Porat, M. Biberstein, L. Koved, and B. Mendelson. Automatic
detection of immutable fields in java. InProceedings of CASCON
2000, 2000.

[28] Darrel Reimer, Edith Schonberg, Kavitha Srinivas, Harini Srinivasan,
Julian Dolby, Aaron Kershenbaum, and Larry Koved. Validating
structural properties of nested objects. InProceedings of the 19th
Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2004.

[29] Darrell Reimer, Edith Schonberg, Kavitha Srinivas, Harini Srinivasan,
Bowen Alpern, Robert Johnson, Aaron Kershenbaum, and Larry
Koved. Saber: Smart analysis based error reduction. InProceedings
of the International Symposium on Software Testing and Analysis,
2004.

[30] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky,
and Saher Esmeir. BrowserShield: Vulnerability-driven filtering
of dynamic HTML. In Proceedings of the Sixth Symposium on
Operating Systems Design and Implementation, November 2006.

[31] Benjamin Schwarz, Hao Chen, David Wagner, Jeremy Lin, Wei Tu,
Geoff Morrison, and Jacob West. Model checking an entire linux
distribution for security violations.acsac, 0:13–22, 2005.

[32] R. Strom and S. Yemini. Typestate: a programming language concept
for enhancing software reliability.IEEE Transactions on Software
Engineering, 12(1), Jan 1986.

[33] Z. Su and G. Wassermann. ”The Essence of Command Injection
Attacks in Web Applications”. In33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 2006.

[34] Dave Thomas.Programming Ruby: The Pragmatic Programmer’s
Guide. Pragmatic Bookshelf, 2004.

[35] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with
conditional branches.ACM Trans. Program. Lang. Syst., 13(2):181–
210, 1991.

[36] Y. Xie and A. Aiken. ”Static Detection of Security Vulnerabilities in
Scripting Languages ”. InProceedings of the 15th USENIX Security
Symposium, 2006.

[37] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov.
JavaScript instrumentation for browser security. In34st Symposium
on Principles of Programming Languages (POPL), pages 237–249.
ACM Press, January 2007.

[38] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Using cqual for
static analysis of authorization hook placement. InProceedings of the
USENIX Security Symposium, August 2002.

	Introduction
	SWORD4J: Security for Java
	PHP Analysis
	Web Application
	PHP Characteristics
	Dynamic Scoping
	 Attacks
	Initialization Issues
	Dynamic Includes

	Data Flow Problems
	Resource Analysis
	Vulnerabilities and Attacks
	PHP Runtime Analysis

	 JavaScript Analysis
	An Integrated Analysis Framework
	Related Work
	Security Models
	Security Vulnerability Detection
	Typestate Analysis and SSA Form

	Conclusions

