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Summary 

 

The Fast Fourier Transform (FFT) is a key computational 

workload for seismic imaging.  Acceleration of this 

workload can significantly reduce the run-time of seismic 

imaging applications.  In this abstract, we describe methods 

for accelerating single-precision, two-dimensional, 

complex-to-complex, FFT calculations using the Cell 

Broadband Engine (BE) processor™.  In particular, we 

focus on the Prime Factor Algorithm (PFA) FFT because of 

its flexibility and efficiency in handling a variety of FFT 

sizes.  Our results demonstrate 12x to 18x improvements 

over state-of-the-art solutions on dual-core, Intel 

Woodcrest and AMD Opteron processors. 

 

Introduction 

 
Fast Fourier Transforms (FFT’s) are important to numerous 

engineering and scientific applications, including seismic 

image processing where 2D FFT’s are widely used.  Of the 

many FFT algorithmic that exist, one generally finds a 

trade off between flexibility and efficiency.  For example, 

extremely efficient algorithms are known FFT’s that are 

powers of two in length; however, one must be willing to 

constrain oneself to sizes like 1024 and 2048 or pad one’s 

data to the next power of two and the thereby lower the 

algorithm’s efficiency.  As a compromise, some 

practitioners rely on algorithms which might be less 

efficient in particular cases but which provide better 

coverage of allowed FFT sizes. 

 

One such algorithm is the Prime Factor Algorithm (PFA) 

developed by Temperton (1985) which allows efficient 

computation of FFT’s whose size is equal to a multiple of a 

fixed set of “prime” factors.1  A scalar implementation of 

this algorithm can be found at the Colorado School of 

Mines Seismic Un*x website.  For this paper, we have 

chosen to implement the PFA FFT on the Cell BE 

Processor to evaluate the potential performance 

improvements from the processor’s eight parallel compute 

cores, data management flexibility and native vector 

registers.  Our implementation is complex-to-complex, 

single-precision, two-dimensional and includes ten “prime” 

factors: 2, 3, 4, 5, 7, 8, 9, 11, 13 and 16.  

 

In the following sections, we describe the relevant aspects 

of the Cell BE Processor; motivate the need for 

                                                                 
1
 Although called “prime” the factors implemented in any 

particular case are actually co-prime; so 4 and 16 would never 

occur together but 4 and 9 can. 

vectorization of the data; describe the vectorization of the 

code; review the algorithms that were implemented; discuss 

the experimental results and summarize with conclusions. 

 

Cell BE Processor Overview 

 

The Cell BE Processor™ was designed for the Sony 

PlayStation3™ and as such is ideally suited for the highly 

parallelizable, vectorizable, single-precision calculations 

found in computer gaming.  For the same reasons, it is also 

well suited for general image processing.  Here we only 

highlight the aspects of processor that are essential to the 

algorithm implementation issues in this paper.2 

 

The processor has nine cores:  Eight used as compute cores 

while the ninth runs the OS, spawns compute threads and 

handles some synchronization.  Each of the compute cores 

runs autonomously once its thread has been spawned which 

allows us to take full advantage of the highly parallelizable 

nature of the PFA FFT.  Each of the compute cores is a 

“native” vector processor in that each of its 128 general 

purpose registers can operate on 4 single-precision floating 

point numbers simultaneously.  Thus vector operations are 

preferred since scalar operations will be commensurately 

slower.  Each compute core has its own dedicated Memory 

Flow Controller (MFC) which enables Direct Memory 

Access (DMA) transfers (puts & gets) of data between 

coherent, shared main memory and its dedicated 256KB 

Local Store (LS).  As a compute core processes data, it uses 

the MFC’s DMA feature to move data to its LS for 

processing.  These transfers can be done concurrently with 

computation.  For efficient performance, algorithms are 

generally parallelized over multiple compute cores, 

vectorized for the vector registers and multibuffered to hide 

the latency of moving data between main memory and the 

eight LS’s. 

 

Vectorization of the Data 

 

We say that the MxN 2D data is in “scalar” format if the 

first M entries in the matrix correspond to one trace of 

length M; the next M correspond to the next trace and so on 

for N traces.  In this case, when the data is loaded into a 

vector register, it will have 4 consecutive values from one 

trace.  We say that the data is in “vector” format, or is 

“vectorized”, if 4 distinct traces have been interleaved in 

memory.  In this case, when data is loaded into a vector 

register, each float element of the register will come from a 

                                                                 
2
 Detailed Cell BE Processor information can be found at: 

http://www-128.ibm.com/developerworks/power/cell/index.html 
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different trace but each will have the same index in the 

trace it came from (e.g., a register might contain the 17th 

element from traces 0, 1, 2 and 3).  The transformation 

between scalar and vector formats is depicted in Figure 1. 

 

The motivation for this transform is that it simplifies 

virtually all subsequent computation and much of the 

memory access patterns.  This simplification results in 

dramatic performance improvements.  However additional 

performance potential is left unrealized if one has to pay 

the cost of the initial vectorization and subsequent 

scalarization every time the data is visited.  If on the other 

hand the entire data is vectorized once at the beginning of 

the seismic imaging process and all subsequent operations 

(FFT and otherwise) are done in vector format, then the 

transform overhead can be amortized and neglected.  This 

one-time-transfer approach will have benefits beyond this 

FFT implantation as all vectorizable portions of the code 

will benefit from this approach while scalar portion will not 

be significantly impacted.  In our results, we compare the 

vectorized PFA FFT performance with and without the 

repeated data vectorization and scalarization transforms, to 

measure the potential value of adopting a vectorized data 

format throughout the seismic processing pipeline.  
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Vectorization of the Code 
 

With the data in the vector format, we now have to 

“vectorize” the code.  Here is sample of scalar PFA code 

for prime factor 3 in which z[] contains the data: 

 

for (l=0; l<m; l++) { 

        t1r = z[j01]+z[j2]; 

        t1i = z[j01+1]+z[j2+1]; 

        y1r = z[j00]-0.5*t1r; 

        y1i = z[j00+1]-0.5*t1i; 

        y2r = c1*(z[j01]-z[j2]); 

        y2i = c1*(z[j01+1]-z[j2+1]); 

        z[j00] = z[j00]+t1r; 

        z[j00+1] = z[j00+1]+t1i; 

        z[j01] = y1r-y2i; 

        z[j01+1] = y1i+y2r; 

        z[j2] = y1r+y2i; 

        z[j2+1] = y1i-y2r; 

        jt = j2+2; 

        j2 = j01+2; 

        j01 = j00+2; 

        j00 = jt; 

  }  

 

Using the vectorized data, this loop can be modified to 

handle 4 traces at a time as follows: 

 
for (l=0; l<m; l++) { 

  t1r = spu_add(z[j01],z[j2]); 

  t1i = spu_add(z[j01+1],z[j2+1]); 

  y1r = spu_sub(z[j00],spu_mul(P5,t1r)); 

  y1i = spu_sub(z[j00+1],spu_mul(P5,t1i)); 

  y2r = spu_mul(c1,spu_sub(z[j01],z[j2])); 

  y2i = spu_mul(c1,spu_sub(z[j01+1],z[j2+1])); 

  z[j00]   = spu_add(z[j00],t1r); 

  z[j00+1] = spu_add(z[j00+1],t1i); 

  z[j01]   = spu_sub(y1r,y2i); 

  z[j01+1] = spu_add(y1i,y2r); 

  z[j2]    = spu_add(y1r,y2i); 

  z[j2+1]  = spu_sub(y1i,y2r); 

 

  iwrk01 = spu_insert(j01,iwrk01,0); 

  iwrk01 = spu_insert(j00,iwrk01,1); 

  iwrk01 = spu_insert(j2,iwrk01,2); 

  iwrk01 = spu_add(iwrk01,itwo); 

  j2  = spu_extract(iwrk01,0); 

  j01 = spu_extract(iwrk01,1); 

  j00 = spu_extract(iwrk01,2); 

} 

 

If the loop variable is not a multiple of four, then code has 

to be added to handle the edge condition, similarly for the 

j01 and j2 additional data alignment might be needed.  

 

Algorithm Implementations 

 
A 2D FFT can be decomposed into two sets of 1D FFT’s - 

one for each dimension.  In this approach, 1D FFT’s are 

performed for all traces in one dimension, the data is 

transposed, the 1D FFT’s are repeated on the other 

dimension and then a final transpose is done to restore the 

data to its original orientation.  We used the same approach 

here with additional considerations to take advantage of the 

Cell processor’s strengths.  This approach led to two 

implementations of the PFA FFT based on the number of 

image transfer steps from main memory to LS and back. 

 

The 3-Step Algorithm is as follows: 

Figure 1: Vectorization/Scalarization transforms for 4 traces 

of length 28.  Memory stride-one proceeds to the right.  
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1. First DMA Step: Transfer 4 traces to LS buffer; 

vectorize buffer; run vectorized PFA FFT on buffer; 

transpose each 4x4 “tile” in buffer and transfer to 

main memory; repeat until all image data have been 

processed. 

2. Second DMA Step: Transfer 1 buffer from main 

memory to LS; run vectorized PFA FFT on buffer; 

transpose buffer and transfer to main memory; repeat 

until all image buffers have been processed. 

3. Third DMA Step: Transfer 1 buffer from main 

memory to LS; scalarize; transfer to main memory; 

repeat until all image buffers have been processed. 

 

In Figure 2 below, we depict the data layout in main 

memory before and after the second step of the 3-Step 

algorithm.  The 4x4 tile size allows us to efficiently write 

the data so that it has the correct memory position for the 

next step. 
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Figure 2: High-level view of data flow in algorithm. 

 

The 2-Step Algorithm combines the second and third steps 

of the 3-Step algorithm to reduce the number of transits of 

the image data to and from main memory: 

1. The first DMA Step: Transfer 4 traces to LS buffer; 

vectorize buffer; run vectorized PFA FFT on buffer; 

transpose each 4x4 block in buffer and transfer to 

main memory; repeat until all image data have been 

processed. 

2. The second DMA Step: Transfer 2 buffers from main 

memory to LS; run vectorized PFA FFT on both 

buffers; transpose, scalarize and transfer data to main 

memory; repeat until all image buffers have been 

processed.  

 

For both of these algorithms it is implicit that the steps are 

parallelized over multiple compute cores where each core is 

processing a separate subset set of image. This requires 

synchronization at the end of each 1D FFT process so that 

we are guaranteed that the FFT is complete before starting 

the FFT of the transposed data. 

 

Note that because the 2-Step algorithm moves less data, it 

requires less bandwidth but because it merges the transpose 

and scalarization operations, it benefits less from removing 

the data vectorization and scalarization transforms.  This 

effect can be seen in our performance results below.  

 

Experimental Results 
 

The 2-Step and 3-Step algorithms described above were 

optimized by hand and run on a 3.2 GHz Cell BE blade 

with two Cell BE chips, 1GB RAM and 18x16MB huge 

memory pages.  Each Cell BE chip ran on its own set of 

image data 20480 times for a total of 40960, 2D FFT’s 

performed for each image size.  Each algorithm was also 

run with the corresponding data vectorization and 

scalarization transforms removed to test the performance 

when the data is already in vectorized format.  In the 

following we refer to these four cases as 2-Step with data 

vectorization, 2-Step without, 3-Step with and 3-Step 

without (or 2SW, 2SWO, 3SW and 3SWO, respectively).  

The images sizes were chosen to be representative of those 

commonly used seismic imaging. 

 

In order to enable a blade-to-blade performance 

comparison, we ran 2D, complex-to-complex, single-

precision FFT’s on Intel and AMD blades.  These runs used 

dual-core, dual-socket Woodcrest and Opteron blades 

running at 3.0 GHz and 2.4 GHz, respectively.  Each of the 

four cores on these blades ran on its own set of image data 

10240 times for a total of 40960, 2D FFT’s performed for 

each image size.  In order to make these comparisons as 

fair as possible, we used the optimized math libraries 

provided by Intel and AMD for comparison:  On the 

Woodcrest blade, we used the FFT implementation in 

Intel’s Math Kernel Library (MKL) and for the Opteron 

blade we used the FFT implementation in AMD’s Core 

Math Library (ACML). 

 

Figure 3 compares the execution time in seconds for a 

variety of 2D image sizes among the four algorithms 

described in this paper running on Cell blades and the 2D 

FFT algorithms running on Woodcrest and Opteron.  From 

Figure 3, we can see that the Cell BE processor is 

significantly faster then either the Intel Woodcrest or the 
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AMD Opteron in a blade-to-blade comparison.3  The 3-

Step algorithm without repeated data vectorization 

transforms (3SWO) is the best overall but if a complete 

vectorization of all data is not possible, then the 2-Step 

algorithm (2SW) is the best overall performer.  The 2SW 

case is about 7% faster than the 3SW case. 

 

Figures 4 and 5 compare the speedup of the Cell BE 

algorithms described in this paper relative to the AMD 

Opteron and Intel Woodcrest FFT performance, 

respectively.  From these figures, we can see that the PFA 

FFT on Cell can outperforms the ACML FFT on dual-core 

Opteron by a speedup of over 14x in the 2SW case and by 

nearly 18x in the 3SWO case; and relative to the MKL FFT 

on dual-core Woodcrest, we see that the PFA FFT on Cell 

can outperforms by a speedup of nearly 9x in the 2SW case 

and over 12x in the 3SWO case.  Note that in Figure 4, the 

speedup is fairly constant over a wide range of image sizes 

while in Figure 5 we see the speedup increasing with image 

size particularly for the 3SW and 3SWO cases.  We 

anticipate this trend will continue until for larger images 

sizes.  This will be the focus of other studies. 

 

Conclusions 
 

In this paper we have presented four algorithms for 

accelerating 2D, complex-to-complex, single-precision FFT 

calculations on the Cell BE Processor.  We have described 

the various implementation issues and have compared the 

performance of these algorithms with state-of-the-art FFT 

implementations from Intel and AMD running on dual-

core, dual-socket Woodcrest and Opteron blades, 

respectively.  Our comparisons demonstrate a significant 

opportunity for accelerating the algorithms that are of key 

importance to this conference’s audience. 

 

We believe that as multicore processor design advances, it 

will become increasingly important that researchers pay 

close attention to the special algorithmic requirements in 

order to obtain highly-efficient code on such processors.  

We hope that this paper will motivate other researchers to 

explore implementing additional algorithms on the Cell BE 

Processor and that the lessons learned here will be useful in 

those explorations. 
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3
 It should be noted that this advantage persists at the chip-to-chip 

level but for size reasons those results are not included here. 
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Cell Performance Speedup over AMD Opteron 
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Figure 4 

 

Cell Performance Speedup over Intel Woodcrest 
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Figure 5 


