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Abstract. Service composition has emerged as a fundamental tech-
nique for developing Web applications. Multiple services, often from
different organizations or trust domains, may be dynamically com-
posed to satisfy a user’s request. Access control in the presence of
service compositions is a challenging security problem. In this paper,
we present an access control model and techniques for specifying and
enforcing access control rules on Web service compositions. A key
advantage of our approach is that past histories of service invocations
can be used to make access control decisions. Our approach allows
role hierarchies and separation of duty constraints. Access controls
rules may be parameterized by one or more arguments. We have im-
plemented our access control model via a declarative policy specifica-
tion language which uses pure-past linear temporal logic (PPLTL). We
describe an implementation of our approach using a supply chain man-
agement (SCM) application. Our experiments show that our approach
can enforce expressive and flexible access control policies while incur-
ring reasonable performance overhead on the application.

1 Introduction
Service-oriented computing (SOC) has emerged as a powerful
paradigm for building complex Web applications from simpler
components known as services [6]. In SOC, independently de-
veloped services interoperate with each other via well-defined
interfaces. The services may be heterogeneous and possibly im-
plemented in different languages. This approach provides con-
siderable flexibility in building applications as different compo-
nent services may be used at different times for implementing
parts of the application. It can also provide isolation and fault
tolerance for individual services. SOC has been widely used for
integrating both business and scientific applications that operate
in distributed heterogeneous environments.

There are a number of challenges that arise in implementing
SOC. One of them is access control. An application may need
to provide a wide variety of different privileges for allowing
clients to access services and data. The level of access a client
is granted would typically depend on the identity of the client.
Further complications are introduced by service compositions.
Service composition is one of the fundamental aspects of SOC
[22, 7]. When a client attempts to access a Web service com-
posed of one or more services, it is often desirable to consider
the history of previous Web service invocations in order to de-
cide whether to grant access; simply considering the identity of
the client may not be sufficient.

This paper presents an access control system for Web ser-

Figure 1: SCM Application

vices which is particularly well-suited to Web service compo-
sition. A key advantage of our approach over past ones is that
service composition is treated as a first class entity. For ex-
ample, consider a supply chain management application com-
posed of three entities: customers, a retailer system and a
manufacturer system. The application may include a retail
manager role and the following services: a retail service,
a warehouse service and a database service. The re-
tailer system needs to distinguish a retail manager access-
ing the database service through the retail service
and a retail manager accessing the database service
through the warehouse service. While the former may have
retail manager-like privileges on the database service, the
latter may have more restricted privileges (detailed examples
follow in Section 2). Our system allows an application writer
to easily specify access control rules which take past service
invocations into account.

We present an access control policy specification language
based on pure-past linear temporal logic (PPLTL). It includes
standard Boolean predicates as well as support for temporal
predicates which formalize concepts such as sometime in the
past, subsequently, last time, since, etc. Access control rules
may be dependent on one or more parameters associated with a
service invocation. The application writer may also define role
hierarchies in which relationships between the access privileges
of different types of clients may be specified.
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2 Access Control Requirements
In this section we discuss several access control requirements
for Web service compositions. We provide concrete scenarios
with illustrations from a supply chain management (SCM) ap-
plication which has been defined by the Web Services Inter-
operability Organization WS-I [24] (see Figure 1). The SCM
application consists of at least three systems: the customer, the
retailer and the manufacturer(s). Each system refers to an au-
tonomous organization or a trust domain. The retailer system
is composed of the following services: retailer service,
and one or more warehouse services. The retailer
service accepts orders, processes them and schedules deliv-
eries for the ordered items from one or more of the warehouses
using the warehouse service. The manufacturer system
is composed of the following services: inventory service
and a manufacturer service. The inventory service
is responsible for maintaining item inventory levels, delivering
items to retail warehouses, and throttling the production rate
of items using the manufacturer service. In addition, all
systems include a standard set of services including: a binding
or gateway service, a database service and an audit or
logging service. All inter-organizational communications
are routed using the gateway service, and all transactions
are logged by the logging service.

The retailer system may have several principals that can
play different organizational roles such as employee, retail
manager, warehouse manager and chief manager. Con-
cretely, a principal P refers to a person, user or client, and a
role R refers to a job function or title which defines an author-
ity level. These roles are typically organized hierarchically, say,
employee <R {retail manager, warehouse manager}
<R chief manager. Note that R1 ≥R R2 denotes the fact
that the role R1 dominates the role R2, that is, the privileges of
R1 are a superset of those of R2.

A key feature in supporting service compositions is to retain
a past history of service invocations in order to make future de-
cisions about access control. For example, consider a situation
in which a client is attempting to access a service s1 through an-
other service s2 which was previously invoked by another ser-
vice s3. The fact that the client accessed s3 means that it should
not access s1 because it could use information obtained from s3
along with the service invocation of s1 to either cause harm or
obtain information which it should not have. Therefore, the ac-
cess control system should deny access to s1. In order to make
this decision, knowledge about previous service invocations is
required.

In another scenario, suppose that the client normally would
not have enough privileges to invoke s1 just based on its iden-
tity. However, the fact that the invocation took place transi-
tively through s3 changes things because s3 performed some
additional security checks before allowing the client to proceed
to the point at which it could invoke s1. Therefore, the client
can, in fact, safely invoke s1. Hence, the primary requirement
is to maintain minimal and yet sufficient information about the
call invocation history such that one can determine the privilege

information for a request after multiple service invocations.
In the supply chain management scenario, we may need to be

able to distinguish between a retail manager accessing the
database service through the retail service from a
retail manager accessing the database service through
the warehouse service. Other examples include: An
employee operating through the retailer service should
be able to read records in the order database but should not be
able write or update these records; a chief manager should
be able to read, write, or update records in the order database
even if the operation is not mediated by the retail service.
In our system, we do this using temporal predicates on a com-
posite principal which allow us to formalize temporal concepts
such as sometime in the past, subsequently, last time, since, etc.

Another key requirement is role translation which we illus-
trate using the SCM application. The warehouse service
permits the manufacturer’s inventory service to inspect
the inventory level of its items in the warehouse. If the inven-
tory of its items were to fall below a threshold, the manufac-
turer may automatically increase its production of that item (if
needed) and ship those items to the warehouse1. Such inter-
organizational service invocations require an entity in the man-
ufacturer’s trust domain to be recognized by the retailer system.
In this example, the retailer R needs to recognize a role (say
inventory manager) from the manufacturer M and translate
it to an appropriate role in its trust domain (say, an employee).

While role translation allows an inventory manager from
M to operate with employee-like privileges on the retailer
service managed by R, we need to restrict the privilege to
only those items in the retailer’s warehouse that are procured
from the manufacturer M . For instance, a manufacturer M
should not able to read the inventory level of some item I that is
supplied by another manufacturerM ′. Hence, an access control
model needs to support the notion of scoped roles by tagging a
role (employee) with a scope (manufacturerM ’s ID) to restrict
the privileges of translated roles.

Another key requirement for large applications is the en-
forcement of separation of duty (SoD) constraints. For exam-
ple, an application may require that a principal should not be
able to both approve an order and process its payment. How-
ever, a principal should be able to approve an order o1 and
process the payment for an order o2 if o1 6= o2. We support
separation of duty constraints via scoped access control rules.
Scoping allows parameterization of the access control rule and
thus imposes the rule only within the scope (the order ID in this
example).

Apart from the above features which are geared specifically
towards service compositions, we support standard Boolean
predicates on roles, method names and method argument val-
ues for data-driven access control. For an example rule could
be: an employee cannot approve an order if the order cost is
larger than a threshold c.

1This model is similar to the one used by WalMart (retailer) and Procter &
Gamble (manufacturer) [23]
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3 Access Control Model
In this section we present our access control model for service
compositions. Our model uses the notion of composite prin-
cipals to abstract the relevant temporal, causal and privilege
(roles) information required for enforcing access control rules
for such activities. In the rest of this section, we formally define
composite principals and use it as a building block for reason-
ing about separation of duty constraints and inter-organizational
service invocations.

3.1 Composite Roles and Principals
A composite role (CR) or a composite principal (CP ) allows
us to reason about Web service compositions as first class enti-
ties. Recall that a principal P refers to a person, user or client
and a roleR refers to a job function or title which defines an au-
thority level. A composite role consists of a temporally ordered
sequence of roles and services that are involved in a transac-
tion. Similarly, a composite principal consists of a temporally
ordered sequence of principals (playing a certain role) and ser-
vice instances (acting as a certain service) that are involved in a
transaction. Concretely, a composite role and a composite prin-
cipal are represented in BNF form as shown below.

CR := (S | R)+

CP := (SI as S | P as R)+

Temporal Constraint. For example, composite roles may cap-
ture the fact that a write on the order database table is per-
formed by CR = (customer, retail service). The state-
ment CR = (customer, retail service) invokes a method
M on the database service should be read as: a customer
operating via the retail service invoked a method M on
the database service. This allows us to explicitly deny
write operations on the database to composite roles CR1 =
(customer) and CR2 = (retail service).

3.2 Separation of Duty Constraints
Composite roles abstract away the concrete principals (and ser-
vice instances) that participate in a transaction. We capture sep-
aration of duty (SoD) constraints on concrete principals using
composite principals. Unlike a service invocation based con-
straint, a SoD constraint encompasses an activity. An activity
is modeled as a temporally ordered sequence of transactions;
note that each of these transactions is in turn associated with a
composite principal making that invocation. An activity A is
represented in BNF as:

A := CP+

Temporal Constraint. Suppose in an order activity, a
composite principal CP oapp = (emp1 as employee, rs1 as
retail service) has approved a customer order o. The spec-
ifications for an order activity states that before the order o is
approved, its payment needs to be verified. Let us suppose that
a composite principal CP opay = (emp1 as employee, rs1 as
retail service) attempts to authorize the payment for order

o. The temporal constraint that follows from the specification is
that CP opay should precede CP oapp.
Scope Constraints. SoD constraints typically span across mul-
tiple service invocations (multiple composite principals), but
are all related to one scoped activity. In the above example,
the scoped activity is a customer order and its scope is a
unique order identifier. A scoped SoD constraint is represented
as the following Boolean constraint: (o1 = o2) ⇒ CP o1app.emp

6= CP o2pay.emp.

3.3 Inter-Organization Service Invocations
We implement access control in inter-organizational Web ser-
vice invocations through role translation. An organization org1

defines these role translations in the form of a table that maps
a role R2 in org2 to some role R1 that is understood by the ac-
cess control service in org1. Formally, this is represented as a
mapping: Rorg22 → R

org1
1 .

Scoped Roles. In many instances, however, the translated role
needs to be scoped by the identity of the organization the con-
crete principal belongs to. Formally, this is represented as a
mapping: Rorg22 → R

org1
1 〈org2〉. For example, a manufacturer

M ’s inventory manager may be mapped by the retailer sys-
tem to the role of a scoped employee: employee〈M〉. We can
represent the fact that the scoped role employee〈M〉 has the
status of an employee only for those items that are purchased
from manufacturer M using Boolean constraints on the scope
M .

4 Access Control Specification
Having described the basic building blocks we next present an
access control specification language that integrates them with
the goal of meeting all the requirements discussed in Section 2.

4.1 Specification Language
In Section 3, we modeled a composite principal as a tempo-
rally ordered sequence of principals or service instances that are
responsible for a service invocation. Such temporally ordered
structures may be viewed as finite models of linear temporal
logic (LTL) [19]. In this paper, we specify access control poli-
cies using pure-past linear temporal logic based specification
language. The pure-past variant of LTL [13] does not include
future temporal operators and is sufficient for expressing our
access control policies. In the rest of this section, we present a
declarative language that is suitable for representing our access
control policies.

The syntax of our access control language is specified by
the following BNF for Kripke structures [19]. Note that p is
an atomic proposition. The operators X−1 (last time) and S
(since) are the past time temporal operators: X−1ψ is true if
and only if ψ were true in the previous time step and ψ0Sψ1

is true if and only if ψ1 was true at some point in the past
and ψ0 has been true at all points in time since ψ1 evaluated
to false (more rigorous definition in equation 1).

ψ := p | ψ0 ∨ ψ1 | ψ0 ∧ ψ1 | ¬ψ | X−1ψ | ψ0Sψ1

3



We specify access control rules on service invocations and SoD
constraints using propositions that are constructed as Kripke
structures. For access control rules on service invocations, we
define a satisfaction relation |= between the policy ψ and a com-
posite role CR. A composite role CR can invoke the method
M only if CR |= ψ. Let CR = (x1, x2, · · · , xN ), where each xi
is either a role or a service. Then, we say that CR |= ψ if and
only if (CR, |CR|) |= ψ. We define (CR, i) |= ψ by structural
induction [13] on ψ as follows:

(CR, i) |= p iff p ∈ xi

(CR, i) |= ψ0 ∧ ψ1 iff (CR, i) |= ψ0 and (CR, i) |= ψ1

(CR, i) |= ψ0 ∨ ψ1 iff (CR, i) |= ψ0 or (CR, i) |= ψ1

(CR, i) |= ¬ψ iff (CR, i) 6|= ψ

(CR, i) |= X−1ψ iff (CR, i− 1) |= ψ

(CR, i) |= ψ0Sψ1 iff ∃j ≤ i, [(CR, j) |= ψ1 and
∀k, (j < k ≤ i⇒ (CR, k) |= ψ0)] (1)

4.2 Sample Policies
We now show how one can use our policy specification lan-
guage to encode some sample access control policies. Let us
consider the order approval process in the retailer system with
the following list of access control rules:

• An employee operating through the retail service
can approve an order if the order cost is less than c.

• A retail manager operating through the retail
service can approve all orders.

• A chief manager can approve all orders.

For notational convenience we introduce a temporal operator
F−1 such that F−1(ψ) = true S ψ; that is, the proposition ψ
was true at some point in the past. We also use a shorthand
Boolean operator ⇒ such that ψ1 ⇒ ψ2 = ¬ ψ1 ∨ ψ2. We
encode the above policies as proposition ψ:

ψ = ψ0 ∨ ψ1 ∨ ψ2

ψ0 = (F−1(employee) ∧X−1(retailservice) ∧

(ordercost < c))

ψ1 = (F−1(retailmanager) ∧X−1(retailservice))

ψ2 = F−1(chiefmanager) (1)

Note that we evaluate the policy ψ against a composite role
that attempts to invoke an order approval method and the
method arguments (ordercost in this example). Note that
F−1(employee) means that some principal playing the role of
an employee should have initiated the order approval proce-
dure. Also, X−1(retailservice) means that the last step
of the order approval process has been performed under the
supervision of the retail service. Jointly, F−1(employee)
∧ X−1(retailservice) would ensure that the order ap-
proval process was initiated by an employee and was last
verified by the retail service. A composite role CR =
(retail manager, retail service) invoking the order ap-
proval method with order cost greater than c is checked against

the policy ψ described above as follows. Note that since all
retail managers are employees, CR |= F−1(employee).
Hence, the rule ψ0 evaluates to false. On the other hand, the
rule ψ1 evaluates to true and rule ψ2 evaluates to false and
thus the rule ψ evaluates to true.

Let us consider the separation of duty constraint based on the
following access control policies:

• An order is approved only after its payment is verified.
• A employee or a retail manager can verify a cus-

tomer’s payment for an order as long as the concrete prin-
cipal initiating the payment verification and the order ap-
proval are not the same.

• A chief manager can approve and verify any order.

We can encode these access control policies using the proposi-
tion ψ described below.

ψo = ψo0 ∧ (ψo1 ∨ ψo2)

ψo0 = (F−1(CP opay) ∧X
−1(CP oapp))

ψo1 = ((CP oapp |= F−1(employee) ∧

(orderApprover(o) 6= paymentAuthorizer(o))

ψo2 = (CP oapp |= F−1(chiefmanager)) (2)

We evaluate the policy ψo against a temporally ordered se-
quence of composite principals (SCP ) that have participated
in the order activity. In this example, a valid SCP o = (CP opay ,
CP oapp), where CP opay is the composite principal that verified
the payment for order o and CP oapp is the composite princi-
pal that makes a service invocation to approve and commit the
order o. The constraint ψo0 ensures that an order o can be ap-
proved by CP oapp only if its payment has been verified in the
past by CP opay . The predicate CP oapp |= F−1(employee) eval-
uates to true if the approval process was initiated either by an
employee or by a retail manager. In this case, the rule ψo1
imposes a SoD constraint on the concrete principals concerned.
For notational convenience, we have used orderApprover and
paymentAuthorizer as macros defined on SCP o.

Let us consider access control policies on inter-
organizational Web service invocation with role translation:

• A manufacturerM ’s inventory manager has the same
status as that of an employee in the retailer system.

• A manufacturer M ’s inventory manager is scoped to
operate on only those items that are purchased by the re-
tailer system from the manufacturer M .

ψ = (ψ0 ∧ ψ3〈M〉) ∨ ψ1 ∨ ψ2

ψ0 = (F−1(employee) ∧X−1(retailservice) ∧

(ordercost < c))

ψ1 = (F−1(retailmanager) ∧X−1(retailservice))

ψ2 = F−1(chiefmanager)

ψ3〈M〉 = (F−1(employee〈M〉) ⇒ (manufacturer(M) ∧

purchase(itemID,M)) (3)
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Figure 2: Access Control in Service Compositions

We encode these access control policies using a role transla-
tion table and a PPLTL rule ψ described above. The role trans-
lation table maintained by the retailer system’s gateway maps
M ’s inventory manager to a scoped role employee〈M〉 in
the retailer system.

We evaluate the policy ψ against a composite role that at-
tempts to invoke an order approval method and the method
arguments (ordercost and itemID). For notational conve-
nience, we use the following macros: manufacturer(M) is
true if M is a manufacturer and purchase(itemID, M ) is
true if the retailer system purchases the item itemID from the
manufacturer M . Note that the first three constraints ψ0, ψ1

and ψ2 comprise a policy that applies to all employees in the
retailer system; the fourth constraint ψ3〈M〉 applies to a scoped
role employee〈M〉, say an inventory manager from a man-
ufacturer M .

4.3 Policy Evaluation
The problem of verifying a policy with respect to a composite
role (or a sequence of composite principals) is a model check-
ing problem: does CR |= ψ hold? Havelund and Rosu [11]
have recently presented an efficient memorization based dy-
namic programming algorithm for model checking PPLTL with
time complexity of Θ(|CR| ∗ |ψ|) and space complexity 2*|ψ|
+ 1 bits. Note that |CR| denotes the length of the composite
role CR and |ψ| denotes the length PPLTL proposition ψ.

5 Access Control Implementation
In this section, we describe an implementation of our access
control module in an application overlay network (AON) host-
ing the SCM application. AON strongly advocates the idea of
building middleware features as light-weight on-demand ser-
vices. An application can dynamically discover and use these
services as interoperability requirements are determined. A sin-
gle logical application can itself be partitioned and managed
across the network. Figure 1 shows an AON based implemen-
tation of the SCM application. The SCM application consists of

〈complexType name=‘‘Service’’〉
〈sequence〉

〈element minOccurs=‘‘0’’ maxOccurs=‘‘unbounded’’
ref=‘‘sca:operation’’/〉

〈element minOccurs=‘‘0’’ maxOccurs=‘‘unbounded’’
ref=‘‘sca:accessControlRule’’/〉

· · ·
〈/sequence〉

〈/complexType〉

〈complexType name=‘‘accessControlRule’’〉
〈attribute name=‘‘name’’ type=‘‘string’’
use=‘‘required’’/〉

〈attribute name=‘‘rule’’ type=‘‘string’’
use=‘‘optional’’ default=‘‘true’’/〉

〈/complexType〉

Figure 3: Extensions to the Service Schema
〈service name=‘‘retailer’’〉

〈interface.wsdl interface=‘‘http://ws-i.org/· · · /Retailer.wsdl’’/〉
〈operation.js name=‘‘processOrder’’ onInvoke=‘‘order’’/〉
〈accessControlRule name=‘‘processOrder’’ rule=‘‘((F(employee)
∧ X(retailservice) ∧ (ordercost(cost, c)) ∧ (F(employee) ⇒
(manufacturer(M) ∧ purchase(itemID, M))) ∨
(F(retailmanager) ∧ X(retailservice)) ∨ F(chiefmanager))’’/〉
· · ·

〈/service〉

Figure 4: Access control rule on processOrder

two AONs: a retailer system and a manufacturer system. The
retailer system has several nodes that host middleware function-
ality such as: binding/gateway service, audit/logging service,
JavaScript engine as a service, database engine as a service and
business logic services (retail service and warehouse services).

5.1 Access Control Service
Figure 2 shows our implementation of the access control service
in an AON. The binding/gateway service first receives a
service invocation. It performs role translation and forwards the
request to the appropriate service (say S) on its AON. Service
S on receiving a method invocation first checks if the invoca-
tion is permissible using the access control module. Note that
an invocation to the access control service may require some in-
vocation history information to be retrieved from the logging
service. The access control module is itself implemented as
a middleware feature that can be hosted as a service by the
AON. The service container invokes an access control service
(possible hosted on an entirely different container and a thin
server) to perform the required access control check. Once the
access check passes, the service S executes the invocation on
its business logic module; this execution may trigger further
method invocations on services in the same AON or an inter-
organizational call to a service in an entirely different AON.

The access control service exports an interface as
shown in Figure 5. In the following portions of this section,
we describe our instrumentations to the underlying AON infras-
tructure to support the access control service. Our im-
plementation requires no changes to the application code. We
focus on the four parameters required by our access control
service interface (Figure 5), namely, the access control rule
ψ, the composite principal CP , the method signature sig and
the method’s input values input.
Boolean verify(AccessControlRule ψ, CompositePrincipal CP,

MethodSig sig, XMLObject input)

Figure 5: Access control Service Interface
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Access Control Rule ψ. We have modified the service descrip-
tion schema used by AON to include one or more access con-
trol rules for every service interface (see Figure 3). The ac-
cess control rule itself is a name and rule tuple, where name
refers to the name of the operation/method and rule refers to
the PPLTL rule that must be satisfied in order for an invoca-
tion on method name to be permissible (see example in Figure
4). This framework achieves a clear separation and language
independence between the application logic and the access con-
trol policy specification. It also permits highly flexible and fine
grained (method level) specification of access control rules. Fi-
nally, bundling access control rules for a service along with the
service description respects the autonomous nature of each Web
service.
Composite Principal CP . The composite principal invoking
a service is obtained by instrumenting the service containers in
the AON infrastructure. A service container in the AON re-
ceives a request from a caller, triggers the service to process
the request, and handles subsequent nested service invocations
or returns to the caller. We instrument the service containers
to construct a temporally ordered list of principals and services
involved in a service invocation.

For access control rules that span multiple composite prin-
cipals (say, SoD constraint in Policy 2), the access control
service uses the logging service to obtain the composite
principal(s) that have participated in the activity of interest in
the past. We have modified the service container to log service
invocations along with the scope name and scope ID using the
logging service. The service container infers a scope name
from the policies in a service description (say, M in Figure 4).
The scope ID is obtained from the argument values in the ser-
vice invocation such that the argument name matches the scope
name.
Method Signature sig and Inputs input. The method signa-
ture sig contains a WSDL description of the invoked method’s
signature. The XMLObject input contains method invoca-
tion arguments. Coupled with the method signature sig, it
enables the access control service to interpret the argu-
ment types and values in input. The sig and input parameters
are required to support data-driven access control policies (see
orderCost constraint in policy 1).

In the following sections, we describe how we deploy and
enforce access control rules in our system.

5.2 Policy Deployment
Let us consider a sample policy ψ described by Equation 3 in
Section 4.2. We deploy the policy ψ through the following
steps. The deployment process is completely automated other
than determining the policy enforcement points in step 2 (simi-
lar to other approaches like [18, 12]) and the relevant role trans-
lation rules in step 3.
1. Given a policy ψ the administrator has to determine policy
enforcement points (PEPs). In this case the admin determines
that the policy must be enforced at the processOrder method
in the retailer service and the gateway service.

2. Add the new policy ψ as an XML component to the PEP’s
service description as shown in Figure 4. Note that the pol-
icy ψ is stored along with the service description and not at the
access control service.
3. The administrator adds a role translation rule to the gate-
way’s policy DB. A role translation rule is a three tuple:
〈organization-name, role-name, translated-role〉. In this exam-
ple a table entry would look like 〈PG, inventory manager,
employee〈PG〉〉, where PG is the manufacturer (Procter and
Gamble).

5.3 Policy Enforcement
The deployed access control policies are enforced as follows.
When the retailer system’s gateway service receives a Web ser-
vice invocation on the method processOrder it automatically
enforces access control policies as follows:
1. The gateway service performs role translation. The transla-
tion is achieved by replacing every occurrence of inventory
manager in the composite principal with employee〈PG〉.
2. The gateway service forwards the method invocation to the
container hosting the retailer service. The service run-
time looks up the service description (Figure 4) to check if there
are any rules associated with the operation processOrder. If
so, it invokes the access control service with the follow-
ing arguments: the composite principal CP , the rule ψ, and the
arguments contained in the call to the processOrder method
and a reference to the WSDL description of the processOrder
method.
3. The model checker parses the rule ψ (one linear scan) and
breaks it down into atomic predicates. For the sample policy
in Figure 4, the atomic predicates are shown in Figure 6. Note
that the policy ψ in Figure 4 is equivalent to ψ22 in Figure 6.
Given an atomic predicate it can be categorized into one of the
following five types: a role or service (like employee, retail
service), a scoped role (like employee〈M〉), Boolean opera-
tors (∧ , ∨, ∼, ⇒), temporal operators (F−1,X−1), and macros
(ordercost, manufacturer, purchase).
3a. A scoped role is used to extract the scope variable. The
value for a scoped variable (if any) is obtained from a linear
scan on the composite principal. In this case, the scope variable
is M and its value is PG.
3b. We evaluate macros using method calls that return a
Boolean value. In this case there are three macros: ordercost,
manufacturer and purchase. We use reflection to determine
the Java method from the macro name; then we pass arguments
to these methods from three sources: (i) scope resolution (in this
case,M = PG), (ii) arguments in the call on the processOrder
method (in this case: cost, itemID), and (iii) policy specified
constants (in this case, the cost threshold, c). Scope resolu-
tions are handled as follows: (ia) a scoped role is already in-
ferred in step 3a, and (ib) a scoped activity requires the access
control service to look up the logging service to iden-
tify past service invocations (composite principals) that have
participated in the scoped activity.
3c. A role or a service is an atomic literal. These literals are
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ψ0 = employee ψ1 = F−1ψ0 ψ2 = retail service ψ3 = X−1ψ2

ψ4 = ψ1 ∧ ψ3 ψ5 = ordercost(cost, c) ψ6 = ψ4 ∧ ψ5 ψ7 = employee〈M〉
ψ8 = F−1ψ7 ψ9 = manufacturer(M) ψ10 = purchase(itemID,M) ψ11 = ψ9 ∧ ψ10

ψ12 = ψ8 ⇒ ψ11 ψ13 = ψ6 ∧ ψ12 ψ14 = retail manager ψ15 = F−1ψ14

ψ16 = retail service ψ17 = X−1ψ16 ψ18 = ψ15 ∧ ψ17 ψ19 = ψ13 ∨ ψ18

ψ20 = chief manager ψ21 = F−1ψ20 ψ22 = ψ19 ∨ ψ21

Figure 6: Parsing an Access Control Rule

evaluated using the role hierarchy predicates. We use PPLTL
to evaluate temporal operators (see Equation 1). The Boolean
operators are trivial to evaluate.
4. If the access control service returns true, then the runtime
forwards the method invocation to the retailer service;
else the method invocation fails.

5.4 Experimental Results
In this section, we report our results from experiments with the
access control service. These experiments were run on 2.4GHz
Windows XP boxes hosting the SCM application. Figure 7
shows rule verification time versus rule size for a service in-
vocation chain of length two (|CR| = 2). The size of a rule ψ is
defined as the sum of the number of literals and the number of
operators (Boolean, temporal and macros) in ψ. For example,
the policy in Figure 4 is of size |ψ| = 22, see Figure 6. Observe
that the policy verification overhead on an application’s critical
path (verify) is only of the order of a few milliseconds.

Figure 8 shows that the user perceived latency for the three
policies described in Section 4.2 is about 10-24%. Figure 9
shows the cost break up for the access control overhead. The
bars in this graph mean the following:
RT (role translation): Policies 1 and 2 require no role transla-
tion and thus incur no role translation cost.
RL (rule lookup): Rule lookup incurs a small hash table lookup
cost.
PR (parse rule): Parsing a rule requires a linear scan of the
PPLTL rule and incurs O(|ψ|) cost. Note that policy 1 is the
shortest policy and policy 3 is the longest policy.
SR (scope resolution): Scope resolution for roles requires a lin-
ear scan on the composite principal and incurs O(|CP |) cost.
Policy 1 requires no scope resolution, while policies 2 and 3
need to be dynamically instantiated for the given scope (o for
policy 2 and M for policy 3).
EA (extract argument types and values using WSDL reference):
Extracting arguments incurs higher costs for parsing the WSDL
reference. Policy 2 has no constraints on method arguments,
while policy 1 has one argument (cost) and policy 3 has two
arguments: cost and itemID.
EC (extract constant types and values from policy): Extracting
constant values requires an inexpensive lexical analysis on the
policy. The policies 1 and 3 use a constant for the order cost
threshold.
EM (evaluate macros): Evaluating a macro depends on the con-
crete macro: policy 1 includes an orderCost macro which
performs a simple comparison operation, while policy 2 in-
cludes a macro on service invocations CP opay and CP oapp.
The composite principal CP opay has to be obtained from a

lookup on the audit/logging service. Policy 3 includes two
macros, manufacturer and purchase, which are evaluated as
database queries and are thus the most expensive.
MC (PPLTL model check): Rule verification time incurs a
small O(|CP | ∗ |ψ|) cost.

6 Related Work
A large body of work exists in the field of authentication and ac-
cess control for autonomous distributed systems. The seminal
work by Lampson [14] established the foundations for access
control in distributed systems. Role based access control mod-
els [20] introduced the notion of roles to allow clean separation
between users, roles and objects.

The recent emergence of service oriented architectures and
composable Web services add several new security challenges.
WS-I (Web services interoperability) presents detailed design
and implementation of a supply chain management (SCM) ap-
plication [24]. WS-Security [17] describes enhancements to
SOAP messaging to provide message integrity, confidentiality,
and single message authentication in a way that can accommo-
date a wide variety of security models and encryption technolo-
gies. WS-Policy [3] provides a general purpose model and a
specification language to describe and communicate the poli-
cies of a Web service. WS-Security Policy [8], built on the WS-
Policy and the WS-Policy Assertion [4], is a declarative XML
format for programming the precise techniques used by Web
service implementations to construct and check WS-Security
[17] headers.

Abadi et al [1] propose a framework that uses the concept
of delegation for authentication and access control in loosely
distributed systems. The OASIS architecture presents a pol-
icy description language to reason about roles and delegations
in autonomous distributed systems [12]. XACML is a markup
language designed to express well-established ideas from OA-
SIS in access control using XML extensions [18]. However,
XACML does not provide explicit constructs to reason about
transactional histories. Bhargavan et. al. [16] propose tech-
niques to verify security policies on Web services. These ap-
proaches neither treat service composition as a first class entity
nor provide a unified methodology for expressing and enforcing
access control rules in large and complex Web service compo-
sitions.

Security automata [10] and the notion of history based ac-
cess control (HBAC) [9, 13] have been subject to a considerable
amount of research. Several JVM based security papers present
stack introspection techniques for implementing access control
policies [2]. Several authors have developed access control poli-
cies on stand-alone Web services. Mecella et al [15] present
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techniques to incrementally exchange credentials in a Web ser-
vice conversation. Sirer and Wang [21] present techniques to
use linear temporal logic (LTL) to enforce sanity checks and
detect possible security violations on a Web server.

Carminati et al [5] describe techniques to construct a com-
position that satisfies a certain property given policy level spec-
ifications for several component services. Our paper focuses on
one such security property, namely access control, and presents
not only policy level specifications of access control policies,
but also a concrete specification language, a sound and effi-
cient verification mechanism, a deployment and enforcement
methodology, and an implementation.

7 Conclusion
We have presented an access control model and a language
based on this model for specifying access control policies; our
approach is particularly well suited for Web service composi-
tions. We have demonstrated techniques to handle access con-
trol rules based on composition history, separation of duty con-
straints, and inter-organizational roles. We have described a
policy specification language for describing these access con-
trol policies using pure-past linear temporal logic (PPLTL).
We have also described an implementation of the access con-
trol module as a middleware service on an application overlay
network (AON). Our experiments show that our approach can
enforce highly flexible and expressive access control policies
while incurring reasonable performance overheads (10-24%) on
the application.
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