
RC24244 (W0704-106) April 18, 2007
Computer Science

IBM Research Report

Accelerating FFT Performance Using the Cell BE Processor

Jizhu Lu, Acie Nobles*, Michael Perrone
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

*IBM Sales & Distribution

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Accelerating FFT Performance Using the Cell BE Processor
Jizhu Lu, Acie Nobles and Michael Perrone*, IBM Corporation

Summary

The Fast Fourier Transform (FFT) is a key computational

workload for seismic imaging. Acceleration of this

workload can significantly reduce the run-time of seismic

imaging applications. In this abstract, we describe methods

for accelerating single-precision, two-dimensional,

complex-to-complex, FFT calculations using the Cell

Broadband Engine (BE) processor™. In particular, we

focus on the Prime Factor Algorithm (PFA) FFT because of

its flexibility and efficiency in handling a variety of FFT

sizes. Our results demonstrate 12x to 18x improvements

over state-of-the-art solutions on dual-core, Intel

Woodcrest and AMD Opteron processors.

Introduction

Fast Fourier Transforms (FFT’s) are important to numerous

engineering and scientific applications, including seismic

image processing where 2D FFT’s are widely used. Of the

many FFT algorithmic that exist, one generally finds a

trade off between flexibility and efficiency. For example,

extremely efficient algorithms are known FFT’s that are

powers of two in length; however, one must be willing to

constrain oneself to sizes like 1024 and 2048 or pad one’s

data to the next power of two and the thereby lower the

algorithm’s efficiency. As a compromise, some

practitioners rely on algorithms which might be less

efficient in particular cases but which provide better

coverage of allowed FFT sizes.

One such algorithm is the Prime Factor Algorithm (PFA)

developed by Temperton (1985) which allows efficient

computation of FFT’s whose size is equal to a multiple of a

fixed set of “prime” factors.1 A scalar implementation of

this algorithm can be found at the Colorado School of

Mines Seismic Un*x website. For this paper, we have

chosen to implement the PFA FFT on the Cell BE

Processor to evaluate the potential performance

improvements from the processor’s eight parallel compute

cores, data management flexibility and native vector

registers. Our implementation is complex-to-complex,

single-precision, two-dimensional and includes ten “prime”

factors: 2, 3, 4, 5, 7, 8, 9, 11, 13 and 16.

In the following sections, we describe the relevant aspects

of the Cell BE Processor; motivate the need for

1
 Although called “prime” the factors implemented in any

particular case are actually co-prime; so 4 and 16 would never

occur together but 4 and 9 can.

vectorization of the data; describe the vectorization of the

code; review the algorithms that were implemented; discuss

the experimental results and summarize with conclusions.

Cell BE Processor Overview

The Cell BE Processor™ was designed for the Sony

PlayStation3™ and as such is ideally suited for the highly

parallelizable, vectorizable, single-precision calculations

found in computer gaming. For the same reasons, it is also

well suited for general image processing. Here we only

highlight the aspects of processor that are essential to the

algorithm implementation issues in this paper.2

The processor has nine cores: Eight used as compute cores

while the ninth runs the OS, spawns compute threads and

handles some synchronization. Each of the compute cores

runs autonomously once its thread has been spawned which

allows us to take full advantage of the highly parallelizable

nature of the PFA FFT. Each of the compute cores is a

“native” vector processor in that each of its 128 general

purpose registers can operate on 4 single-precision floating

point numbers simultaneously. Thus vector operations are

preferred since scalar operations will be commensurately

slower. Each compute core has its own dedicated Memory

Flow Controller (MFC) which enables Direct Memory

Access (DMA) transfers (puts & gets) of data between

coherent, shared main memory and its dedicated 256KB

Local Store (LS). As a compute core processes data, it uses

the MFC’s DMA feature to move data to its LS for

processing. These transfers can be done concurrently with

computation. For efficient performance, algorithms are

generally parallelized over multiple compute cores,

vectorized for the vector registers and multibuffered to hide

the latency of moving data between main memory and the

eight LS’s.

Vectorization of the Data

We say that the MxN 2D data is in “scalar” format if the

first M entries in the matrix correspond to one trace of

length M; the next M correspond to the next trace and so on

for N traces. In this case, when the data is loaded into a

vector register, it will have 4 consecutive values from one

trace. We say that the data is in “vector” format, or is

“vectorized”, if 4 distinct traces have been interleaved in

memory. In this case, when data is loaded into a vector

register, each float element of the register will come from a

2
 Detailed Cell BE Processor information can be found at:

http://www-128.ibm.com/developerworks/power/cell/index.html

Accelerating FFT Performance Using the Cell BE Processor

different trace but each will have the same index in the

trace it came from (e.g., a register might contain the 17th

element from traces 0, 1, 2 and 3). The transformation

between scalar and vector formats is depicted in Figure 1.

The motivation for this transform is that it simplifies

virtually all subsequent computation and much of the

memory access patterns. This simplification results in

dramatic performance improvements. However additional

performance potential is left unrealized if one has to pay

the cost of the initial vectorization and subsequent

scalarization every time the data is visited. If on the other

hand the entire data is vectorized once at the beginning of

the seismic imaging process and all subsequent operations

(FFT and otherwise) are done in vector format, then the

transform overhead can be amortized and neglected. This

one-time-transfer approach will have benefits beyond this

FFT implantation as all vectorizable portions of the code

will benefit from this approach while scalar portion will not

be significantly impacted. In our results, we compare the

vectorized PFA FFT performance with and without the

repeated data vectorization and scalarization transforms, to

measure the potential value of adopting a vectorized data

format throughout the seismic processing pipeline.

Scalar Data

Vectorized Data

1

1

1

1

1 1 1 1

2

2

2

2

2 2 2 2

3

3

3

3

4

4

4

4

3 3 3 3 4 4 4 4

Vectorization of the Code

With the data in the vector format, we now have to

“vectorize” the code. Here is sample of scalar PFA code

for prime factor 3 in which z[] contains the data:

for (l=0; l<m; l++) {

 t1r = z[j01]+z[j2];

 t1i = z[j01+1]+z[j2+1];

 y1r = z[j00]-0.5*t1r;

 y1i = z[j00+1]-0.5*t1i;

 y2r = c1*(z[j01]-z[j2]);

 y2i = c1*(z[j01+1]-z[j2+1]);

 z[j00] = z[j00]+t1r;

 z[j00+1] = z[j00+1]+t1i;

 z[j01] = y1r-y2i;

 z[j01+1] = y1i+y2r;

 z[j2] = y1r+y2i;

 z[j2+1] = y1i-y2r;

 jt = j2+2;

 j2 = j01+2;

 j01 = j00+2;

 j00 = jt;

 }

Using the vectorized data, this loop can be modified to

handle 4 traces at a time as follows:

for (l=0; l<m; l++) {

 t1r = spu_add(z[j01],z[j2]);

 t1i = spu_add(z[j01+1],z[j2+1]);

 y1r = spu_sub(z[j00],spu_mul(P5,t1r));

 y1i = spu_sub(z[j00+1],spu_mul(P5,t1i));

 y2r = spu_mul(c1,spu_sub(z[j01],z[j2]));

 y2i = spu_mul(c1,spu_sub(z[j01+1],z[j2+1]));

 z[j00] = spu_add(z[j00],t1r);

 z[j00+1] = spu_add(z[j00+1],t1i);

 z[j01] = spu_sub(y1r,y2i);

 z[j01+1] = spu_add(y1i,y2r);

 z[j2] = spu_add(y1r,y2i);

 z[j2+1] = spu_sub(y1i,y2r);

 iwrk01 = spu_insert(j01,iwrk01,0);

 iwrk01 = spu_insert(j00,iwrk01,1);

 iwrk01 = spu_insert(j2,iwrk01,2);

 iwrk01 = spu_add(iwrk01,itwo);

 j2 = spu_extract(iwrk01,0);

 j01 = spu_extract(iwrk01,1);

 j00 = spu_extract(iwrk01,2);

}

If the loop variable is not a multiple of four, then code has

to be added to handle the edge condition, similarly for the

j01 and j2 additional data alignment might be needed.

Algorithm Implementations

A 2D FFT can be decomposed into two sets of 1D FFT’s -

one for each dimension. In this approach, 1D FFT’s are

performed for all traces in one dimension, the data is

transposed, the 1D FFT’s are repeated on the other

dimension and then a final transpose is done to restore the

data to its original orientation. We used the same approach

here with additional considerations to take advantage of the

Cell processor’s strengths. This approach led to two

implementations of the PFA FFT based on the number of

image transfer steps from main memory to LS and back.

The 3-Step Algorithm is as follows:

Figure 1: Vectorization/Scalarization transforms for 4 traces

of length 28. Memory stride-one proceeds to the right.

Accelerating FFT Performance Using the Cell BE Processor

1. First DMA Step: Transfer 4 traces to LS buffer;

vectorize buffer; run vectorized PFA FFT on buffer;

transpose each 4x4 “tile” in buffer and transfer to

main memory; repeat until all image data have been

processed.

2. Second DMA Step: Transfer 1 buffer from main

memory to LS; run vectorized PFA FFT on buffer;

transpose buffer and transfer to main memory; repeat

until all image buffers have been processed.

3. Third DMA Step: Transfer 1 buffer from main

memory to LS; scalarize; transfer to main memory;

repeat until all image buffers have been processed.

In Figure 2 below, we depict the data layout in main

memory before and after the second step of the 3-Step

algorithm. The 4x4 tile size allows us to efficiently write

the data so that it has the correct memory position for the

next step.

4xM

Element

Buffer

4x4

Element

Tile

Transposed

4x4 Tile

Transposed

4xM Buffer

Figure 2: High-level view of data flow in algorithm.

The 2-Step Algorithm combines the second and third steps

of the 3-Step algorithm to reduce the number of transits of

the image data to and from main memory:

1. The first DMA Step: Transfer 4 traces to LS buffer;

vectorize buffer; run vectorized PFA FFT on buffer;

transpose each 4x4 block in buffer and transfer to

main memory; repeat until all image data have been

processed.

2. The second DMA Step: Transfer 2 buffers from main

memory to LS; run vectorized PFA FFT on both

buffers; transpose, scalarize and transfer data to main

memory; repeat until all image buffers have been

processed.

For both of these algorithms it is implicit that the steps are

parallelized over multiple compute cores where each core is

processing a separate subset set of image. This requires

synchronization at the end of each 1D FFT process so that

we are guaranteed that the FFT is complete before starting

the FFT of the transposed data.

Note that because the 2-Step algorithm moves less data, it

requires less bandwidth but because it merges the transpose

and scalarization operations, it benefits less from removing

the data vectorization and scalarization transforms. This

effect can be seen in our performance results below.

Experimental Results

The 2-Step and 3-Step algorithms described above were

optimized by hand and run on a 3.2 GHz Cell BE blade

with two Cell BE chips, 1GB RAM and 18x16MB huge

memory pages. Each Cell BE chip ran on its own set of

image data 20480 times for a total of 40960, 2D FFT’s

performed for each image size. Each algorithm was also

run with the corresponding data vectorization and

scalarization transforms removed to test the performance

when the data is already in vectorized format. In the

following we refer to these four cases as 2-Step with data

vectorization, 2-Step without, 3-Step with and 3-Step

without (or 2SW, 2SWO, 3SW and 3SWO, respectively).

The images sizes were chosen to be representative of those

commonly used seismic imaging.

In order to enable a blade-to-blade performance

comparison, we ran 2D, complex-to-complex, single-

precision FFT’s on Intel and AMD blades. These runs used

dual-core, dual-socket Woodcrest and Opteron blades

running at 3.0 GHz and 2.4 GHz, respectively. Each of the

four cores on these blades ran on its own set of image data

10240 times for a total of 40960, 2D FFT’s performed for

each image size. In order to make these comparisons as

fair as possible, we used the optimized math libraries

provided by Intel and AMD for comparison: On the

Woodcrest blade, we used the FFT implementation in

Intel’s Math Kernel Library (MKL) and for the Opteron

blade we used the FFT implementation in AMD’s Core

Math Library (ACML).

Figure 3 compares the execution time in seconds for a

variety of 2D image sizes among the four algorithms

described in this paper running on Cell blades and the 2D

FFT algorithms running on Woodcrest and Opteron. From

Figure 3, we can see that the Cell BE processor is

significantly faster then either the Intel Woodcrest or the

Accelerating FFT Performance Using the Cell BE Processor

AMD Opteron in a blade-to-blade comparison.3 The 3-

Step algorithm without repeated data vectorization

transforms (3SWO) is the best overall but if a complete

vectorization of all data is not possible, then the 2-Step

algorithm (2SW) is the best overall performer. The 2SW

case is about 7% faster than the 3SW case.

Figures 4 and 5 compare the speedup of the Cell BE

algorithms described in this paper relative to the AMD

Opteron and Intel Woodcrest FFT performance,

respectively. From these figures, we can see that the PFA

FFT on Cell can outperforms the ACML FFT on dual-core

Opteron by a speedup of over 14x in the 2SW case and by

nearly 18x in the 3SWO case; and relative to the MKL FFT

on dual-core Woodcrest, we see that the PFA FFT on Cell

can outperforms by a speedup of nearly 9x in the 2SW case

and over 12x in the 3SWO case. Note that in Figure 4, the

speedup is fairly constant over a wide range of image sizes

while in Figure 5 we see the speedup increasing with image

size particularly for the 3SW and 3SWO cases. We

anticipate this trend will continue until for larger images

sizes. This will be the focus of other studies.

Conclusions

In this paper we have presented four algorithms for

accelerating 2D, complex-to-complex, single-precision FFT

calculations on the Cell BE Processor. We have described

the various implementation issues and have compared the

performance of these algorithms with state-of-the-art FFT

implementations from Intel and AMD running on dual-

core, dual-socket Woodcrest and Opteron blades,

respectively. Our comparisons demonstrate a significant

opportunity for accelerating the algorithms that are of key

importance to this conference’s audience.

We believe that as multicore processor design advances, it

will become increasingly important that researchers pay

close attention to the special algorithmic requirements in

order to obtain highly-efficient code on such processors.

We hope that this paper will motivate other researchers to

explore implementing additional algorithms on the Cell BE

Processor and that the lessons learned here will be useful in

those explorations.

Acknowledgments

The authors thank Billy Robinson of the IBM Corporation

for his assistance in generating the performance

comparison timings for the Woodcrest and Opteron

processors.

3
 It should be noted that this advantage persists at the chip-to-chip

level but for size reasons those results are not included here.

Execution Time Performance Comparison

1

10

100

1000

36
4x

24
0

61
6x

30
8

84
0x

46
2

10
08

x6
16

12
60

x8
40

15
40

x1
00

8

E
x
e
c
u
ti
o
n
 T

im
e
 (
s
e
c
o
n
d
s
)

Intel

AMD

3SW

3SWO

2SW

2SWO

Figure 3

Cell Performance Speedup over AMD Opteron

0

2

4

6

8

10

12

14

16

18

20

36
4x

24
0

61
6x

30
8

84
0x

46
2

10
08

x6
16

12
60

x8
40

15
40

x1
00

8

S
p

e
e
d

u
p

s

3SW

3SWO

2SW

2SWO

Figure 4

Cell Performance Speedup over Intel Woodcrest

0

2

4

6

8

10

12

14

36
4x

24
0

61
6x

30
8

84
0x

46
2

10
08

x6
16

12
60

x8
40

15
40

x1
00

8

S
p

e
e
d

u
p

3SW

3SWO

2SW

2SWO

Figure 5

