
RC24248 (W0704-149) April 27, 2007
Computer Science

IBM Research Report

Negotiating SLAs: An Approach for a Generic Negotiation
Framework for WS-Agreement

Sebastian Hudert
University of Bayreuth

Germany

Heiko Ludwig
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Guido Wirtz
Otto-Friedrich University

Bamberg, Germany

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Negotiating SLAs - An approach for a generic negotiation
framework for WS-Agreement

Sebastian Hudert
University of Bayreuth, Department of Information Systems

Heiko Ludwig
IBM Almaden Research Center, San Jose, CA

Guido Wirtz
Otto-Friedrich University Bamberg, Distributed and Mobile Systems Group, Germany

April 14th, 2007

Abstract. The current Web Services Agreement specification draft proposes a simple request-
response protocol for agreement creation only addressing bilateral offer exchanges. This paper
proposes a framework augmenting this WS-Agreement to enable negotiations according to a
variety of bilateral and multilateral negotiation protocols. The framework design is based on
analyzing a couple of taxonomies from the literature in order to allow for capturing a variety
of different negotiation models within a single, WS-Agreement compatible, framework.

Keywords: SLA, Negotiation Protocols, WS Agreement

1. Introduction

Managing Quality of Service (QoS) in loosely-coupled distributed systems
such as computational Grids cannot rely on traditional, centralized manage-
ment. Since parameters of systems in other domains cannot be manipulated,
QoS guarantees must be obtained in the form of Service Level Agreements
(SLAs). SLAs represent qualitative guarantees placed on service invocations
within a service oriented environment. Service consumers benefit from guar-
antees because they make non-functional properties of service predictable,
often secured by a penalty. On the other hand, SLAs enable service providers
to manage their capacity, knowing the expected requirements. By employing
SLAs, a robust service oriented architecture can be realised, even across com-
pany boundaries. To support broad application, standards for the structure of
agreement documents as well as a a standard process to establish and monitor
them are required. Such protocols are particularly important if the agreement
creation is to be executed automatically.

The Web Services Agreement (WS-Agreement) specification is a stan-
dardization effort conducted by the Open Grid Forum (OGF) in order to
facilitate creation and monitoring of SLAs (Andrieux et al., 2005). This stan-
dard defines an XML-based structural definition of SLA documents, a simple
request-response protocol for agreeement creation as well as corresponding

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.1

2 S. Hudert, H. Ludwig, G. Wirtz

interfaces for agreement creation and monitoring. A WS-Agreement specifies
functional properties and qualitative service level guarantees in a detailed way
in a set of terms.

However, the proposed agreement creation process is restricted to a simple
request-response protocol: one party (agreement initiator) creates an agree-
ment document, possibly based on an agreement template, and proposes it
to the other party (agreement responder). The agreement responder evaluates
the offered agreement and assesses its resource situation before accepting
or rejecting the offer. This protocol does not enable advanced negotiations
formats involving numerous parties in different roles such as auctions. En-
abling a variety of negotiation protocols would result in wider applicability
of WS-Agreement for more demanding allocation problems.

The incorporation of different negotiation protocols into the agreement
creation process of WS-Agreement poses several problems: First, such pro-
tocols must be integrated seamlessly in the overall WS-Agreement protocol
to enable subsequent agreement monitoring, as defined in the WS-Agreement
specification. Furthermore, in an automated negotiation, all participating com-
ponents - here referred to as agents - must be aware of all rules and constraints
concerning the negotiation protocol. Finally, a corresponding infrastructure of
role definitions, interfaces and methods has to be presented to facilitate the
actual negotiations.

To supply the negotiating agents with the necessary information to partic-
ipate in the actual negotiation protocol a fixed, well known set of negotition
protocol definitions could be specified. During the actual negotiation the cor-
responding protocol description is simply referenced. However, this limits the
set of available negotiation protocols to a predefined, finite set.

In this paper, we propose an approach in which parties in a distributed
system agree on a negotiation mechanism first, then conduct the SLA ne-
gotiation and then fulfill the SLA. To this end, we define a meta-language
for negotiation protocols. Using such a meta-language a multitude of specific
negotiation protocols can be defined using a well-defined set of attributes and
parameters. These protocol definitions are made available to all prospective
negotiators before the actual negotiation to inform them with protocol has
been chosen. Furthermore, we propose a negotiation meta-protocol to dis-
tribute the negotiation definitions to all prospective negotiators and choose a
negotiation protocol. Finally we propose, as an example, a generic negotiation
protocol that is able to support all specific negotiation protocols that can be
described with the presented negotiation attributes as extension to basic WS-
Agreement offers. This generic protocol notwithstanding, other negotiation
protocols can be used.

The rest of this paper is organized as follows: Section 2 discusses the
negotiation models analyzed in order to define a flexible framework and in-
troduces the basic concepts and data structures used in our framework. These

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.2

Negotiating SLAs - An approach for a generic negotiation framework for WS-Agreement 3

are illustrated by a simple scenario in section 3. Afterwards, in sections 4
and 5, the underlying philosphy as well as the interfaces and building blocks
offered for the negotiation meta-protocol and the negotiation protocol itself
are introduced, respectively. We conclude with some remarks on future work.

2. Basic Definitions and Data Structures

Before describing the exchange and negotiation protocols this section will
give a short overview of the basic concepts and data structures used in the
negotiation framework subsequently.

2.1. NEGOTIATION PROTOCOL DEFINITION

This framework supports a multitude of different negotiation protocols, like
various auction types or one-on-one bargaining protocols. Each negotiation
protocol that is to be conducted fully automated in multi-agent systems has
to be exhaustively described. Only by providing a complete and machine-
processable process description its correct application in automated distributed
systems can be guaranteed. In order to enable such a protocol description a set
of negotiation attributes has been identified as the basis for this framework.
Employing these attributes a variety of different negotiation protocols can
be specified in terms of a structured protocol description document. Such
documents are subsequently distributed to all agents involved in a particular
negotiation according to the meta-protocol described in the next section.

In order to specify a comprehensive set of negotiation attributes this frame-
work employs negotiation taxonomies originating in e-commerce research
and economics. These taxonomies present a set of parameters that allow for
detailed description of specific negotiation protocols. The most important
taxonomies for this paper will shortly be described in the following.

The first taxonomy used has been presented by Martin Bichler and Jayant
R. Kalgnanam (Bichler and Kalagnanam, 2007). Their work puts its focus
on one particular class of negotiation protocols: auctions. Although this ap-
proach does not cover as many negotiation protocols as would be desirable
it nevertheless presents some interesting aspects that can be applied either to
auctions and negotiations in general.

The next paper proposing a taxonomy for electronic negotiations was
published by Alessio R. Lomuscio, Michael Wooldridge and Nicholas R.
Jennings (Lomuscio et al., 2003). They emphasize automated negotiations in
electronic commerce (e-commerce) settings. Even though these scenarios and
software agents do not exactly fit the SLA settings, because of the focus
on pre-negotiation phases and high human interaction rates, they already
show some of the issues that arise when automated negotiations take place

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.3

4 S. Hudert, H. Ludwig, G. Wirtz

between software agents. Such problems are formalisation of negotiations
or implementation of negotiation strategies by agents themselves. The au-
thors want "‘to define (...) the negotiation space for electronic commerce"’
(Lomuscio et al., 2003). One aspect, that makes their work very suitable as
a basis for our framework is that the authors do not only concentrate on
auctions, but on negotiations in general which fits the approach of creating
a data structure for multiple negotiation protocols.

Peter Wurman, Michael Wellman and William Walsh presented a set of
auction parameters while developing an internet-based "‘platform for price-
based negotiation - the Michigan Internet AuctionBot"’ (Wurman et al., 1998).
This system was designed to serve as an auction server for humans as well as
software agents and only focused on one negotiated issue: the price. There-
fore unfortunately only one-dimensional auctions were supported. The same
authors extended this taxonomy to also cover multidimensional auctions in
a follow-up, much more comprehensive paper (Wurman et al., 2001). Here,
they do not only cover auction protocols and their parameters as a necessary
byproduct of the development of an internet auction server as before, but
focus especially on the different possible auction protocols and respective pa-
rameters. This approach allows for a much more comprehensive examination
of the auction design space. The second improvement regarding this thesis
is the already mentioned incorporation of multidimensional auctions. Since
in a SLA environment the involved parties will mostly negotiate more than
one desired aspect of a service, multidimensional auctions will be much more
suitable than traditional auction protocols which allow to negotiate only one
attribute (most commonly the price).

The next taxonomy used in this work was proposed by Claudio Bartolini,
Chris Preist and Nicholas R. Jennings. It has been developed in the context of
their specification of a framework for automated negotiation in multi-agents
systems (MAS) (Bartolini et al., 2005). Thus, the authors focus on executable
specifications for MAS. Thus they concentrate on message formats used and
activities conducted by software agents which represents a very technical
and practical approach to negotiation research. Their work contributes to this
framework as it assumes similar conditions as in automated SLA negotiations
between software agents like those supported with our work.

The last taxonomy used was published by Michael Ströbel and Christof
Weinhardt (Stroebel and Weinhardt, 2003). It represents the most compre-
hensive categorization and description of electronic negotiations of all tax-
onomies. In contrast to Wurman et al., Ströbel and Weinhardt aim for a more
generic understanding of negotiations than just claiming negotiation design
is essentially equivalent to auction design (Wurman et al., 2001). They regard
auctions as a particular class of negotiations; this point of view was adopted
in our work. The authors also do not stress software agent characteristics
such as agent strategy or computational complexity like Lomuscio et al. do

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.4

Negotiating SLAs - An approach for a generic negotiation framework for WS-Agreement 5

because they consider "‘the degree of automation (...) as orthogonal to the
classification criteria in [their] taxonomy"’ (Stroebel and Weinhardt, 2003).
Thus the negotiation taxonomy presented by Ströbel and Weinhardt aims to
describe and classify a multitude of negotiation protocols in a very generic,
yet comprehensive way without stressing techonology-related issues.

For our framework the taxonomies discussed so far were integrated and
consolidated in order to derive a set of attributes and corresponding domains
suitable for definition of automated SLA negotiations among software agents.
The complete list of identified attributes and corresponding domains is out-
side the scope of this paper; for a more detailed description of our WS-
Agreement negotiation taxonomy see (Hudert, 2007). The high-level attribute
classes identified in our work are the following:

− General Negotiation Process: Basic negotiation parameters like start,
termination or negotiation rounds.

− Negotiation Context: Negotiation configuration in terms of involved roles
and agents.

− Negotiated Issues: SLA terms to be negotiated in the corresponding
negotiation.

− Offer Submission: Rules concerning the bidding process, like when an
offer can be posed or what constraint it has to satisfy.

− Offer Allocation: Matchmaking rules for the neogtiation.

− Information Processing: Rules defining which information about the cur-
rent negotiation and bidding history is available to which agent(s).

For each of these classes a set of attributes was defined and, if feasible, also
a corresponding value domain. Because preventing the generic approach of
this framework from unduly restrictions was an important design issue, flex-
ibility has been increased by allowing the use of some (external) rule-based
language, like Jess (Friedman-Hill, 2006), to express some of the attributes
adequately. Such attributes do not exhibit a defined value domain respectively.

Based on these attributes a multitude of 1:1 and 1:n negotiation protocols
can be defined as detailed as is necessary for automated execution. For a more
detailed description and two example protocol descriptions for an auction and
a one-on-one bargaining protocol, see (Hudert, 2007).

2.2. NEGOTIATION TYPES AND INSTANCES

For understanding our approach, the distinction between negotiation types
and instances is essential. Analogously to types and instances in object-oriented

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.5

6 S. Hudert, H. Ludwig, G. Wirtz

programming languages, negotiation types describe general classes of ne-
gotiations and define their common attributes and elements. A negotiation
instance, in contrast, stands for one particular negotiation of some type. For
example, a negotiation type may define, that there is one agent involved not
allowed to post offers himself, whereas on the other side n agents can partici-
pate by posting offers, in which every offer has to beat the last posted offer by
some amount and so on. This roughly describes some type of auctions. One
instance of this negotiation type therefore represents one particular auction
process.

Regarding their content, negotiation types and instantiated negotiations
differ slightly. The main difference is that a negotiation type does not contain
some sort of identifier that can be used to refer to a given negotiation instance.
The other attributes identified in the previous section, however, have to be
initialized when defining a negotiation type. For example, the offer submis-
sion rules and involved roles have to be set before instantiating because they
represent a fundamental part of a whole class of negotiation instances, and
therefore of a negotiation type.

There are only three exceptions; only three attributes do not necessarily
have to be defined in a negotiation type document: the start and the termi-
nation as well as the agents involved in a negotiation instance. The start and
the termination of a negotiation can be set in the negotiation type or in the
negotiation instance document according to the same rule. Both attributes
can be defined as assertions over time or as arbitrary constraint expressions
not concerning some time values. If a negotiation start or termination is spec-
ified in terms of time points, this has to be done in the negotiation instance
document; when defined as a constraint expression over other parameters it
has to be set in the negotiation type document.

The involved agents are not specified in a negotiation type document for
two reasons: Foremost, not every agent participating in the negotiation is
known when a negotiation type is created. Typically, only one agent will
be known mostly: the agent that provides the negotiation type document.
During the exchange protocol described in the next sections other agents sub-
sequently join this negotiation without being known to the agent that created
the negotiation type. Hence, not all agents involved can be defined in the
negotiation type document, but have to be incorporated into the datastructure
representing the actual negotiation instance subsequently. Another reason for
not already setting the involved agents in the type document is that if incor-
porated in the negotiation type every instance of this type would have to be
conducted by exactly the same agents which is not feasible. Determining the
participating agents in the negotiation instance document allows for a much
more flexible application of the approach.

In order to supply the negotiating agents with the required information
about negotiation types and instances, two Extensible Markup Language (XML)

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.6

Negotiating SLAs - An approach for a generic negotiation framework for WS-Agreement 7

document descriptions (formalised as XML-Schema documents) for each of
these concepts were defined. These documents will be used within the actual
negotiation protocols as described in the following sections. The detailed
XML-Schema documents can be found in (Hudert, 2007).

2.3. ABSTRACT ARCHITECTURE OF NEGOTIATION DOCUMENTS

The main negotiation object is a WS-Agreement template (Ludwig et al., 2003)
with its corresponding creation constraints as defined in the current WS-
Agreement specification. Since this framework augments the current specifi-
cation with possibilities to negotiate over a WS-Agreement this fundamental
data structure is adopted for the (partial) definition of some service(s) to be
negotiated. The creation constraints as part of this template are also used in
this approach to give syntactical restrictions on the elements still to be initial-
ized or to be altered during the negotiation. A WS-Agreement template, some
negotiation is defined upon can uniquely be referenced by the templateID,
unique for a given template at a distinct endpoint, and optionally the EPR for
the service offering this template.

The negotiation type document refers to the WS-Agreement template the
negotiation is defined upon and specifies the negotiation attributes as given
by our taxonomy. Given its content the Negotiation Type document defines
which terms of a WS-Agreement can be negotiated and how to do so.

A concrete negotiation is represented by a negotiation instance document
as already hinted. This document refers to the negotiation’s type, its partic-
ipants and specifies a unique identifier. Finally, the result of the complete
negotiation protocol is a valid WS-Agreement document satisfying the cre-
ation constraints as defined in the initial WS-Agreement referenced in the
negotiation type document.

2.4. INVOLVED ROLES

In order to fix the different parties involved in a negotation process as well
as their expected behaviour, three distinct roles are used in our framework,
namely Negotiation Participant, Negotiation Coordinator and Information Ser-
vice. Since this framework is employed in service oriented environments
each of these roles offers some functionality as a service to the other agents
involved in the negotiation. In such a negotiation process the Negotiation
Participants represent regular agents participating in the initial negotiation
meta-protocol (used to distribute the negotiation documents to the prospective
negotiators) and the negotiation process itself. The Negotiation Coordinator
is a logically centralised instance which handles admission of agents to a
given negotiation as well as (re)distribution of the negotiation documents to
the prospective negotiators. The information distribution during the actual
negotiation is administrated by the Information Service. This service offers

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.7

8 S. Hudert, H. Ludwig, G. Wirtz

Figure 1. Scenario - Example Auction

information about the current status of a negotiation (for example the cur-
rently highest bid) or about the offer history to the negotiators.

The basic guidelines, data structures and roles presented here, will be
made more concrete in the next sections by using an example scenario to
introduce the negotiation meta-protocol for negotiation data as well as the
negotiation protocol more preciesely.

3. Example Scenario

In order to make our concept clear, the following scenario (see Figure 1)
provides a typical application for the framework presented here: In a given
Grid system the individual nodes offer services to each other. Each of these

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.8

Negotiating SLAs - An approach for a generic negotiation framework for WS-Agreement 9

services can be offered at different quality levels which have to be defined
for each service invocation. Such service quality assertions are expressed
as Service Level Agreements (SLAs), using the WS-Agreement standard.
In order to allow for flexible negotiations of such SLAs, each Grid node is
associated with a software agent or some similar intelligent service used for
the negotiation process, e. g. offering the needed negotiation interfaces as
proposed by our approach. In our scenario Grid service A (represented by
software agent A) requests some service offered from several nodes in the
Grid, for example a currency service offering methods to convert currency
exchange rates and to query historical exchange rates analogously to a stock
exchange chart. Agent A furthermore knows that this service is offered by
several other nodes in the Grid, although at different service quality levels.

In our scenario, response time is an important service quality parameter
of the offered service. Since agent A potentially submits a big batch of cur-
rency conversions during a given timespan a preferably small response time
of the currency service is desired. For this purpose agent A decides to conduct
an auction-like protocol to negotiate the final SLA. In this auction the only
parameter to be negotiated is the response time of the currency service. The
agent bidding the lowest guaranteedResponseTime wins the auction, starting
of at a response time of 100ms which is the maximum agent A can accept. A
typical interaction stemming from this setting is shown in Figure 1

For this purpose agent A creates a WS-Agreement template document
according to the current specification draft (Andrieux et al., 2005). This doc-
ument states the expiration of the resulting agreement, the currency service’s
functionality in the service description terms as well as the response time as
a service property term to be used in the service quality assertion. In the ser-
vice quality terms 100ms is set for the guaranteedResponseTime parameter,
stating the upper bound for this attribute in the subsequent negotiation.

After having defined the template document, agent A creates a protocol
description as proposed in this framework. This protocol description ref-
erences the template document just created (by stating the endpoint refer-
ence where agent A offers its services and the template’s ID) to provide
the prospective negotiators with the syntactical restrictions of the SLA to
be derived. Furthermore it states that only one agent is allowed to join on
the consumer side of the SLA, which will be agent A itself, and possibly n
different agents can join the negotiation as providers. The only issue to be
negotiated is the guaranteedResponseTime as already stated.

Table I shows some excerpts of the type definition for a negotiation as
described in section 2.3: besides referencing an WS-Agreement template, two
roles, i.e. serviceProvider and serviceConsumer are introduced as well
as the guaranteedResponseTime issue to be negotiated with a restrictive
upper bound. In contrast to the negotiation type definition, Table II, presents
some aspects of an negotiation instance that references this auction type: con-

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.9

10 S. Hudert, H. Ludwig, G. Wirtz

Table I. Auction type description for scenario

< n e g o t i a t i o n . . .
x s i : s chem aL oca t ion = ’ . . . N e g o t i a t i o n T y p e . xsd ’ >
< n e g o t i a t i o n T y p e I D >

c u r r e n c y S e r v i c e A u c t i o n T y p e
</ n e g o t i a t i o n T y p e I D >
<wsAgreementTemplate >

< e n d p o i n t >
h t t p : / / www. s e r v i c e A . com / c u r r e n c y

</ e n d p o i n t >
< tem pla te ID >

c u r r e n c y S e r v i c e T e m p l a t e
</ tem pla te ID >

</ wsAgreementTemplate >
<!−− s t a r t and t e r m i n a t i o n i s s e t i n t h e n e g o t i a t i o n i n s t a n c e document −−>
. . .
< r o l e roleName =" s e r v i c e P r o v i d e r " p e r m i s s i o n T o P o s t O f f e r s =" t r u e ">

< a d m i s s i o n R e s t r i c t i o n a d m i s s i o n R e s t r i c t i o n F o r m =" open "/ >
</ r o l e >
< r o l e roleName =" s e r v i c e C o n s u m e r " p e r m i s s i o n T o P o s t O f f e r s =" f a l s e ">

<maximumNumberOfAgents >
1

</ maximumNumberOfAgents >
< a d m i s s i o n R e s t r i c t i o n a d m i s s i o n R e s t r i c t i o n F o r m =" open "/ >

</ r o l e >
. . .
< n e g o t i a t e d I s s u e s >

< g u a r a n t e e T e r m s e x t e n d a b l e =" f a l s e ">
< guaran teeT erm ID domain =" xsd : i n t e g e r " v a l u e s =" s i n g l e ">

guaran teed Re sp on se T im e
</ guaranteeTermID >

</ guaran teeT erm s >
</ n e g o t i a t e d I s s u e s >
< a t t r i b u t e R e s t r i c t i o n >

< a t t r i b u t e >
guaran teedR e spo nse T i m e

</ a t t r i b u t e >
< r e s t r i c t i o n >

< t h r e s h o l d >
<upperBound >

100
</ upperBound >

</ t h r e s h o l d >
</ r e s t r i c t i o n >

</ a t t r i b u t e R e s t r i c t i o n >
. . .
</ n e g o t i a t i o n >

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.10

Negotiating SLAs - An approach for a generic negotiation framework for WS-Agreement 11

Table II. Auction type description for scenario

< N e g o t i a t i o n I n s t a n c e . . .
x s i : s chem aL oca t ion = " . . . N e g o t i a t i o n I n s t a n c e . xsd ">
< n e g o t i a t i o n I D >

c u r r e n c y S e r v i c e A u c t i o n
</ n e g o t i a t i o n I D >
< n e g o t i a t i o n T y p e >

< r e f e r e n c e d N e g o t i a t i o n T y p e >
< e n d p o i n t >

h t t p : / / www. s e r v i c e A . com / c u r r e n c y
</ e n d p o i n t >
< n e g o t i a t i o n T y p e I D >

c u r r e n c y S e r v i c e A u c t i o n T y p e
</ n e g o t i a t i o n T y p e I D >

</ r e f e r e n c e d N e g o t i a t i o n T y p e >
</ n e g o t i a t i o n T y p e >
< s t a r t >

2006−09−30T13 : 3 0 : 0 0
</ s t a r t >
< t e r m i n a t i o n >

2006−09−30T23 : 3 0 : 0 0
</ t e r m i n a t i o n >
< agen t >

< r o l e >
s e r v i c e C o n s u m e r

</ r o l e >
<agentEPR >

h t t p : / / www. s e r v i c e A . com / c u r r e n c y
</ agentEPR >

</ agen t >
< agen t >

< r o l e >
c o o r d i n a t o r

</ r o l e >
<agentEPR >

h t t p : / / www. s e r v i c e A . com / c u r r e n c y
</ agentEPR >

</ agen t >
< agen t >

< r o l e >
i n f o r m a t i o n S e r v i c e

</ r o l e >
<agentEPR >

h t t p : / / www. s e r v i c e A . com / c u r r e n c y
</ agentEPR >

</ agen t >
</ N e g o t i a t i o n I n s t a n c e >

crete start and end dates are given as well as the involved agents according to
the roles to be defined in the next two sections in more detail.

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.11

12 S. Hudert, H. Ludwig, G. Wirtz

Figure 2. Agreement Creation Processs

4. Negotiation Meta-Protocol

The framework supports the complete process of agreement creation. As de-
picted in Figure 2, this creation process is divided into three distinct phases:
first the initially created negotiation protocol definition has to be distributed
to all prospective negotiators. This process is described with the negotiation
meta-protocol as defined in this section. Subsequently the actual negotiation
process takes, according to the rules defined and distributed in the previous
phase. Such a generic negotiation protocol is presented in the next section.
Finally, in the agreement acceptance phase one offered agreement is accepted
by one of the participants to conclude the negotiation. Alternatively, there
may be no acceptable offer and the negotiation is terminated by rejecting all
offers.

Although not actually part of the meta- or the negotiation protocol the
overall process consists of one additional phase: the creation of the negoti-
ation protocol description, which takes place before the other three stages
of agreement creation. During this phase a negotiation protocol instance is
created which defines the rules for the following WS-Agreement negotiation.

Since the approach for conduction negotiations works in a Web Services
setting, the meta-protocol will not focus on exchanged messages primarily,
but on the provided services and respective methods to be invoked subse-
quently. This approach was taken due to the service oriented environment
for WS-Agreement negotiations. Such service oriented environments focus
inherently on provided services and define protocols in terms of method in-
vocation sequences. The methods needed for the different negotiation steps
within the protocol are structured in interfaces according to the different roles
as already outlined in the previous section. Using these roles and respective
interface methods, a range of different scenarios within the exchange process
of negotiation data can be realized.

4.1. INTERFACES FOR THE ROLES INVOLVED

In order to conduct a negotiation, the involved agents are assumed to take part
in one particular negotiation instance of one particular type as defined above.
The data structure describing the negotiation instance contains a unique iden-

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.12

Negotiating SLAs - An approach for a generic negotiation framework for WS-Agreement 13

tifier for this instance, a reference to the negotiation type, the list of par-
ticipating agents and optionally time-based start and termination parameters.
This follows the instantiation concept presented in the previous section. Every
time an agent joins an already instantiated negotiation, the data structure is
updated, by adding this agent to the role it adopts, and redistributed to all
participants of the negotiation that are already known. At the end of the
metadata exchange process thus every involved agent is aware of the start
and termination of the negotiation, its type and the agents currently involved.
This very general protocol description already hints at which of the roles
already introduced are involved in the exchange process of the negotation
meta-protocol: a centralized Negotiation Coordinator interacts with one or
more Negotiation Participants.

In the following, we discuss the interface functionality of both roles in-
volved in a bit more detail. A complete description of all interfaces involving
the corresponding WSDL documents as well as the XML schema for all data
structures used can be found in (Hudert, 2007).

The Negotiation Coordinator provides negotiation protocol descriptions
and handles the admission of participating agents to a given negotiation. First
of all, the corresponding interface offers a set of query methods for partic-
ipants that are used for requesting available negotiation type and instance
documents.

− getAllNegotiationTypes()/getAllNegotiationTypesForTemplate(. . .)

− getCurrentNegotiations()/getCurrentNegotiationsForTemplate(. . .)

Thus, very general queries are possible as well as queries concerning negotia-
tions currently active. The second dimension, indicated by ’template’, allows
for using WS-Agreement templates when performing a query. Based on this
information, participants should also be able to act in different ways in order
to initiate and/or become involved in negotiations. Besides simply asking to
join an already running process, an agent may actively propose a negotiation
instance to a coordinating agent. This agent may then either act as coordinator
only in the respective negotiation or also join the negotiation as a participant.

− joinNegotiation(negotiationID, agentEPR, ’credentials’)

− proposeNegotiation(NegotiationInstance-document)

− publishNegotiation(NegotiationInstance-document)

− publishNegotiationToReceipients(. . ., [receipients])

Publishing a negotiation differs from the proposeNegotiation()-method in that
it is not assumed that the coordinator used for publishing also is to act as

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.13

14 S. Hudert, H. Ludwig, G. Wirtz

Negotiation Coordinator of the respective negotiation. It only offers this ne-
gotiation instance for look-up purposes while the actual admission and infor-
mation (re)distribution tasks are conducted by the actual coordinating agent,
propably the one publishing the negotiation instance. This method can be
used to implement systems of distributed look-up servers. The publishNego-
tiationToReceipients()-method is more specific as the agents that should be
actively notified of this negotiation are explicitly named. In the more generic
method the publishing agent cannot specify to which agents the negotiation
should be published or whether this negotiation should be published push-
style with the proposeNegotiation()-method or just be offered pull-style as a
result of the query-methods.

Processing admission of agents at one logical centralised coordinator ser-
vice eases the integration of reputation or security related external systems
involved in the admission process. This way most of the consistency problems
arising when operating distributed systems can be solved in a centralised
way. All agents joining a negotiation do so by invoking the corresponding
method on the central coordinator service which handles the whole admis-
sion process. Another coordinator task is therefore to notify the participating
agents when others have joined by posting the updated negotiation instance
document to them as described above.

The second role needed in the meta-protocol is the one of a regular partic-
ipant. This role is adopted by all agents actively participating in a negotiation,
i.e., by service providers as well as consumers. All these agents have to offer
some methods to enable negotiations. The Negotiation Participant role, how-
ever, is present in both, the exchange and the negotiation protocol. In order
to describe the offered methods in a consistent way, the methods used for the
meta-protocol are described here while the ones used in the actual negotiation
will be sketched in the context of the negotiation protocol (see next section).

As described in the context of the coordinator already, the coordinator
needs a handle to provide participants with up-to-date information about a
negotiation. This is used when new agents have joined the negotiation and the
updated instance document has to be promoted to all Negotiation Participants.

− updateNegotiation(NegotiationInstance-document)

− proposeNegotiation(NegotiationInstance-document)

− acceptNegotiation(negotiationID)

On the other hand, a participant should be able to actively propose a negotia-
tion instance to another (potential) Negotiation Participant. As opposed to the
corresponding method of the Negotiation Coordinator interface, this method
proposes a negotiation to agents to act as regular participants in the result-
ing negotiation. The acceptNegotiation()-method is offered as a counterpart

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.14

Negotiating SLAs - An approach for a generic negotiation framework for WS-Agreement 15

for the proposeNegotiation-method to support asynchronous communication.
When a negotiation is proposed to a participant this agent can decide whether
to join or not. If it joins, it invokes the acceptNegotiation()-method, otherwise
nothing more happens.

4.2. PROTOCOL COMPONENTS

Although only providing two distinct roles, the exchange protocol provides a
broad support for different exchange processes. A multitude of possible pro-
tocols can be constructed from only three basic logical protocol components
that are implemented using the roles and methods presented: request for and
proposal of negotiation data as well as their mediated exchange.

4.2.1. Request for Negotiation Documents
This step describes the process of one agent requesting negotiation type or in-
stance documents from the respective Negotiation Coordinator. Within the ex-
change protocol two different types of negotiation documents can be queried:
negotiation type or negotiation instance information. The corresponding requ-
est-methods are defined in the Negotiation Coordinator interface (see section
4.1) for the coordinating agent stores and (re)distributes this information.
The distinction between types and instances allows agents to request actually
instantiated negotiations, that are already running or that are about to start, as
well as supported negotiation types in general. After requesting general types
an agent can propose a concrete instance of a specific type to the coordinator
agent in order to trigger the instantiation of a new negotiation.

Accordingly, there are several possible ways to request negotiation data.
An agent may, for example, query all negotiation types supported by the re-
spective Negotiation Coordinator using the getAllNegotiationTypes()-method.
As a result the coordinator returns a list of negotiation type documents. This
allows the Negotiation Coordinator to generally define the supported negoti-
ation protocols without instantiating one particular negotiation. The coordi-
nator agent can thus wait until other agents have requested the types that are
available and propose a particular type to be instantiated. On the other hand,
agents may query already instantiated negotiations with the getCurrentNego-
tiations(). As described earlier a negotiation instance is created from a certain
type by specifying the involved agents and optionally the start and termina-
tion rules of the negotiation. Hence a negotiation instance can be already
running when queried. As a result to such a query for negotiation instances,
the Negotiation Coordinator returns a list of negotiation instance documents
describing the currently available negotiation instances.

Analogously to requesting all available negotiation types or instances agents
may also query only types and instances defined for a given WS-Agreement
template, identified with an endpoint reference (EPR) referencing the service

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.15

16 S. Hudert, H. Ludwig, G. Wirtz

offering the template and a templateID identifying the particular template
within the set of available ones at this endpoint. This template represents a
generic WS-Agreement, with references to (possibly already existing) ser-
vices, elements yet to be filled in and corresponding restrictions. Hence this
method provides agents with a means to inspect all possible negotiation types
available for some service they already know.

If only the possible negotiation types or current negotiations are to be
queried, the exchange protocol only consists of one method invocation and
respective return parameters. If one of the returned negotiation types or in-
stances is appealing for the requesting agent and it wishes to take part in the
respective negotiation, the involved agents have to conduct an additional step.

In case of the request for negotiation types an agent can identify a nego-
tiation type it wishes to instantiate and propose the created instance to the
coordinator by invoking the proposeNegotiation()-method.

If a negotiation is proposed to the Negotiation Coordinator, the proposing
agent is supposed to act as coordinator during the respective negotiation. Be-
cause the participant proposing this negotiation instance has to know whether
it was accepted or not, the acceptNegotiation()-method is used to inform
asynchronously (much like a callback) about the result of the proposal. Asyn-
chronous communication was considered useful here because this concept
allows a (potential) coordinating agent to check its current circumstances
before accepting a request. In the process visualized in Figure 3, the coor-
dinating agent would be set as Negotiation Coordinator within the instance
document. After such a negotiation is proposed, the coordinator checks it’s
resource situation for deciding whether to accept such a negotiation or not.
The diagram depicts the situation where the Negotiation Coordinator accepts
the negotiation instance by invoking the acceptNegotiation()-method on the
proposing agent. The proposing agent can join this negotiation instance by
invoking the joinNegotiation()-method afterwards.

If an agent wants to join an already instantiated negotiation (queried be-
fore), the proposeNegotiation()-step is omitted. The agent requests the cur-
rently available negotiation instances first, chooses an appropriate one and
invokes the joinNegotiation()-method on the coordinator afterwards. This sit-
uation and the resulting steps are shown in Figure 4.

4.2.2. Proposal of Negotiation Documents
This step represents the process of actively proposing some instance docu-
ment to a prospective participant or coordinator. When proposed to a coordi-
nator this agent is set as Negotiation Coordinator in the instance document.
This way negotiations can either be proposed to agents simply taking part
in or to some agent coordinating the subsequent bidding process. The pro-
tocol component regularly follows a request for negotiation types in order
to propose the newly created instance to the coordinating agent. The details

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.16

Negotiating SLAs - An approach for a generic negotiation framework for WS-Agreement 17

Figure 3. Process of requesting available negotiation types and instantiating a negotiation

complement the process of querying information and are carried out by the
interface methods already discussed in section 4.1.

4.2.3. Mediated Exchange Processes
This third building block offers publish/subscribe functionality to the partic-
ipants. Agents can publish negotiation instances at some Negotiation Coor-
dinator to make it available to a larger community of prospective negotiation
participants. As already discussed, a Negotiation Coordinator does not have
to join the negotiation as a service provider or consumer, but may act as a
third party only responsible for administrative tasks. This concept enables the
specification of centralised look-up servers only distributing negotiation data
without taking part in any of these negotiations. These coordinators hence act
as mediating third parties within the exchange protocol.

To enable publish/subscribe-like functionality agents should be able to
publish negotiation instances to such look-up servers to promote their desired
negotiation protocol. On the other hand agents requesting available protocols
should be able to query these submitted protocols and search for appropriate
ones. In order to implement such architectures, the Negotiation Coordinator

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.17

18 S. Hudert, H. Ludwig, G. Wirtz

Figure 4. Requesting available negotiation instances and joining of the requesting agent

offers the publishNegotiation() interface method. This method allows for pub-
lication of instantiated negotiations at some coordinating service. The other
agents requesting the available protocols again query these by invoking the
already introduced request-methods. As described before, the Negotiation
Coordinator can also actively suggest negotiation instances to other agents
using the proposeNegotiation()-method, which is therefore also present in the
Negotiation Participant interface.

The diagram in Figure 5 shows an exchange process where an agent A
proposes a negotiation instance to the coordinator that proposes this negotia-
tion to two different agents B and C of which only agent B joins. Of course,
this is just a fragment of the complete exchange process because certainly the
coordinator would propose this negotiation to much more other agents and
also other agents requesting this document by using request-methods could
join, respectively.

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.18

Negotiating SLAs - An approach for a generic negotiation framework for WS-Agreement 19

Figure 5. Mediated Exchange Process

By combining these three basic protocol components as bulding blocks,
a multitude of different exchange processes can be specified, all resulting in
distributing the information, needed to participate in a particular negotiation,
to all prospective participants.

5. Negotiation Protocol

After supplying all negotiation participants with the negotiation type and in-
stance documents the actual negotiation can start. The protocol governing
this process is described in this section. Using this protocol the different
negotiation types that can be specified with the presented data structure can
be executed.

In general, we describe every negotiation as a bidding process. Each party
involved in a negotiation offers an agreement to the other party concerning the
issues subject to the negotiation that is currently acceptable for them. Then
the other party assesses the offered agreement and generates a counter-offer,
accepts the offer of rejects it and terminates the negotiation. This way the
two parties involved move from a conflict situation concerning some (logical)
resource(s) to a consensus represented by the resulting agreement. Since SLA
scenarios only exhibit two logical positions actively involved in a negotia-
tion, the service providers and consumers, only such two-sided negotiation
protocols are considered here.

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.19

20 S. Hudert, H. Ludwig, G. Wirtz

Although only two sides of a negotiation are present, a multitude of differ-
ent protocols can be defined. In One-on-One Bargaining, for example, each
side consists of only one agent. These two agents take turns in posting offers
and counter-offers until one of these posted bids is accepted by the other
agent. On the other hand, negotiation protocols such as auctions let all agents
involved on one side post offers to the one agent representing the other side.
Each agent can offer more than just one bid, but every agent can have only
one currently valid bid. Hence, when posting a new offer this offer replaces
the last one posted by the same agent. When the negotiation is terminated the
currently best valid bid will be transfered into the resulting agreement. The
data structures used for this purpose allow for the definition of a multitude
of auction- and bargaining-like negotiation types. In order to support such
processes the generic negotiation protocol introduced now has to provide the
agents with means to post offers and to promote the decision made about a
concrete offer.

The two roles present within the actual negotiation protocol are the Nego-
tiation Participant and the Information Service. Analogously to the exchange
protocol presented in section 4, the negotiation protocol is defined in terms
of roles and their respective interface methods to be compatible to the target
service-oriented environments.

NEGOTIATION PARTICIPANT INTERFACE

As the Negotiation Participant represents a regular participant of a given
negotiation process, it offers the following methods in the context of the
negotiation protocol in addition to the methods needed for the meta-protocol
(see section 4.1). First of all, a participant has to be able to place offers in the
context of a negotiation. Such an offer consists of EPR of the posting agent
and a complete WS-Agreement document representing the offered SLA.

− placeOffer(agentEPR, WS-Agreement-document)

− acceptAgreement(negotiationID, agreementID)

− rejectAgreement(negotiationID)

In order to promote a negotiation’s outcome to all participants, the accept/re-
ject methods are used. In the positive case, the winner(s) of the negotiation
and therefore the agent(s) involved in the resulting agreement are notified
by invoking this method. Since each agent could be involved in multiple
negotiations the ID of the negotiation instance is given as a parameter along
with the id of the accepted agreement offer. In case of disagreement, the
rejectAgreement is invoked on all agents that did not win in the negotiation
after the termination of the negotiation. Thus, all agents not being involved in
the resulting agreement are informed of the negative outcome.

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.20

Negotiating SLAs - An approach for a generic negotiation framework for WS-Agreement 21

Usually, the protocol involves much more negotiation steps than a simple
offer-agree/reject pair. For this purpose, the

− newRound(negotiationID, ’Information’)

method enables centralised coordination of multi-round negotiations. Each
round is started when the Negotiation Coordinator invokes this method on all
particpants (except the first one whose start is defined in the Start-attribute
of the Negotiatoin Type/Instance). Multi-rounded negotiations consist of sev-
eral phases, which are all conducted according to the same protocol. The
only difference between the individual rounds is the knowledge of the in-
volved agents. At the beginning of each round, some negotiation information
is revealed to the participants that was not available in the previous round.
This way the involved agents can alter their offers based on their increased
knowledge about the negotiation. Negotiation designers could, for example,
define a negotiation protocol, that allows only for one sealed bid from each
participant in each round. After each round the bids from all other agents are
promoted to all participants and every agent can post another offer in round
two, and so on. In order to promote the newly accessible information the
push-concept is applied. When invoking the newRound()-method the coordi-
nator service posts this information to all agents along with the identifier of
the negotiation the new round is started for. The parameter(s) needed here are
the ID of the negotiation instance for which a new round should be started,
the datastructure containing some information about the bidding process, that
was not available in the last round for push-distribution, for example the
current negotiation status.

INFORMATION SERVICE INTERFACE

The Information Service role provides access to information on the current
negotiation status or past offers. Hence the corresponding interface provides
the following methods:

− getStatus(negotiationID)

− getPastOffers(negotiationID)/getPastOffers(negotiationID, agentID)

The getStatus-method is used by all negotiation participants to access the
current negotiation status. This allows, for example, to assess which offer is
currently winning the negotiation and if necessary to adopt the own offer.
It results in a data structure containing the current negotiation status, which
is denoted by all current offers of all parties allowed to post offers. Note,
however, that the currently winning bid may of course only be identified
if the offer matching rules of this negotiation are given in the negotiation
type document, otherwise the requesting agent can not anticipate the current
winner.

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.21

22 S. Hudert, H. Ludwig, G. Wirtz

The remaining methods let participating agents access all past offers of a
negotiation. This information can be used for internal decision making of the
negotiating agents. Such a request may be restricted to offers posted by as
specific agent denoted by its ID as an additional parameter.

Using these roles and interfaces a rather generic negotiation protocol is
defined, capable of conducting any negotiation protocol describable with the
attributes identified before.

EXAMPLE NEGOTIATION

In the rest of this section, the approach is illustrated by describing an auction
process conducted using the above presented interfaces. The diagram in Fig-
ure 6 describes such an auction process: In this negotiation process agent A
acts as service consumer requesting offers from different service providers.
Agents B, C and D represent those service providers posting offers to agent
A.

Initially, the necessary negotiation data has to be distributed among the
participants according to the exchange protocol defined in the last section.
Under the assumption that this phase of negotiation is already completed
the actual negotiation starts as defined in the corresponding start-rule. After
the negotiation started the bidding process takes place. Agents B, C and D
subsequently post offers to agent A. This is depicted in the diagramm by
explicitly showing the submission of offers by each of these agents. As also
hinted in the diagram this bidding process will go on for some amount of time
resulting in much more offer postings than actually shown in the diagram.

After the negotiation is terminated (the termination condition again stated
in the negotiation type or instance document), its result is communicated to
all participants.

In this case agent D offered the best agreement of all bidding agents
and therefore wins this auction. Agent A subsequently promotes the result
to all participants by invoking the acceptAgreement()- or rejectAgreement()-
methods respectively as shown in the diagram.

As a result of this negotiation agents A and D engage in an agreement with
each other, whereas agents B and C do not take part in an agreement because
of loosing the negotiation.

Even though this negotiation process only shows a very simplified auc-
tion because of scope reasons it already sketches how even more complex
negotiations can be conducted using the roles and respective methods defined
above.

The diagram in Figure 6 also depicts the information processing compo-
nent of a negotiation. By retrieving the negotiation status from the Informa-
tion Service (in this case also offered by agent A) agent B realizes that agent

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.22

Negotiating SLAs - An approach for a generic negotiation framework for WS-Agreement 23

Figure 6. Sample Auction Process

D posted an offer exceeding it’s initial offer. If the negotiation would end
at that point agent D would engage in an agreement with agent A and the
other participants would loose the negotiation. As a reaction to this negoti-
ation status agent B creates another, better offer and posts it to agent A to
succeed the formerly winning offer. However, after an ongoing process of
offer submission agent D still wins the negotiation in the process described
in this example.

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.23

24 S. Hudert, H. Ludwig, G. Wirtz

6. Conclusion

This paper proposes a negotiation framework for WS-Agreement, enabling
the integration of a variety of negotiation protocols suitable for different
application domains based on a negotiation meta-protocol determining the
actual negotiation protocol used. Negotiation protocols can be specified in a
description language and made available to parties interested in negotiations.
Parties interested in negotiating an agreement first run the negotiation meta-
protocol to establish which negotiation protocol is used. Subsequently, the
protocol is executed to determine the resulting, negotiated WS-Agreement
document. Finally, after winner determination, acceptance and rejection is
performed again according to the standard WS-Agreement protocol. With
these two protocols fully automated WS-Agreement negotiations according
to a variety of different negotiation protocols can be conducted in Web Ser-
vice environments.

Future work focuses on testing a variety of negotiation protocols, e.g.
in the context of (SOR, 2007), and thus verifying the expressiveness of the
negotiation description language and the capabilities of the negotiation meta-
protocol.

References

: 2007, ‘EU Information Society Technologies project SORMA - Self-Organizing ICT
Resource Management’.

Andrieux, A., K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu: 2005, ‘Web Services Agreement Specification Draft, Version
09/2005’.

Bartolini, C., C. Preist, and N. R. Jennings: 2005, ‘A Software Framework for Automated
Negotiation’. Software Engineering for Multi-Agent Systems III: Research Issues and
Practical Applications (eds. R. Choren, A. Garcia, C. Lucena, and A. Ramonovsky) pp.
213–235.

Bichler, M. and J. R. Kalagnanam: 2007, ‘Software Frameworks for Advanced Procurement
Auction Markets’. Communications of the ACM (CACM).

Friedman-Hill, E.: 2006, ‘Jess: The Java Expert System Shell’. Sandia Laboratories.
Hudert, S.: February 2007, ‘A Proposal for a Web Services Agreement Protocol Framework’.

Bamberger Beiträge zur Wirtschaftsinformatik 70, Bamberg University. ISSN 0937-3349.
Lomuscio, A. R., M. Wooldridge, and N. R. Jennings: 2003, ‘A Classification Scheme for

Negotiation in Electronic Commerce’. Int Journal of Group Decision and Negotiation
12(1), 31–56.

Ludwig, H., A. Keller, A. Dan, R. P. King, and R. Franck: 2003, ‘Web Service Level
Agreement (WSLA): Language Specification Version 1.0’. (1.0).

Stroebel, M. and C. Weinhardt: 2003, ‘The Montreal Taxonomy for Electronic Negotiations’.
Journal of Group Decision and Negotiation 12, 143–164.

Wurman, P. R., M. P. Wellman, and W. E. Walsh: 1998, ‘The Michigan Internet AuctionBot:
A Configurable Auction Server for Human and Software Agents’. Second International
Conference on Autonomous Agents.

Wurman, P. R., M. P. Wellman, and W. E. Walsh: 2001, ‘A Parametrization of the Auction
Design Space’. Games and Economic Behavior 35(1-2), 304–338.

NegotiatingSLAs-HudertLudwigWirtz-pastsub.tex; 16/04/2007; 9:45; p.24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 836.221]
>> setpagedevice

