
RC24249 (C0704-012) April 30, 2007
Computer Science

IBM Research Report

On-line Collaborative Software Development via Wiki

WenPeng Xiao, ChangYan Chi, Min Yang
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, 100094

P.R.C.

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

On-line Collaborative Software Development via Wiki
WenPeng Xiao

IBM China Research Lab
86-10-58748423

xiaowp@cn.ibm.com

ChangYan Chi
IBM China Research Lab

86-10-58748012

chicy@cn.ibm.com

 Min Yang
IBM China Research Lab

86-10-58748544

yangmin@cn.ibm.com

ABSTRACT
Wiki is a collaborative authoring system for collective intelligence
which is quickly gaining popularity in content publication. In
software development communities, especially for open source
and global development teams, wiki is already widely used for
documentation and coordination purpose but not programming
purpose. This paper presents a new programming approach based
on wiki technology by which developers will experience “writing
wiki page is wring source code”. Moreover, developers are able to
compile, execute and debug programs in wiki pages too. A
prototype of such on-line collaborative software development
environment, Galaxy Wiki, is developed in this environment
iteratively to prove the concept.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
interactive environments, programmer workbench. H.5.3
[Information Interfaces and Presentation]: Group and
Organization Interface – collaborative computing, computer-
supported cooperative work, Web-based interaction.

General Terms
Design, Management, Documentation

Keywords
wiki, collaborative programming, software engineering

1. INTRODUCTION
Wiki, one of the most famous Web 2.0 applications, is
encouraging the masses to contribute. A large number of
participants can create new pages or modify existing pages
through their web browser easily in wiki. Besides enabling people
to write content to the web, wiki has also been extended to other
domains. For instance, researchers are exploring how to use wiki
in software development area, to weave source code and related
documentation [1].

Although not well recognized, the open source software
communities share a similar participation model with wiki. These
communities encourage everyone to contribute their code,

documentation or even idea to a project when s/he is attracted.
However, nearly all currently available development tools are
designed for core developers [2], and little of them take peripheral
developers in to account. As a result, there are lots of barriers to
peripheral developers when they want to contribute to a project
incrementally, and grow to core developers gradually. For
example, it is hard to understand source code because
documentation is discrete; it is hard to taste functionality quickly
with zero-installation; and it is hard to reuse a library as simply as
accessing a HTML page.

Web based on-line development is a possible way to solve the
mentioned problem, and benefit developers in the following
aspects: a) free from download, install and config development
environment in local machines; b) always up-to-dated source code;
c) easy to use.

Some implementations of wiki have been enhanced to support
specific activities in software development, for instance code
reviewing, bug tracking, and functional testing. Trac [14] is an
enhanced wiki and issue tracking system for software
development projects, integrates an issue tracker allowing creating
links and references between bugs, tasks, change sets, files and
wiki pages [3]. TWiki [15] also has plug-ins to track eXtreme
Programming projects.

However, none of them has touched the programming stage in
software development lifecycle. In this paper, we propose a wiki
based collaborative development environment named Galaxy
which leverages some features of wiki: collaboration, rich context,
open and easy to access, and wiki names dynamic links. Besides
managing source code and document, it also extends wiki with
development functionalities like compiling, executing and
debugging. One specific point is that Galaxy is under developing
in Galaxy.

The remainder of this paper is structured as follows: After
introducing some basic concepts of wiki-based programming in
section 2, a preliminary prototype, Galaxy Wiki, is discussed in
section 3. Related work is summarized in section 4, and our
conclusions and future work are outlined in section 5.

2. PROGRAMMING IN WIKI
Beyond using wiki only as a documentation repository or an
activities coordinator, we have sketched an on-line collaborative
programming environment based on existing wiki system. In this
lightweight and highly collaborative environment, user can write,
compile, execute and debug programs in a wiki site, just as what
we can do in a traditional IDE like Eclipse.

2.1 Literate Programming in Wiki
Nowadays, source code and documentation of a project are often
controlled by Software Configuration Management (SCM) tools
(e.g. CVS) and Content Management (CM) tools (e.g. wiki)
respectively. It’s a big challenge for development teams to keep
these artifacts synchronized throughout the whole development
life-cycle in order to preserve its consistency and value.

Wiki has been recognized as an ideal documentation system for
software projects [3], since it’s a very handy, simple and
appealing collaboration tool, which allows multiple programmers
to work on the same document concurrently. Full-featured wiki
system which target for software development has devised a wiki-
based approach to weave and keep in-sync source code and
documents together [1]. By rendering source code into wiki pages
dynamically, such wiki system allows user to read source code
fragment and document content in same wiki page. However, user
still cannot create, modify or delete code freely from wiki site as
the source code is under the control of SCM.

Support literate programming [4] in wiki is a possible solution for
this problem. The term "literate programming" was coined by
Donald Knuth and the main idea is to treat a program as a piece of
literature, addressed to human beings rather than to a computer.
Wiki is designed to use a simplified markup language for
formatted text written, so we can leverage this mechanism and use
predefined markup tags for source code written. For instance, in
order to inline Java source code into a wiki page, we can use the
#!java closure in MoinMoin wiki:

== Hello World ==

The first program of Java programming.

{{{#!java

 public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 }

 }

}}}

When the above text is rendered by wiki engine later, source code
can be extracted and handled by predefined actions, for example
syntax highlight and automatic indenting (Figure 1).

By supporting producing, modifying and reviewing source code in
Wiki, developers can also benefits from some key features of Wiki,
collaboration and easy of access. A developer can contribute code
wherever and whenever, as long as he can access the Internet.

2.2 Page Oriented Software Engineering
Currently, although we can download tons of code from an open
source portal like SourceForge [16], how to reuse them smoothly
in our own project is still a big issue. Firstly, it is not so easy to
locate the proper components and classes with reusable potential.
Secondly, it is time exhausting to download the whole package
and import it into our own projects. Last but not least, it is hard, if
possible, to keep the imported code always up-to-dated after its
author has fixed a critical bug.

In order to solve above problems, page oriented software
engineering is proposed. It provides an on-line environment
where code and documentation of a class are organized as a wiki
page, and a software project is also defined as a wiki page by
referencing relevant class pages and resources. All of the pages
can be created by one user and improved upon by others.
Therefore, in order to locate reusable classes, a user can start from
the wiki site’s searching engine. After reading and testing, he can
import them into his own project by simply referencing
corresponding wiki page names. In this way, the problem of up-
to-dated can also be solved.

The page oriented software engineering is well suited to retrieve,
combine and reuse source code available on the Internet, which is
especially useful for global software development teams and open
source project teams.

2.3 On-line Read-Eval-Print Loop
Many programming languages come with a read-eval-print loop
(REPL), which allows you to type in code line by line and see
what it does. This feature facilitates incremental program
development, and is quite useful for prototyping, experimentation,
and debugging code. A REPL provides a conceptually simple, yet
powerful framework for interacting with program components as
they are being developed [5].

The term REPL is often used to refer to an interactive
environment for interpretive languages like Lisp, Schema and
Python, but the same concept can be applied to the similar
environments in which programmer can easily access the source
code of a component, flexibly debug or test a program, and
quickly experiment with a new library. Programming in Wiki
show the REPL characters for on-line collaborative software
development:

 Read: Source code of each component is rendered in a wiki
page with rich formatted documentation, so user can easily
read and change both source code and documentation within a
Web browser.

 Eval: Source code of all components are extracted, compiled
(if necessary) and executed when receiving user’s command
from a wiki page.

 Print: Yielded output is pretty formatted to make it easier to
understand, and sent back to browser as a wiki page.

With this wiki based read-eval-print loop (Figure 2), a user is able
to interactively create a piece of code, execute it and observe the
result.

Figure 1. Writing code in a wiki page.

2.4 Scenarios
Founded on aforementioned concepts, some valuable uses with
strong requirements of interaction and collaboration in software
development engineering can be implemented.

 Pedagogy: A textbook of teaching programming language to
beginning student can be organized in a wiki site. Every
source code example in the textbook can be immediately read
and tested in a wiki page. Throughout the tutorial, the leaner
is encouraged to come up with own examples and test them
interactively in customized wiki pages.

 Exploration: A reusable library developed by an open source
community or global software development team can be
published in a wiki site. Anyone who wants to reuse this
library can explore API, documentation or sample code of this
library in different wiki pages. The explorer can learn the
essential features of this library more quickly if he can
conveniently conduct simple experiments by copying and
testing sample code in a wiki page.

 Demonstration: An agile software development team that
advocates delivering valuable software to customers can settle
their nightly building demonstration in a wiki site. The
customer is able to run and taste it from wiki page with zero
configurations.

3. GALAXY WIKI
What we want to figure out is how we might adapt wiki to a
lightweight and highly collaborative on-line programming
environment. This notion is quite new, and the proper
requirements and design for such environment is still not so clear.
The lessons we have learned from our preliminary prototype,
Galaxy Wiki, have helped illustrate some basic requirements and
an architecture design, which we describe in this section.

3.1 Overview of Galaxy
Galaxy Wiki is an on-line collaborative development environment
based on wiki and Java technology in which user can conveniently
initialize or import a Java project, create or modify a Java class,
and execute or debug a Java program. Combined with the existing
powerful functions of wiki, e.g. collaboration and documentation,
this environment is expected to support software communities to
develop Java programs in fully on-line manners.

There are a lot of wikis available to use today and many of them
are well designed for extensibility. MoinMoin [10] is chosen by
Galaxy as it is an advanced, easy to use and extensible wiki
engine with a large community of users. Figure 2 shows the key
components of Galaxy as well as their interconnections.

Wiki-based software development is the key idea behind Galaxy.
This idea is encouraged by the phenomenon that developers work
for the same project are located in different cities, different
countries, or different hemisphere [3], and the observation that
on-line tools is playing more and more important roles on
communication and coordination for such distributed teams.

In current implementation of Galaxy, a programmer is able to
manipulate Java project, package, class and library in wiki site
from the artifacts perspective. In addition, a programmer is also
able to compile, execute and debug Java programs in wiki site
from the development perspective.

3.2 Rich Pages
When we use traditional integrated development environment
(IDE) like Eclipse [13] to develop a standard Java project, we
have to face many concepts such as project, package, class and
library. Fortunately, all of them can be congruously mapped to a
simple object in Galaxy: wiki page.

There are three types of special pages in Galaxy which are endued
with richer functionalities than other pages:

 A project page describes all details information of a project.

 A class page defines a class, which is the basic unit of a
project.

 A library page depicts a library, which can be imported by a
project.

A Java project can be easily created by generating a new project
page in Galaxy. In this wiki page, user can specify what libraries
should be imported into this project, and how all relevant classes
are organized into different packages (Figure 3). Moreover, user
can also point out the execution entry of this project, which is
usually a public class containing the static main function.

Correspondingly, a Java class can be created by generating a new
class page in Galaxy, which is often a combination of source code
and documentation (Figure 4). In this way, a programmer is able
to read the requirement documents or design documents

Figure 3. Project page in Galaxy.
Figure 2. Galaxy architecture.

conveniently while coding in wiki, and the relationship between
document and code can be established and persisted.

We have noticed that some Java archive (JAR) files (e.g.
commons-logging.jar) are often required by many projects, and
the simplest solution of importing them into each project is not so
efficiently. More ideal solution is depicting each reusable JAR file
in a library page, and linking with it in the project page. With this
approach, a library maintainer can create a library page and
upload JARs as attachments of this page, and assign each of them
a proper version number (Figure 5). If there is any project that
needs this library, the programmer can simply reference the wiki
name of this library, and specify the version number in the project
page (Figure 3).

3.3 Compilation and Execution
Weaving source code and documentation in single wiki page is
not a quite new idea [1]. The further step that Galaxy has moved
in wiki aided software engineering is providing an always on-line
environment in which programmers are able to not only navigate,

create, modify or delete source code, but also compile, execute
and debug Java programs.

MoinMoin provides extension mechanism to extend actions.
Galaxy defines three subsidiary actions and binds them to each
project page, namely Build, Run and Debug. They can be
triggered by user from the action bar of MoinMoin (Figure 6).
These actions either produce some output based on page contents
(run), or implement functions that are not related to viewing a
page (build and debug).

After putting all source code and documentation into class pages,
and properly organizing them in a project page, user can trigger
the build action from his project page in order to compile it and
observe the output in the same page. The requested project page
will be parsed at server side, and all relevant class pages will be
located and converted into Java files. There are different
approaches to convert a class page into a Java file: (a) simply
extracts source code from specific markup and remove other wiki
contents, (b) fully converts all wiki contents except code into Java
comments and keeps source code untouched. Galaxy uses the
latter one because it is possible to convert a Java file back to a
wiki class page.

One mission of Galaxy is proposing a clear definition of what the
project consisted of, an easy way to share classes and JARs across
several projects, and a standard way to build projects on-line
(specific in wiki now). Apache Maven [11], a powerful Java
building system, has the similar goal for traditional off-line Java
projects and is used by Galaxy to simplify the build processes
when all Java files have been converted. The build action
requested by user on a Galaxy project page actives the
compilation chain at server side. First, a corresponding project
object model (POM) required by Maven will be generated, and
converted Java files will be copied into proper directories. Next,
Maven will be executed to perform real building process. Last, the
compilation output yielded by Maven will be redirected to
browser and showed in project page, which is illustrated in Figure
6.

A successfully building denotes that user can emit the run action
from project page subsequently. When the request is received and
handled by Galaxy server, a proper runtime environment will be

Figure 4. Class page in Galaxy.

Figure 6. Build project in Galaxy.

Figure 5. Library page in Galaxy.

constructed, in which the specified execution entry is able to be
launched according to the description of project page. Similarly,
the output of this program is also redirected to browser and
showed in project page (Figure 7).

In order to support programming in the large, we are working on
building a conventional debugger base on the Java Platform
Debugger Architecture (JPDA) in Galaxy, which also can be
easily invoked by user from a project page. When a project page is
executed in the debugging mode, more actions will be
dynamically bound to this page which allows user to control
behaviors of the program to be debugged. Except that the debug
command is inputted in a wiki page (by actions) and the debug
information is outputted to a wiki page, there is no any other
difference for a programmer to debug a program in Galaxy and to
debug a program in console based debugger like JDB.

3.4 IDE Integration
Although Galaxy provides wiki based interfaces for users to
access most of its functionalities conveniently, it is not very
efficient for core developers who always work in client-side IDEs
like Eclipse. IDE integration is a high-priority planned activity of
Galaxy. We have developed a plug-in for Eclipse to access the
project page, class pages and library pages stored in Galaxy, and
convert them into Java project, Java files and JARs respectively in
Eclipse (Figure 8).

XML-RPC [12] is a remote procedure call protocol which uses
XML to encode its calls and HTTP as underlying transport
mechanism. MoinMoin Wiki exposes an API via XML-RPC
which allows programmatic inspection, retrieval, and modification
of its contents. Using this API, the plug-in running in Eclipse is
able to download a project page from Galaxy Wiki, and create an
equivalent Eclipse Java project in current workspace.
Simultaneously, the relevant class pages will be addressed and
downloaded according to the package sections of a project page.
Currently, a class page is transformed into a Java file by simply
converting all wiki contents except source code into Java
comments or Javadoc tags.

As long as a Galaxy project is imported into local workspace
successfully in Eclipse, we are able to operate on it freely in

Eclipse. For example, we can create new packages or classes,
modify existing source code, and even change settings of projects.
Our seamless integration between Eclipse and Galaxy is able to
synchronize the changes happened in Eclipse to Galaxy Wiki and
vice versa.

3.5 Iteratively Develop Galaxy
In order to experiment Galaxy in a real software project, we are
developing Galaxy project in Galaxy Wiki. A mentioned project
page is created as the homepage of this project, where
programmers can see what packages and classes are included in
this project, and what libraries are imported into this project. Each
library specified in the project page can be addressed by a library
page, in which a JAR file is uploaded as an attachment and a
specify version number is assigned. Equivalently, each class
referenced in the project page can be accessed from a class page
which includes not only documentation but also source code.

Programmers of Galaxy use either Eclipse or browser to
manipulate their code and documentation. Through this approach,
the functionalities of Galaxy are developed iteratively by the
whole team on-line.

4. RELATED WORK
Global Software Development (GSD) is a kind of software work
undertaken at geographically separated locations across national
boundaries in a coordinated fashion involving real time and
asynchronous interaction [6].

GENESIS (GEneralised eNvironment for process management in
cooperative Software Engineering) intends to develop an Open
Source platform that supports co-operation and communication
among software engineers belonging to distributed development
teams involved in modeling, controlling, and measuring software
development and maintenance processes [2].

Many open source projects have a web-based, portal-style
Collaborative Development Environment (CDE) which integrates
project tools [2]. Such tools including project homepage,
discussion forum, mailing list, bug tracking, file release system,
and version control system. These web-based CDEs are a key part
of active open source projects.

Figure 7. Run project in Galaxy.
Figure 8. Access and convert wiki pages in Eclipse.

Wiki-based software documentation is the key idea behind XSDoc
[7]. It is an open and extensible documentation infrastructure
based on wiki and XML technologies that ensures the semantic
consistency between different kinds of contents, namely source
code, models and documents.

JOSH [8] develops a web-based interpreter which executes Java
fragments and relieves the learner from programming all the extra
code. The JOSH approach can be summarized as follows: first
compile code fragments externally, then execute them externally.

Pages in WubHub [9] containing content, presentation logic, data
conversion, or computational functions which can be woven
together in an iterative way by distributed community. In contrast
with traditional wikis, pages are executable, and can interoperate
with each other by passing and returning data structures of known
type, such as messages, URLs, or locations.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a wiki based environment in
which programmers can collaboratively write source code, build
projects, execute programs, and debug defects. From our
experience with wiki-based programming and the preliminary
prototype, we are convinced that the idea of page oriented
software engineering is very attractive and promising for large
software communities. Galaxy Wiki also helps on stepping
forward to the direction of collective programming.

The design and prototype we have outlined for the wiki-based
programming leaves much room for future work. Current version
of Galaxy requires improvements on execution phase to support
programs with rich user interfaces and heavy interactions. We
plan to pilot how to use Galaxy to develop more complex Java
applications, for example Eclipse’s plug-in. We also plan to
provide more facilities and functionalities in Galaxy to enhance
the on-line programming user experiences, such as automatic
indentation, keyword highlighting and code formatting. Another
concern is to enable different projects to be executed at the same
time.

Same concept and infrastructure can be applied to other languages
like Python, or application frameworks like Ruby on Rails. We
are very interested in exploring how to use Galaxy to develop
applications with dynamic languages for maximum development
efficiency.

6. REFERENCES
[1] Aguiar, A., and David, G. WikiWiki weaving heterogeneous

software artifacts. In Proceedings of the 2005 International

Symposium on Wikis. ACM, San Diego, California, USA,
2005, 67-74.

[2] Boldyreff, C., Nutter, D., Rank, S., Smith, M., Wilcox, P.,
Dewar, R., Weiss, D. and Ritrovato, P. Environments to
Support Collaborative Software Engineering. In 2nd
Workshop on Cooperative Supports for Distributed Software
Engineering Processes. Benevento, Italy, 2003, 25-28.

[3] Al-asmari, K. R., and Yu, L. Experiences in Distributed
Software Development with Wiki. In Proceedings of the
International Conference on Software Engineering Research
and Practice & Conference on Programming Languages and
Compilers (SERP 2006). CSREA Press, Las Vegas, Nevada,
USA, 2006, 389-293.

[4] Knuth, D. E. Literate Programming. Comput. J., 27, 2 (1984),
97-111.

[5] Allen, E. E., Cartwright, R., and Stoler, B. DrJava: a
lightweight pedagogic environment for Java. In Proceedings
of the 33rd SIGCSE Technical Symposium on Computer
Science Education (SIGCSE 2002). ACM, Cincinnati,
Kentucky, USA, 2002, 137-141.

[6] Carmel, E., and Agarwal, R. Tactical Approaches for
Alleviating Distance in Global Software Development. IEEE
Software, 18, 2 (2001) 6.

[7] Leuf, B., and Cunningham, W. The Wiki Way: Quick
Collaboration on the Web. Addison-Wesley, 2001.

[8] Diehl, S., and Bieg, C. A new Approach for Implementing
stand-alone and Web-based Interpreters for Java. In
Proceedings of the 2nd international conference on
Principles and practice of programming in Java. ACM,
Kilkenny City, Ireland, 2003, 31-34.

[9] Cheyer, A., and Levy J. A Collaborative Programming
Environment for Web Interoperability. In 1st Workshop on
Semantic Wikis (SemWiki '06). Budva, Montenegro, 200.

[10] MoinMoinWiki. http://moinmoin.wikiwikiweb.de/

[11] Apache Maven. http://maven.apache.org/

[12] XML-RPC. http://www.xmlrpc.com/

[13] Eclipse. http://www.eclipse.org/

[14] Trac. http://trac.edgewall.org/

[15] TWiki. http://twiki.org/

[16] SourceForge. http://sourceforge.net/

