
RC24245 (W0704-131) April 24, 2007
Computer Science

IBM Research Report

Profiling TCP:
An In-depth analysis of Processing Costs

Jason LaVoie, Erich Nahum
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Robert Flynn
Polytechnic University
Hawthorne, NY 10532

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Profiling TCP:
An In-depth Analysis of Processing Costs

Jason LaVoie, Erich Nahum
IBM T. J. Watson Research Center

Hawthorne, NY, 10532
{lavoie,nahum}@us.ibm.com

Robert Flynn
Polytechnic University
Hawthorne, NY, 10532

flynn@poly.edu

Abstract
There are currently several proposals for large, dis-

ruptive changes to the Linux TCP implementation to im-
prove network performance and scalability. These pro-
posals, including relocating part or all of the TCP stack,
header splitting, and dedicated network caches, require
potentially sizeable changes to the Linux TCP imple-
mentation. Before considering these modifications, we
believe the behavior of the Linux TCP stack should be
revisited to be better understood, studied, and optimized.

We provide an in-depth analysis of CPU profiles for
both the Linux 2.4 and the 2.6 TCP stacks. For Linux
2.4.16, we vary several aspects of networking and pro-
file the TCP stack for a detailed look at how the code
path changes under load. We show that after years of
development and enhancements the limitations of high
performance networking remain the same even across
different kernel versions and hardware.

For the Linux 2.6.14 TCP stack, CPU profiling is per-
formed using callgraph support from OProfile. The call-
graphs and newly developed callgraph examination tools
are used to determine where high level TCP functions,
such as TCP receive and TCP send message, are spend-
ing CPU cycles. These results are then examined to de-
termine bottlenecks and potential areas for improvement
with respect to CPU usage. Under load, we show why
TCP receive dominates costs even for large files.

For each kernel, we propose several possible non-
disruptive enhancements. Furthermore, we present cor-
relations and trends from the 2.4 to the 2.6 TCP stack
and trends over generations of machine hardware. Our
results validate and expand upon existing TCP profiling
work.

1 Introduction
Research has shown that on average TCP processing
alone consumes about 30% of the CPU on high volume
HTTP servers [8], [3]. This large cost of TCP process-
ing on high volume network servers has been the focus
of much recent research. Much of that work is interest-
ing but requires large sweeping changes to TCP and/or

changes to the socket API. Several proposals exist for
TCP relocation, such as TCP Offload Engines (TOEs),
on-loading, and user-space TCP. Other slightly smaller,
but still intrusive, enhancements include moving header
splitting and acknowledgement coalescing to the Net-
work Interface Card (NIC). While this research is cer-
tainly interesting and useful, the motivation with respect
to TCP’s behavior has been ignored. The Linux TCP
implementation is a complex set of functions whose cy-
cle cost and interaction could be better appreciated by
the larger community. Data profiling the Linux TCP im-
plementation is scarce and dated. Before making large
sweeping changes to the Linux TCP stack, these func-
tions and their interactions should be better understood.
Many cite the costs of the TCP as their motivation; how-
ever, they lack the behavioral studies that are key to sup-
porting the vast amount of code changes.

Most studies covering the behavior of TCP are either
dated or look at the data at too high of a level. Others
lack details to thoroughly understand what is happening
in the system. Our contributions include revalidating
previous assertions regarding the behavior of TCP and
enhancing the understanding of the known limitations to
TCP using advanced techniques.

Using kernel profiling and several specially developed
tools, a novel approach to TCP behavioral profiling is
detailed and performed herein against the Linux 2.6 TCP
implementation. The results are then compared against
profiles of the 2.4 Linux TCP implementation. While the
Linux 2.4 TCP stack may seem uninteresting for deter-
mining the future, comparing the different generations
of the kernel is helpful in identifying trends. We present
a detailed inspection of TCP to motivate the appropri-
ate areas to examine with respect to TCP performance.
Using new tools, we demonstrate that TCP receive domi-
nates CPU cycles in send heavy workloads even for large
files and provide an explanation as to why. We also use
our analysis to highlight possible areas for improvement.

The motivation for this analysis is the cost of TCP
processing on high performance network servers, and
the trends indicating it will worsen with faster wire pro-

tocols. While the cost is largely understood, the reasons
are not because studies into the behavior of TCP lack
details and depth. We study the behavior of TCP cycle
consumption across Linux versions, hardware, HTTP
servers, clients, and workloads. Linux was chosen not
because it lacks decent performance. On the contrary,
Linux was chosen because it contains the latest enhance-
ments and is the focus of the most recent research. This
is an analysis of the implementation, not of the TCP pro-
tocol itself. Our results validate previous studies [7], [8]
of TCP while providing more detail and insight on newer
hardware using the latest TCP enhancements.

1.1 Paper Outline
The rest of this paper proceeds as follows. Section 2
presents an analysis of the Linux 2.4.16 TCP stack. Sec-
tion 3 presents a detailed look at the 2.6.14 TCP stack.
Section 4 identifies trends and similarities between the
two, Section 5 covers related work, and Section 6 sum-
marizes our contributions and plans for future work.

2 2.4 Profile
To identify and solve performance bottlenecks in the
TCP/IP stack via measurement and profiling, the Linux
2.4 stack was examined. An HTTP server workload was
chosen because much work has already been done in
this area for comparison purposes. In addition, multi-
ple servers and workload generators were available for a
breadth of experiments. To show trends in TCP behavior
from 2.4 and 2.6, we ran experiments using older hard-
ware that would have been appropriate for the time when
Linux 2.4 was recent.

The server under test was an IBM Intellistation M-
Pro, 400 MHz Pentium II with 320 MB of RAM and
an Acenic gigabit adaptor, running Linux 2.4.16 UP.
Eight clients were used to generate HTTP requests.
These were 500 MHz Pentium III’s with 100 Base-T
adaptors running FreeBSD 3.3. The server was con-
nected to an Alteon ACESwitch 180 and the clients to
a Nortel BayStack with a gigabit uplink to the Alteon
ACESwitch.

To test the TCP stack under various server soft-
ware, several HTTP servers were used to serve con-
tent: Apache 1.3.20, Apache 2.0 [21], the Tux in-kernel
HTTP server [11], and the Flash HTTP server [20]. In
addition, several different I/O event notification meth-
ods were employed. These methods are: select, poll,
/dev/epoll, and real-time signals with sig-per-fd. The
Flash web server was used for all those experiments.
The /dev/epoll code is from Davide Libenzi’s /dev/epoll
implementation on 2.4.16 [14]. The signal-per-fd code
is based on an idea from Chandra and Mosberger [5],
and the code was taken from a patch by Vitaly Luban
[15].

0 5 10 15 20 25 30 35 40

TCP

IP

Kernel Memory Management

Alteon Gigabit Adaptor

Socket Buffer Manipulation

File System

Interrupt Request Management

Network Core

Socket Interface

System Call Interface

Packet Scheduling

Ethernet (driver independent)

Percent CPU utilization

1K 8K 64K

Figure 1: 2.4.16 CPU util. breakdown by category for
different file sizes

2.1 Tools
Three workload generators were used in these experi-
ments: WaspClient, SingleClient, and the SPECweb99
client. WaspClient [18] is designed to produce a re-
alistic traffic mix, generating a range of HTTP 1.0 re-
quests that capture characteristics of web server work-
loads. Examples of these characteristics include log-
normal file size distributions, Zipf popularity, and em-
bedded object requests. In this benchmark, load is de-
fined in user-equivalents with higher numbers of user-
equivalents producing more load.

SingleClient [25] is used as a stress-testing tool to pro-
duce HTTP 1.0 requests for the same file. The user can
increase the load by raising the number of simultaneous
concurrent connections. Our experiments with Single-
Client increase the load until the system under test is
saturated.

SPECweb99 [24] is an industry standard benchmark
used to gauge several aspects of HTTP servers. In these
experiments, dynamic content was turned off, and the
working set size was reduced such that it would fit into
RAM.

CPU utilization profiles were obtained using the ver-
sion of OProfile [19] that was included with Linux
2.4.16. All results are based on the CPU being 100%
utilized serving HTTP responses.

2.2 Results
The SingleClient HTTP traffic generator was used to re-
quest different file sizes from the Flash HTTP server.
Figure 1 shows the percentage of total system CPU us-
age by general category, without locking, for each re-
quested file size. As seen by Foong et al. [8], TCP
code typically takes 30 percent of the total CPU cycles
in the experiments, followed by the socket buffer (skb
or sk buffer) and Acenic routines at roughly ten per-

0 1 2 3 4 5 6 7

TCP receive

handle IRQ

Ace interrupt

TCP send message

free kernel memory

allocate kernel memory

IP receive

clone listen sock

allocate sk buffer

Ace receive init

Percent CPU Utilization

Figure 2: 2.4.16 top functions for 1K file transfers

0 1 2 3 4 5 6

TCP receive

handle IRQ

Ace interrupt

free kernel memory

free sk buffer

TCP transmit sk buffer

allocate kernel memory

allocate sk buffer

TCP receive state process

TCP send pages

Percent CPU Utilization

Figure 3: 2.4.16 top functions for 8K file transfers

cent each. These results also match that of Foong et
al. [8] and validates previous work showing the high
cost of the operating system, specifically memory man-
agement and socket buffer manipulation. Very similar
results were found for Apache 1.3, Apache 2.0 and Tux
using WASPclient, SPECweb99, and with other config-
urations of SingleClient.

We then looked at the top CPU consuming functions
per profile and graphed them per requested file size. Fig-
ures 2 - 4 show the top cycle consuming functions and
their cycle consumption for 1k, 8k, and 64k files. Each
of these graphs are dominated by TCP send and receive
and kernel memory management functions. Functions
prefixed with ”Ace” belong to the Acenic adaptor. More
fine-grained profiling data was collected but left out for
brevity. As with the categories, the top functions re-
mained fairly consistent over the varying workloads and
servers.

The following is a list of the possible candidates for
Linux 2.4 TCP stack optimizations based upon the web
server workload and kernel profiling results observed:

0 1 2 3 4 5 6

handle IRQ

sk buffer clone

free kernel memory

Ace interrupt

free sk buffer

TCP receive

TCP clean retransmit queue

TCP send pages

TCP transmit sk buffer

IP queue transmit

Percent CPU Utilization

Figure 4: 2.4.16 top functions for 64K file transfers

• TCP receive takes up to five percent of the CPU
cycles. This function is found in virtually all the
profiles, and it is responsible for the initial demul-
tiplexing of arriving TCP segments.

• TCP send pages takes three percent of cycles. This
function allocates new buffers for messages for the
TCP send side, does a virtual copy, and queues the
messages into the send queue for the subsequent
call to TCP write transmit.

• TCP transmit sk buffer takes about 2.8 percent of
the CPU cycles. This function builds the TCP head-
ers for sk buffs about to be sent and then calls the
network layer queueing routine. The headers are
explicitly built each time rather than doing some-
thing more efficient such as copying a header pro-
totype and then only modifying the relevant fields
as BSD does.

• sk buffer clone takes about 2.3 percent of cycles and
performs a virtual copy of an sk buffer. It explicitly
copies field-by-field rather than doing something
more efficient like a structure assignment.

• TCP clean retransmit queue typically takes two
percent of cycles. It cleans out packets in the re-
transmission queue once they have been acknowl-
edged from the other side. Currently, it looks at
all segments in the send queue rather than breaking
out of the loop once all relevant bytes have been
cleaned.

• TCP receive state process takes two percent of cy-
cles. This function implements the receiving side
processing for a connection (after it has been iden-
tified) for all states except ESTABLISHED and
TIME WAIT, i.e., for connection setup and tear-
down.

• TCP clone sock typically uses one percent of cy-
cles. This function creates a new socket from the
listen socket. Currently, it explicitly zeros out fields

in the socket data structure rather than using struc-
ture assignment (as BSD does) or through a memset
or bzero function.

• handle IRQ, which manages interrupt processing,
typically consumes two to five percent of cycles.
This improved with Igno Molnar’s IRQ patch; how-
ever, there still appears to be room for improve-
ment.

3 2.6 Profile
After examining the Linux 2.4 TCP stack under load, we
revisited the experiments using a newer kernel, newer
hardware, and improved tools. The server under test
was an IBM XSeries 345, 3.2 GHz Pentium Xeon with
one GB of RAM, four Intel E1000 gigabit adaptors, run-
ning Linux 2.6.14.2 SMP without hyperthreading with
OProfile enabled and CONFIG FRAMEPOINTER en-
abled. An SMP kernel was used so the effects of locking
could be observed. Thirteen clients were used to gen-
erate HTTP requests. These were 1.7 GHz Pentium 4’s
with Intel E1000 gigabit adaptors running Linux 2.6.5.
All of these machines were connected to a pair of linked
Dell gigabit switches. Clients were configured to con-
nect to a single card on the server where three of the
server’s cards had three clients and one had four clients.
In every experiment, the server’s CPU was 100% uti-
lized serving HTTP content.

To allow some comparisons to be made with the 2.4
results, the client generator, SingleClient [25] was used
as well as the Flash HTTP server [20]. Those exper-
iments were conducted with only eight of the clients.
A set of persistent connections experiments were con-
ducted using HTTPerf [17] and Autobench [16] with the
number of requests per connection set to ten and using
all 13 clients.

3.1 Tools
3.1.1 Profiling
A profile callgraph provides the key information re-
quired to determine the callee-caller relationships as
workload parameters are varied. A profile callgraph can
also dive deeper more easily than a static analysis of
source code. Using a callgraph, sub functions at an ar-
bitrary depth can be located and the cost to the higher
level function can be assigned. For example, a function
foo taking 10% of the CPU cycles may have a called
function that is m call levels deep requiring 3% of the
cycles. This called function may not show up in the list
of top cycle consumers and given the depth of m, may
not be known to contribute to the cost of foo.

OProfile [19] provides a kernel profile of functions
sorted by the number of CPU cycles used per function.
When the callgraph option is used, each function listed

is accompanied by a list of callers and callees. The
callers are determined by examining the call stack when
a sample is taken. A percentage per caller is given, and
it represents the relative percentage of other callers for
the respective function looked at. In other words, for a
given function, when a sample is taken, a percentage is
increased for functions seen on the stack relative to other
functions.

All profiling experiments used the following options.
OPControl was run with separate set to kernel, vmlinux
set to the local executing 2.6.14-2 Linux kernel, and call-
graph set to five. Varying the callgraph depth did not
alter the results. OPReport was executed with the call-
graph option and the -l option set to the local executing
2.6.14-2 Linux kernel.

3.1.2 Callgraph Parsing
To extract needed information from the large callgraph
output from OProfile, a special tool was developed.
This tool, Greatest n Descendants, shows the greatest n
descendants for the top m cycle consuming functions.
The descendants can be arbitrarily deep in the callgraph
rooted at one of the top m functions. A top function is
one listed in the Oprofile output as taking the largest per-
centage of CPU cycles during the profiling experiment.

Given a callgraph generated via OPReport as input,
and the parameters m and n, Greatest n Descendants first
creates m call trees rooted at the mth greatest function.
These trees are created in the same physical data struc-
ture - meaning identical functions per graph share a node
in this structure.

After the call tree is assembled, it is traversed via a
Breadth First Search (BFS) per top node. While travers-
ing the tree, n descendants with the highest CPU us-
age percentage are collected. The result is a list of the
n greatest descendants of each tree. Having each de-
scendant listed with cycles consumed is quite insightful;
however, it does not provide enough information. If two
higher order functions use the services of a lower level
function, only a certain percentage of the cycles con-
sumed by the lower level function can be attributed to
each higher order function to properly map the behavior.

3.1.3 Attribution
Greatest n Descendants gives us the top cycle consum-
ing functions for the high level functions; however, it is
not possible to tell how much of the descendant’s costs
belongs to a top function (i.e. the root of a call tree). Us-
ing the Linux source tree, the callgraphs from OProfile,
and the results from the Greatest n Descendants, graphs
for each set of results were made from the interesting top
functions down to and past their Greatest Descendants.
Generic versions of these graphs can be found in figure 5
for TCP receive, figure 6 for TCP’s sending routines, and

figure 7 for sk buffer allocation. Italicized functions in
these diagrams denote functions that appear in more than
one diagrams (i.e. they cross diagrams). For simplicity,
the figures only include the relevant functions that ap-
pear in our profiles as well as some additional functions
that give context. All of the results presented in this sec-
tion correlate to these figures, thus one can see the po-
tential call tree for a given function with respect to the
TCP operation. The edges per graph and weight of the
edges varies with different workloads.

The generic callgraph rooted at TCP receive can be
seen in figure 5. TCP receive is animated by the IP layer
(specifically IP local deliver) when a new packet arrives
off the network. A typical processing path for an in-
bound packet is to TCP receive established through TCP
do receive. If the packet contains an acknowledgement,
TCP ACK receive is called, and then a new acknowl-
edgement is created in TCP send ACK (via TCP ACK
send check). A new sk buffer is allocated and then sent
via TCP transmit sk buffer. The path from there can be
seen in figure 6.

Figure 6 has two primary roots, TCP send message
and TCP send pages. TCP send message is the standard
send mechanism for TCP via the send socket call. TCP
send pages hands scatter-gather page lists to the Net-
work Interface Card (NIC). It is used with the sendfile
socket call. A standard send will see TCP write transmit
called for the pending sk buffer. This in turn calls TCP
transmit sk buffer which calls IP queue transmit. The
call tree can be followed all the way down to the device
including the device queueing mechanism. A secondary
root to the graph in figure 6 is TCP receive (connected
via TCP receive state process). This relationship is ex-
plored in more detail later in this section.

The allocation of sk buffers, seen in figure 7, is based
on Bonwick’s Slab Allocator [4]. The basic idea is to
keep some amount of free memory available for alloca-
tions. If that amount of memory drops below some low
water mark then more is allocated. Some functions in
this graph are also animated by the poll system call.

A new tool, Calltree, was developed to produce re-
duced callgraphs or sub-callgraphs. This tools allowed
us to create reduced callgraphs with only those functions
that were interesting while trimming out the noise from
the larger generic callgraphs presented above. Given
a list of functions as nodes, callers with a calling per-
centage greater than a threshold are traversed. Thus a
call tree with the greatest callers can be built bottom-
up. With this information, the cumulative attribution can
be calculated creating attribution sub-callgraphs. These
show the cost in cycles per graph node for the higher
level function of interest. This allows us to attribute the
cost of a function to its ancestors.

3.2 Results
Figures 8 - 10 show the top ten functions for CPU uti-
lization and their respective CPU utilization as reported
by OProfile for various requested file sizes. As the file
size increases, so does the cost of sending pages (Flash
uses the sendfile socket call). For smaller files, the costs
of locking and memory management is very high. In ad-
dition, as file sizes increase, the relative cost (in CPU
utilization) of sending increases (TCP send message is
1.25% for 1K files) while the relative cost of receiving
decreases. As with the 2.4 kernel, sk buffer clone has
an increasing cost as the transferred file size increases.
This is because less time is spent on connection set-up,
tear-down, and look-up, and more time is spent sending
data. Even though sending is the primary operation op-
eration for the HTTP server, even with a large file size,
TCP receive dominates TCP costs. This cost; however,
is reduced as the file sizes increase.

Transmit Segmentation Offload (TSO) is a feature of-
fered by many NIC vendors that advertises a higher net-
work MTU (typically 64K) to TCP . TCP will then give
send buffers to the NIC in these larger units. The NIC
then breaks these larger buffers into packets of the actual
MTU size. This leads to less memory and cycles con-
sumed by TCP because it is dealing with larger buffers.
It also should reduce the amount of time spent communi-
cating with the NIC. Figures 11 - 13 show the results of
the same experiments as before but with TSO enabled.
For 8K files, TCP send pages, the routine used to hand
pages to the NIC when using TSO, is ranked 11th with
a CPU utilization of 1.6%. For larger files, the increase
cost of send is less pronounced with TSO enabled and
receive is more pronounced. The cost of cloning an sk
buffer also increases with file size. With and without
TSO, for small files, the system call layer hook is a top
ten function. A hook for the system call layer is executed
whenever system call is executed from user space.

Larger files also had file reference count functions in
the top ten functions when persistent connections were
used. This is expected because less cycles will be con-
sumed with connection setup and tear-down. Persistent
connections also showed greater cycles consumed by
TCP poll (approximately 4%) because connections are
kept in the system longer, therefore, poll has more file
descriptors to check.

The callgraphs and the cumulative sub-callgraphs al-
lowed us to determine the drag of other functions at-
tributed to top level TCP functions. Not only do we look
at the cost of a function say, TCP receive, we drill down
and look at those functions that are called as a result
thereof and attribute the cost. We used the Greatest n
Descendants tool to pull out the highest descendants for
TCP receive, TCP send message, and TCP send pages
for each of the file sizes. However, as seen in figures 5

TCP receive

TCP do
receive

TCP child processTCP receive
ESTABLISHED

TCP ACK send
check

TCP receive state
process

TCP connection
request

TCP send SYN/ACK

TCP create SYN/ACK
packet

allocate sock
memory for writing

TCP data
queue

TCP send
ACK

TCP ACK
received

clean retransmit
queue

free sk buffer

allocate sk buffer

IP local deiiver

TCP transmit sk
buffer

TCP TIME_WAIT state
process

TCP parse options

TCP handle
request

TCP check request

TCP SYN receive

IP build and send
packet

Figure 5: Generic callgraph for TCP receive

TCP send
message

TCP push pending frames

TCP write transmit

TCP transmit sk buffer

TCP send ACK IP queue transmit

IP output

IP build and send
packet

device queue transmit restart device

device start transmit

allocate sk
buffer

TCP send check

skb_clone

TCP send pages

TCP push one frame

TCP receive state process

Figure 6: Generic callgraph for TCP send message and send pages

allocate
sk buff

cache memory allocate

kernel memory allocatecache refill

grow cache

get free pages

init cache objects

get page address

TCP poll

allocate pages

Figure 7: Generic callgraph for sk buffer allocations

0 0.5 1 1.5 2 2.5 3 3.5

lock sock

free kernel memory

allocate kernel cache memory

release sk buffer data buffer

restart device transmit

free sk buffer

free sock

IP queue transmit

TCP SYN receive

Percent CPU Utilization

Callgraph Attributable to TCP receive

Figure 14: TCP receive sub-function utilization with attribution for 1k files

0 0.5 1 1.5 2 2.5 3 3.5

lock sock

unlock sock

allocate kernel cache memory

IP output

allocate sk buffer

restart device transmit

device queue transmit

allocate kernel memory

sk buff clone

TCP transmit sk buffer

IP queue transmit

Percent CPU Cycles

Callgraph Attributable to TCP send

Figure 15: TCP send message sub-function utilization with attribution for 1k files

0 0.5 1 1.5 2 2.5 3 3.5

release sk buffer data buffer

IP output

TCP transmit sk buffer

device queue transmit

restart device transmit

IP queue transmit

free kernel memory

free sk buffer

free kernel cache memory

sk buffer clone

free sock

free sk buffer data buffer

TCP clean retransmit queue

TCP receive state process

TCP write transmit

Percent CPU Cycles

Callgraph Attributable to TCP receive

Figure 16: TCP receive sub-function utilization with attribution for 8k files

0 1 2 3 4 5 6

release sk buffer data buffer

TCP write transmit

sk buffer clone

TCP transmit sk buffer

IP queue transmit

IP output

device queue transmit

restart device transmit

free kernel memory

free sk buffer memory

free sk buffer

free sock

TCP clean retransmit queue

decrement page reference count

free kernel cache memory

TCP receive state process

Percent CPU Cycles

Callgraph Attributable to TCP send

Figure 17: TCP send pages sub-function utilization with attribution for 8k files

0 1 2 3 4 5 6

release sk buffer data buffer

TCP write transmit

sk buffer clone

TCP transmit sk buffer

IP queue transmit

IP output

device queue transmit

restart device transmit

free kernel memory

free sk buffer memory

free sk buffer

free sock

TCP clean retransmit queue

Percent CPU Cycles

Callgraph Attributable to TCP receive

Figure 18: TCP receive sub-function utilization with attribution for 64k files

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

TCP write transmit

TCP transmit sk buffer

allocate sk buffer

IP queue transmit

IP output

device queue transmit

restart device transmit

allocate kernel memory

allocate kernel cache memory

lock sock

unlock sock

TCP send check

refill available cache memory

Percent CPU Cycles

Callgraph Attributable to TCP send

Figure 19: TCP send pages sub-function utilization with attribution for 64k files

0 1 2 3 4 5 6 7 8 9

TCP receive

lock sock

unlock sock

Ethernet packet type

system call handler

free kernel memory

free kernel cache memory

allocate kernel cache memory

IP output

sk buffer free data buffer

Percent CPU Utilization

Figure 8: 2.6 top functions for 1K file transfers

0 1 2 3 4 5 6 7 8

TCP receive

sk buffer free data buffer

Ethernet packet type

IP output

TCP send pages

TCP transmit sk buffer

device queue transmit

allocate sk buffer

restart device

unlock sock

Percent CPU Utilization

Figure 9: 2.6 top functions for 8K file transfers

0 1 2 3 4 5 6 7

TCP receive

TCP send pages

sk buffer free data buffer

TCP write transmit

sk buffer clone

TCP transmit sk buffer

allocate sk buffer

IP queue transmit

IP output

device queue transmit

Percent CPU Utilization

Figure 10: 2.6 top functions for 64K file transfers

0 1 2 3 4 5 6 7 8 9

TCP receive

unlock sock

lock sock

Ethernet packet type

system call handler

free kernel cache memory

free kernel memory

IP output

sk buffer free data buffer

allocate kernel cache memory

Percent CPU Utilization

Figure 11: 2.6 top functions for 1K file transfers with
TSO

0 1 2 3 4 5 6 7 8 9

TCP receive

Ethernet packet type

sk buffer free data buffer

unlock sock

lock sock

allocate sk buffer

IP output

free kernel memory

TCP transmit sk buffer

unlock sock

Percent CPU Utilization

Figure 12: 2.6 top functions for 8K file transfers with
TSO

0 1 2 3 4 5 6 7 8

TCP receive

sk buffer free data buffer

TCP send pages

Ethernet packet type

TCP write transmit

allocate sk buffer

free kernel memory

TCP transmit sk buffer

sk buffer clone

IP output

Percent CPU Utilization

Figure 13: 2.6 top functions for 64K file transfers with
TSO

- 7, multiple paths may exist to a given function. Thus,
we also calculated the attribution of a called function to
each major TCP operation. Figures 14 - 19 show the
called functions by high-level caller with the percent of
CPU cycles consumed and the approximate percentage
of cycles consumed by the callee that can be attributed
to the caller. For example, in figure 14, ten percent of
the three percent of cycles used by lock sock can be
attributed to TCP receive. Identical TSO experiments
were conducted and the percentages observed were very
similar.

TCP send message becomes less significant as the file
size increases; hence, it is excluded from figure 17. In
the 8K transfer experiments, TCP send message is at-
tributed with only 16% of sk buffer clone, 21% of IP
output and 14% percent of sk buffer allocations. As
file sizes increase, TCP receive becomes responsible for
those costs. This is because incoming packets can open
the window size and can send queued packets. This be-
havior can be seen in figure 6 where TCP receive estab-
lished calls TCP push pending frames. For 64K files,
TCP receive was responsible for 96% CPU time spent in
TCP push pending frames. This indicates a large amount
of queueing for sends.

Using just the high level profiles, locking appears to
be an issue. However, we see in the attribution graphs 14
- 19 locking is distributed. For smaller file sizes, lock-
ing has a higher concentration in connection setup and
look-up. When persistent connections are used, as the
file size increases, the locking primarily falls under TCP
send message, and it becomes a larger percentage of to-
tal machine cycles. Freeing sk buffers always shows up
as a cost attributed to TCP receive because it processes
the ACK packets that cause sk buffers to be freed. Pro-
cessing acknowledgements, specifically cleaning out the
retransmit list and sending pending packets, has a large
cost regardless of file size.

Figure 15 shows that TCP Send is really only respon-
sible for about 50% of the one percent of cycles used by
TCP transmit sk buffer for 1K files. The cost of send-
ing an acknowledgment makes up most of the difference
with 41% of the cost of TCP transmit sk buffer. In ad-
dition, 41% of cost of every function called below TCP
transmit sk buffer (IP output, device queue transmit, etc.)
is attributable to sending an acknowledgment. Similarly,
figure 17 shows that sending acknowledgments is at-
tributed with 23% of the sending costs in the 8K case.
Therefore, offloading ACK generation may be benefi-
cial. The largest cost we see is in the memory manage-
ment. Frequent allocation and deallocation of sk buffers
is costly across all file sizes. We plan to analyze this
further by dissecting the code and analyzing the cache
behavior. The aggravation in the latter may be increas-
ing the cycle counts for the memory management func-

tions. The costs of memory management is unexpected
because the Linux slab allocator has been optimized.

Across all of the attribution graphs, we see TCP re-
ceive carries most of the processing costs. Across the file
sizes, kernel memory deallocation is attributed to TCP
receive. Also, approximately half of kernel memory al-
location is attributed to TCP receive. Figure 19 shows
the cost of allocations and locking moving towards TCP
send pages as file sizes increase. Figure 16 and 18 show
the costs of sending at the device to be more attributable
to TCP receive than TCP send pages. This is likely due
to the efficient sending of large buffers from TCP send
pages versus the sending of smaller buffers (acknowl-
edgment packets with no application data) from TCP re-
ceive.

4 Comparison between Linux 2.4 and 2.6
There are many similarities between the profiles seen
for the Linux 2.4 and 2.6 kernels. Several functions,
e.g. TCP send pages, even show the same percentage of
cycles used. There are some differences; however, that
are likely explained by the different ethernet NICs. IRQ
handling was more prevalent in the 2.4 profiles. This is
likely because network interrupt mitigation via New API
(NAPI) [23] has reduced the number of times the oper-
ating system is interrupted. This is done by converting
from interrupt mode to polling mode after an interrupt
has arrived. Once there are no more incoming packets
to process, interrupts are turned back on. This can be
confirmed with more experiments by turning off NAPI.
We also see an increase in relative receive processing in
the 2.6 TCP implementation likely because of NAPI.

Graphs 20 - 22 display the similarity for exact func-
tions that showed up in both kernel’s top ten functions.
Some similar functions are not shown. As the served
file size increased, the number of identical functions be-
tween the two kernels’ top ten converged. The cost
of locking is not seen in the 2.4 kernel because a uni-
processor kernel was used.

For all three file sizes, the cost of TCP receive has
increased for the 2.6 TCP stack. Given the attributions
seen in the previous section, the trend is likely to con-
tinue. For the larger file size, the cost of TCP send pages
in 2.6 grew over 2.4 likely due to enhancements in other
areas of the Linux kernel.

Overall, the profiles are very similar, and for some
functions, identical. As the transferred file size in-
creased, the similarity converged. Although the interac-
tion with the Linux kernel memory system has changed,
the costs remain high. Given all of the work that has
gone into Linux between 2.4 and 2.6, the similarities in
the profiles is surprising.

Another interesting trend is seen in the hardware. Al-
though the capabilities of the hardware increased be-

0 1 2 3 4 5 6 7 8 9

TCP receive

free kernel memory

Percent CPU Utilization

2.6

2.4

Figure 20: Kernel comparison for 1K file transfers

0 1 2 3 4 5 6 7 8 9

TCP receive

TCP transmit sk buffer

allocate sk buffer

TCP send pages

Percent CPU Utilization

2.6

2.4

Figure 21: Kernel comparison for 8K file transfers

0 1 2 3 4 5 6 7

sk buffer clone

TCP receive

TCP send pages

TCP transmit sk buffer

IP queue transmit

Percent CPU Utilization

2.6

2.4

Figure 22: Kernel comparison for 64K file transfers

tween the 2.4 profiles and the 2.6 profiles, the behavior
of the TCP stack remains similar. This helps support the
theory in [9] that TCP is not scaling with host processor
speeds.

5 Related Work
Early work by Clark et al. show the implementation
of TCP, not the protocol itself, as the bottleneck [7] in
high performance network processing. Operating sys-
tem overheads, e.g. memory, timers, etc. dominate
the network processing costs. Many proposed enhance-
ments from [7] have been incorporated into TCP.

Many years ago, Kay and Pasquale instrumented a
DEC Ultrix 4.2a kernel and showed the cost of non-
data touching operations remaining roughly constant
over various message sizes [12]. This work predates
checksum offload; therefore; data touching operations
and movement were dominant for increasing file sizes.
They also highlighted the need for optimizations to non-
data touching operations to produce a significant perfor-
mance improvement. Similar work [13] by the same
authors helped motivate the addition of checksum of-
fload and concludes a wide range of small improvements
are needed for non-data touching operations to improve
TCP latency.

Bhattacharya and Apte compare Linux 2.4 and 2.6
TCP implementations [2]. Time spent in the socket calls
socket and bind is greater in 2.6 versus 2.4, while listen
and connect time is less. They determine that connec-
tion setup and tear-down in 2.6 requires more processing
than in 2.4. Dramatically better HTTP throughput using
Apache [21] and HTTPerf [17] as well as a lower re-
sponse time was achieved with 2.6 as load/connections
increased. A breakdown of TCP processing overheads
for a single connection shows the NIC driver code, in-
terrupt processing, buffer copying, and checksumming
as the most CPU intensive operations during TCP packet
processing. With a Linux 2.6 kernel, it is not clear why
checksum offload was not used.

Anand and Hartner [1] presented a detailed look into
the Linux 2.4 and 2.5 TCP stacks with a focus on TCP
scalability for SMPs and Gigabit networks. Hardware
issues prevented a complete and thorough investigation.
Some callgraph profiles were presented with a primary
focus on interrupts.

Foong et al. [8] evaluated Linux 2.4.16 and Windows
2000 using high-level categories for small data transfers.
Kernel overheads, sockets, and protocol processing were
shown to take up the majority of cycles. Data touching
and interrupts represent the bulk of cycles spent for large
transfers.

Kim et al. [26] evaluate TCP at a system level by ex-
amining cache misses and instruction counts. They ex-
amine the effects of the system when moving the place-

ment of the NIC; however, they do not probe deeply into
the behavior of TCP.

Several others have profiled TCP [3, 22, 6, 10] to vary-
ing degrees - usually based on categories. None of the
past research has gone to the depth which we are look-
ing. None of the past research have traced callgraphs nor
attributed the cost.

6 Summary and Future Work
In this paper, two Linux kernel profiles were analyzed
with respect to TCP networking. Using OProfile to trace
CPU cycle consumption, several possible enhancement
suggestions were made regarding the kernel. In addition,
light has been shed on the Linux 2.6 TCP stack behav-
ior using callgraph analysis. TCP’s behavior and costs
have remained high even through a generation of code
enhancements, and the bulk of the cost falls into interac-
tions with the operating system: mainly the memory sys-
tem and interrupts. Targeted enhancements based on our
analysis will likely lead to gains in TCP performance.

The function to determine the Ethernet packet type
consumed between one and three percent of machine cy-
cles in all of the experiments. This function is called by
the E1000 NIC to determine an incoming packet’s pro-
tocol identifier. Since checksum offload is being used,
the adapter already assumes the protocol; therefore, this
function seems wasteful. This can be easily offloaded to
the NIC.

Socket buffer cloning is done on outbound packets to
allow packets to be sent along multiple routes. The im-
plementation of this function can easily be shrunk to half
the code size using structure assignment. While large
gains are not likely, given the frequency of calls to clone
an sk buffer, some gains are possible.

TCP receive is responsible for more costs from Linux
2.4 to 2.6. Since most high volume network servers fo-
cus on sending, this trend will likely increase. Our at-
tribution graphs showed that sending acknowledgment
packets (as part of TCP receive) is responsible for up to
41% of sending costs. Furthermore, for each ACK sent,
an sk buffer must be allocated, placed on the retrans-
mit queue, and deallocated. All of these functions also
have significants costs that can be reduced by up to 41%.
While some propose to offload all of ACK generation
to the NIC, this will likely alter all of TCP’s timer and
round trip calculations. Instead of such a drastic change,
we suggest moving the TCP send ACK function to the
NIC for large gains. This is much simpler and requires
fewer changes to TCP.

Based on the data presented herein, we plan to take a
closer look these proposed enhancements and determine
the potential gains for each. More detailed experiments
and analysis thereof may allow us to propose other, more
beneficial, augmentations to the Linux TCP implemen-

tation. Finally, we would like to analyze the cache be-
havior of TCP to determine why memory management
of sk buffers is so costly.

Overall, we conclude the behavior of TCP is largely
invariant between workloads, HTTP servers, and hard-
ware. Although many enhancements have been added
to the TCP implementation from 2.4 to 2.6, the bottle-
necks remain the same as those seen by Clark et al. [7].
Enhancements such as TSO have lessened the effects of
the bottlenecks but do not eliminate them. More targeted
solutions based upon TCP’s behavior are proposed to ad-
dress the TCP bottleneck.

References
[1] Vaijayanthimala Anand and Bill Hartner. TCPIP

Network Stack Performance in Linux Kernel 2.4
and 2.5. In Proceedings of the Linux Kernel Sym-
posium, Ottawa, Canada, June 2002.

[2] Shourya P. Bhattacharya and Varsha Apte. A Mea-
surement Study of the Linux TCP/IP Stack Perfor-
mance and Scalability on SMP systems. In In the
Proceedings of the 1st International Conference
on COMmunication Systems softWAre and middle-
waRE (COMSWARE), New Delhi, India, Jan 2006.

[3] Nathan L. Binkert, Lisa R. Hsu, Ali G. Saidi,
Ronald G. Dreslinkski, Andrew L. Schultz, and
Steven K. Reinhardt. Performance Analysis of
System Overheads in TCP/IP Workloads. In
Proceedings of the 14th International Conference
on Parallel Architectures and Compilation Tech-
niques, St. Louis, Sept 2005.

[4] Jeff Bonwick. The Slab Allocator: An Object-
Caching Kernel Memory Allocator. In In Proceed-
ings of the USENIX Summer Technical Conference,
Boston, June 1994.

[5] Abhishek Chandra and David Mosberger. Scala-
bility of Linux Event-Dispatch Mechanisms. Tech-
nical report, Internet and Mobile Systems Labora-
tory, HP Labs, December 2000.

[6] J. Chase, A. Gallatin, and K. Yocum. End system
optimizations for high-speed TCP. IEEE Commu-
nications Magazine, 39(4):68–74, 2001.

[7] David D. Clark, Van Jacobson, John Romkey, and
Howard Salwen. An analysis of TCP process-
ing overhead. IEEE Communications Magazine,
27(6), June 1989.

[8] Annie P. Foong, Thomas R. Huff, Herbert H. Hum,
Jaidev P. Patwardhan, and Greg J. Regnier. TCP
performance re-visited. In Proceedings Interna-
tional Symposium on Performance Analysis of Sys-
tems and Software ISPASS, Austin, TX, March
2003.

[9] Douglas Freimuth, Elbert Hu, Jason LaVoie,
Ronald Mraz, Erich Nahum, Prashant Pradhan, and
John Tracey. Server scalability and TCP offload. In
USENIX Annual Technical Conference, Anaheim,
CA, April 2005.

[10] Andrew Gallatin, Jeff Chase, and Ken Yocum.
Trapeze/IP: TCP/IP at near-gigabit speeds. In Pro-
ceedings of the FREENIX Track: USENIX Annual
Technical Conference, Monterey, CA, June 1999.

[11] Red Hat Inc. The Tux WWW server.
http://people.redhat.com/˜mingo/
TUX-patches/.

[12] Jonathan Kay and Joseph Pasquale. The impor-
tance of non-data touching processing overheads
in TCP/IP. In SIGCOMM, pages 259–268, 1993.

[13] Jonathan Kay and Joseph Pasquale. Pro-
filing and reducing processing overheads in
TCP/IP. IEEE/ACM Transactions on Networking,
4(6):817–828, December 1996.

[14] Davide Libenzi. Improving (network) I/O perfor-
mance. http://www.xmailserver.org/
linux-patches/nio-improve.html.

[15] Vitaly Luban. signal-per-fd linux kernel patch.
http://www.luban.org/GPL/gpl.html.

[16] Julian T J Midgley. Autobench. http://www.
xenoclast.org/autobench/.

[17] David Mosberger and Tai Jin. httperf – A Tool
for Measuring Web Server Performance. In Pro-
ceedings 1998 Workshop on Internet Server Per-
formance (WISP), Madison, WI, June 1998.

[18] Erich Nahum, Marcel Rosu, Srini Seshan, and
Jussara Almeida. Wide-area server performance
(wasp) project. In Proceedings ACM Sigmetrics,
Cambridge, MA, June 2001.

[19] OProfile. OProfile - A System Profiler for Linux.
http://oprofile.sourceforge.net/.

[20] Vivek Pai, Peter Druschel, and Willy Zwaenepoel.
Flash: An efficient and portable Web server. In
USENIX Annual Technical Conference, Monterey,
CA, June 1999.

[21] The Apache Project. The Apache WWW server.
http://httpd.apache.org.

[22] Greg Regnier, Srihari Makimeni, Ramesh Illikkal,
Ravi Iyer, Dave Minturn, Ram Huggahalli, Don
Newell, Linda Cline, and Annie Foong. TCP
Onloading for Data Center Servers. Computer,
37(11), November 2004.

[23] Jamal Hadi Salim, Robert Olsson, and Alexey
Kuznetsov. Beyond Softnet. In Proceedings of the

5th Annual Linux Showcase and Conference, Oak-
land, Nov 2005.

[24] SPEC. SPECweb99. http://www.spec.
org/osg/web99/.

[25] Min Tian, Thiemo Voigt, Tomasz Naumowicz,
Hartmut Ritter, and Jochen Schiller. Performance
impact of web services on internet servers. In
IASTED International Conference on Parallel and
Distributed Computing and Systems (PDCS 2003),
Marina Del Rey, USA, Nov 2003.

[26] Hyong youb Kim and Scott Rixner. TCP Offload
through Connection Handoff. In Proceedings of
EuroSys 2006, Lueven, Belgium, April 2006.

