
RC24251 (W0705-009) May 1, 2007
Computer Science

IBM Research Report

An Enterprise Electronic Contract Management System
Based on Service-Oriented Architecture

Trieu C. Chieu, Thao Nguyen, Sridhar Maradugu, Thomas Kwok
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Enterprise Electronic Contract Management System
Based on Service-Oriented Architecture

Trieu C. Chieu, Thao Nguyen, Sridhar Maradugu and Thomas Kwok
IBM T. J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532, USA
{tchieu, tnnguyen, sridharm, kwok}@us.ibm.com

Abstract

Electronic contract systems deal with the lifecycle
automation and management of contract documents from
their establishment to expiry. Many existing contract
systems are built as monolithic, vertical stand-alone
applications that are inflexible and difficult to scale and
interoperate with other enterprise systems. This paper
proposes a service-oriented electronic contract system
that leverages a number of common middleware services
to provide an open, extensible and interoperable solution.
The basic common services include the content repository
services, the workflow and document routing services, the
security services, and the notification services. A
standard data model is defined to specify the metadata
properties for managing, tracking and storage of contract
documents in a central repository. Integration services
are also introduced to enable the system to collaborate
and share contract data with external applications such
as contract authoring and fulfillment tracking tools. The
implementation of an enterprise multi-party electronic
contract system using standard commercial middleware
components will be presented to illustrate the simplicity,
reusability, interoperability and flexibility of this service-
based approach.

1. Introduction

Contracts constitute the binding relationship between
organizations and their customers or suppliers, and
capture the essential agreement recognized by law on key
terms and conditions for trading or service, such as
pricing, payments, liability, etc. In most large enterprises,
a large number of contracts are created, executed, and
managed daily via a traditional paper-based process that
involves many manual steps for drafting, review, revision,
signing, approval, completion or termination. However,
the manual contracting process is inefficient,
cumbersome, costly and time consuming because there
are no standardized process to follow and no convenient
way to access and manage the relevant documents. Thus,
automation of the contract lifecycle presents a substantial
value creation opportunity for the enterprises. The value

spans from accelerated contract lifecycle processes,
improved productivity, reduced costs, minimized
potential contractual errors and faults, as well as better
compliance enforcement [1].

With the proliferation of Internet technology and
electronic commerce, many enterprises are adopting
electronic contract systems to streamline their contracting
processes. Much implementation efforts are centered on
systems that deal with contract creation and lifecycle
management [2-6]. Today, most of these electronic
contract systems are designed as monolithic, vertical
stand-alone systems and are not easily integrated with
other business applications. As long as business
processes remain confined within the systems, the lack of
interoperability with other systems is of secondary
concern.

Lately, in order to improve efficiency, productivity and
agility in responding to changing business requirements,
enterprises are pursuing new initiatives and objectives
that increasingly involve multiple organizations, business
processes, and data repositories, as well as making
content and applications more accessible to external
customers. The need for a more flexible approach to
integrate various business applications to share data
across the enterprise becomes increasingly evident.
Separate silos of data and content duplication increase
development and maintenance costs of business
applications, and require custom code and extra efforts to
bridge different APIs, interfaces, and platforms.
Particularly, for the case of contract systems, enterprises
will see limited benefits and returns on investment unless
the systems are connected with the business as a whole,
and leverage existing content management resources.

Recently, Service-Oriented Architecture (SOA) and
Web services are increasingly recognized as a suitable
architectural principle for developing modern enterprise
applications [7]. SOA concept is to share and exchange
the runtime results of executing software as services
rather than the code itself that produces these results. The
sharing and exchange is effectively achieved using
standard XML format and HTTP communication
protocol. By combining many low-level services, one can
easily handle higher level business services or processes.
Legacy business applications can also be service-enabled

to participate in these processes by introducing a standard
service interface without the need to rewrite existing
business logics of the application itself. The simplicity,
reusability, interoperability and flexibility are just a few
benefits provided by this SOA approach.

In this paper, we propose an enterprise electronic
contract system with a service-oriented architecture that
leverages a number of common middleware services. This
service-oriented approach shows promise as an improved
way to realize contract management systems with better
interoperability and agility while minimizing
development and maintenance costs. The lifecycles of
contracts, the architecture of the contract system, and the
common middleware services will be described in details
in the following sections.

2. Automation of Contract Lifecycles across
Multiple Enterprises

An electronic contract is the reification of paper
contract in software that can be instantiated as a set of
legal documents specifying the trading relationship and
the legal terms and conditions that are fulfilled between
organizations. A paper contract generally starts from an
initial “draft” created by a contract representative in an
organization that offers certain trade or service. It then
goes through numerous rounds of internal reviews and
revisions before it gets the final approval and is sent to its
contracting parties. The contracting parties on the other
hand have to go through similar internal process to review
and approve the contract. Subsequently, the contract is
sent back to the originating party to be counter-signed and
finalized. The final approved copy of the contract is
eventually forwarded to all involved parties for record
keeping and execution. The number of intermediate
stages during the contract lifecycles depends on the
complexity of the contracting process among the involved
parties. An example of a dual-signature contract
processing flow involving three contracting parties (a
supplier, a solution provider and a buyer) for contract
drafting, submission, revision, signing, counter-signing,
approval and completion is illustrated in Figure 1.

Conceptually, the lifecycles of contracts can be
categorized into three stages of contract drafting,
formation, and fulfillment as described below:

1. Contract drafting phase - This is the initial phase

where a contract is drafted and created from an
instance of a particular abstract contract flow.
Contract rules and constraints can be added or
modified, and should be adhered to during the
contract fulfillment phase.

2. Contract formation phase – This is the phase where
the contract is submitted for processing and the
abstract contract flow processes are bound to

concrete business interactions. The relationships
between contract parties are defined and bound, and
contracting parties assume their contract roles to
perform the required actions of their responsibilities.
The business interactions include actions such as
review, revision, signing and approval of the
contract.

3. Contract fulfillment phase – This is the final phase
where the approved contract is delivered for
implementation. Typically this phase constitutes the
delivery of goods or service, invoicing, and bill
presentment and payment. The interactions between
the contracting parties can be monitored for their
compliance or violation to the terms and conditions
of the contract.

SUBMITTED
Contract Reviewer

DENIED
Contract Rep

NEW
Contract Approver

READY TO SIGN
Contract Signer

SIGNED
Contract RepCHANGE REQUESTED

Contract Rep

PACKAGE
CONSTRUCTED

Validator

VALIDATED
Contract Counter-signer

COUNTER-SIGNED
Contract Counter-signer

Solution Provider

Customer Buyer

Supplier

Submit
DRAFT

Contract Rep

Approve

Deny

Update

Approve
As Is

SignRequest
ChangesUpdate

Construct
Package

PACKAGE
RECONSTRUCTION

REQUESTED
Contract Rep

Reject

Construct
Accept

Countersign

Add
Watermark

COMPLETED

Figure 1. Three-party dual-signature contract

processing flow

With the rapid development of computer technologies

and the acceptance of the World Wide Web, enterprises
are moving more and more of their business process
online. There are existing technologies that allow
enterprises to define their processes and assign the
appropriate employees to their processes. An enterprise
using such technologies to define a workflow for their
internal contract process can scan their paper contracts or
upload their electronic contract files onto their computer
systems, route them through their intranet network to
allow their authorized employees to review, revise and
approve the contracts online. However, these workflows
are intended to support an enterprise internal business
process and often do not extend to support the workflow
of the other enterprises that they engage contracts with.
Once the contracts are approved and signed, they are very
likely to be downloaded, printed on hard copy, faxed or
sent to the next involved enterprise to be processed. This
process may have to repeat as the contracts go through
their entire contracting cycle across different enterprises.

To transform the manual process and automate the
contract lifecycles across multiple enterprises, a hosted
contract management system with service-oriented
architecture is an essential component for the end-to-end
contracting process. The system should provide the
capabilities of defining and selecting different contract
flows for contract drafting, and is capable of efficiently
managing the many collateral documents such as the
master and customer agreements, supplements, addenda
and the like that are created, attached and associated with
the contract formation. The ability to store, update,
retrieve and share the pertinent information by users of
the enterprises from a searchable content repository is
also an important feature of the system. The architecture
of such contract system will be given in details in the
following section.

3. System Architecture

The architecture of an electronic contract management
system for business-to-business interactions across
multiple enterprises is shown in Figure 2. Basically, the
system is architected as a web application provided by a
host contracting organization, and can be accessed by the
registered users of different organizations including
customers, business partners, distributors and suppliers.
The system consists of a number of user-facing modules
including a system and user administration module, a
contract authoring module, a contract management
module, a contract search module, and a number of
common management services. The user-facing modules
are essentially the consumers of the common services.

SOA Based e-Contract System

Security
Service

Workflow & Routing
Service

Content Repository
Services

Notification
Services In

te
gr

at
io

n
Se

rv
ic

es

Contract
Management

Module

Contract
Search
Module

System and
User Admin

Module

Customer
Buyers

Business
Partners Distributors Suppliers

A
pp

lic
at

io
n

Contract
Authoring

Module

Figure 2. Architecture of an enterprise electronic

contract management system

Briefly, the system and user administration module is

used by different administrators to perform various
administrative functions depending on their roles. The
administration functions include system configuration,

workflow creation and configuration, user and
organization registration, and user role assignment and
entitlement. The contract authoring module is used to
create the drafts of the contracts for negotiation. The
contract management module is used to initiate or
terminate the workflow and routing of the draft contracts,
display and track their lifecycle stages during the
workflow process, and organize and manage the collateral
documents. The contract search module is used to
perform secure search and retrieval of the active and
archive contracts stored in the system.

To support the basic functions of the user-facing
modules, a number of common middleware services are
implemented or provided by the architecture platform.
The common services include the content repository
services for supporting the storage, search and retrieval of
documents, the workflow and document routing services
for automating the lifecycles and workflow execution
steps of contracts, and performing routing of documents
to different user roles for subsequent task execution, the
security services for supporting user authentication and
authorization, document access control, and electronic
signature for document signing and approval, the
notification services for notifying and reminding users of
the work tasks waiting in workflow steps, and finally the
integration services for enabling the system to connect
and interact with external applications.

4. Common Middleware Services

A number of common middleware services are
provided by the service platform to support the various
modules and management functions of the contract
system. These services may be implemented as local or
remote services, and can be accessed by consumer
applications via service API calls. Detailed descriptions
of these common services are given in the following
sections.

4.1. Content Repository Services

During the workflow cycles of the contract process,
users of different enterprises may create, upload or add a
large number of contract documents into the system. The
content repository services are used in conjunction with
the contract management module to manage the storage,
search and retrieval of these documents. As shown in
Figure 3, the system is allowed to access the services only
through a set of common content repository service
interfaces that provide the standard CRUD operations as
well as full-text search.

Different implementations of the repository interfaces
may be plugged into the service platform. For instance,
an administrator of the services can configure the services
to use an implementation based on a file system or

another implementation based on enterprise content
repository database middleware API. Both
implementations basically can support the same exact
functions of storage and retrieval of structured and
unstructured content, full text search, versioning, and
transactions. The client application that uses the services
will not realize much functional difference. The only
issue appears in the performance and scalability of the
underlying repository support.

File
System

Repository
DB

Content Repository
Service Interface
Implementation

Contract System
Workflow

S E

Web Services

 Figure 3. Content Repository Service Interfaces

In the core of the repository services, the documents

are typically organized and stored following a hierarchical
data model as shown in Figure 4. In this model, the actual
stored objects are represented as items. Each item has an
“URI” element that specifies its location on a particular
branch of the repository tree, a unique “Item ID” element,
a “Name” element, and a number of attributes or metadata
describing its properties (“Description”, “Create_Date”,
etc). An item can be a document or a folder. A document
can contain zero or more document parts that correspond
to the actual objects (textual files, images, etc.) stored in
the repository. A folder can have zero or more items
which can be documents or other folders. Items are
allowed to be copies or moved from one folder to another.

The content repository Web services use an XML
document messaging model to exchange the whole
documents between client and server. One benefit
provided by this messaging model is that it allows a
business document to become self-describing and self-
validating with its XML schema. Another benefit is that
the client application will not need to be modified even
though enhancements and changes are made to the XML
schema. Furthermore, the document messaging model
makes object exchange more flexible, because the design
of a business document is often well suited to object-
oriented architectures. As a result, two applications can be
designed to exchange the state of an object by using XML
while each application is free to design the object. An
example of a SOAP “RetrieveItemRequest” service to

retrieve a contract document from the content repository
is shown in Table 1. The “RetrieveItemRequest” element
includes the “URI” attribute of the requested “Item” and
the “Credential” token representing the identity of the
requester for service authentication.

Document Folder

Document Part

Item
URI
Item ID
Name
Description
Create date

Figure 4. Document data model for content

repository

Table 1. SOAP request of RetrieveItemRequest

service

4.2. Workflow and Document Routing Services

Most business operations can be characterized as a set
of interrelated workflow processes. Work usually flows
from one user to another and from one organization to
another. Some simple processes might require only a few

<soapenv:Envelope
 xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body soapenv:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <processXMLRequest>
 <xmlRequestText xsi:type="xsd:string">
 <RetrieveItemRequest contentOption='ATTACHMENTS'
 retrieveOption='CONTENT'>
 <AuthenticationData
 connectString='SCHEMA=CONTRACT’>
 <ServerDef>
 <ServerType>Windows</ServerType>
 <ServerName>eContract</ServerName>
 </ServerDef>
 <Credential>h8p8sibYuMDnXZq-L2fh4Rt</Credential>
 </AuthenticationData>
 <Item URI='/ContractWebService/GetPIDUrl?
 url=CONTRACT_DOC_A07B26B42509H668151' / >
 </RetrieveItemRequest>
 </xmlRequestText>
 <mp xsi:type="apachesoap:Multipart" xsi:nil="true"
 xmlns:apachesoap="http://xml.apache.org/xml-soap"/>
 </processXMLRequest>
 </soapenv:Body>
</soapenv:Envelope>

work steps, while more complex processes involve a
number of steps and users in different organizations.
Document routing is a document-based workflow service
specifically designed so that each unit of work is created
and associated with a document or a folder of documents,
along with other necessary information for carrying out
the work. The sequence of business processes can be
structured as a graph of interconnected steps known as a
workflow template. Documents can be routed through the
process that allocates work to individuals or group of
users for action and processing. Document routing is
typically integrated with access control checking, user
management, and general system management to
facilitate document management and processing in a
business environment. Actions such as "submit",
"approve", "sign", "reject" or any other meaningful
selections can be assigned by administrator to each
routing path to allow transition from a node to another
node. An access control list can also be assigned to each
work step to control which user role can perform the
action. Based on their roles and privileges, authorized
users can then access and examine the documents, and
select an action from an action list to act on them.

Our workflow and routing services support the
creation, definition and modification of user configurable
workflow templates through a set of Web service
interfaces. Workflow creation services allows user to
produce an actual contract flow as a runtime instance of
an abstract template, and perform the binding of
enterprise users to the corresponding parties and roles
defined in the template. Query services are also provided
to facilitate the retrieval of available contract workflow
templates stored in the system.

4.3. Security Services

Many users, each designated to perform the same or
different predefined tasks on an electronic contract, can
access simultaneously to the contract system. The
security services are responsible to authenticate and
authorize the user privileges of accessing the system for
performing specific tasks on any given contract document
during the contracting lifecycles. They also support the
access control of contract documents and the verification
of electronic signature for signing and approval.

To access the contract system, users need to perform
log-in for authentication. The security services facilitate
the log-in process by providing a single sign-on capability
through Web services to offer a seamless and easy single-
sign-on experience for users. In any client-server
relationship, single sign-on is a user session
authentication process that permits a user to enter a
username and password in order to access multiple
applications or services. The single sign-on, which is
requested at the initiation of the session, authenticates the
user to access all the applications they are entitled to use,

and eliminates further authentication prompts when the
user switches applications or services during that
particular session. The user is only challenged once
during a session for a username and password. Once
authenticated, the user identity is securely associated with
the execution context using a Kerberos credential of the
user, and the Web service run-time component will
perform authorization based on the asserted user
credential containing in subsequent requests. After a fixed
period of time of session inactivity, this credential cache
will expire and the session will be invalidated by the
service runtime.

At an approval step within the contract workflow,
documents may need to be signed. For an electronic
document, the signing is typically carried out using an
electronic signature of a signer. The process usually
involves the authentication of the identity of the signer,
and the generation of a signed form indicating the signer’s
intent to sign the document. In our work, to support the
signing of contract documents, an electronic signing Web
service is provided. This service takes a username and
password and a document as inputs, verifies the
authenticity of the user’s credential, signs the document,
generates and returns a signed document to the requester.
Detailed description of such a document signing system
that superimposes signing information on the signed
document was given elsewhere [8].

4.4. Notification Services

Notification mechanism is used to send reminders or
other messages to users, or inform users about specific
issues. Notification services allow users to continue
working on other tasks, rather than constantly monitoring
the progress of a process. They decouple systems
producing notifications from applications displaying
them. This allows existing notifications to be modified or
new notifications to be generated with no impact on the
applications using them.

The notification services are supported by a Java
mailer program implemented with standard JavaMail API
technology. A set of e-mail services are defined for the
system to send outbound e-mail using SMTP to notify the
responsible users when a contract workflow or a task has
started, completed, or encountered an error, or is waiting
for user’s action at a particular work step. The system
typically sends the messages to users using the e-mail
address stored in the user's profile. In order to standardize
the notification or reminder messages, the services also
provide a number of configurable notification templates
with pre-defined contents. Users of the contract system
can use the e-mail services and select a notification
template to attach and forward contract documents to
other users of the system on-demand.

4.5. Integration Services

Integration is the process of linking disparate systems

in order to enable effective sharing and seamless
movement of information for operational advantages.
While each type of integration solution involves the same
basic technology, such as message bus, common data
format and transformation, distributed transaction, and
application interfaces or adaptors, each business scenario
has unique requirements. In order to minimize
development costs while maximizing reuse and agility,
integration using Web services provides an optimal
solution for flexibility and interoperability among diverse
systems and platforms.

 In this work, the contract management system is
designed with a set of integration Web services to
facilitate other business applications to connect and
interact with the system. Particularly, two set of contract
import and export Web services are implemented to
enable contract information sharing with legacy contract
management tools. The contract import Web services are
provided for a contract authoring application to forward
draft contract documents directly to the system to simplify
the initiation of contract formation. The contract export
Web services are provided to allow other contract
fulfillment tools to dynamically extract and share the
completed and active contracts in the system.

Figure 5 shows the various data models and elements
used to hold the contract information during import and
export service operations. The global element
“Application” constitutes the root element of the import
XML message. It consists of a “Client_App_Id” element,
a “Client_App_Password” element, and a complex type
“Contract” element that encapsulates the details of the
contract information in its complex type child elements
such as “Attributes”, “Parties”, “Doc_Infos”, “Doc_Info”,
and “Org_Access” elements. An example of an XML
message to forward a draft contract from a contract
authoring tool to the contract system is given in Table 2.

Figure 5. Data models and elements used for
importing contract information

Table 2. Example of an XML message containing
the draft contract information

<econtract:Application xmlns:econtract="http://www.ibm.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com contract.xsd ">
 <Client_App_Id>App_00001</Client_App_Id>
 <Client_App_Password>6/x5EAd3cMg0D2PNLcoqwfEgRE8=
 </Client_App_Password>
 <Contract>
 <Action>create</Action>
 <Contract_Number>Contract_10001</Contract_Number>
 <Submitter_Org_Id>ORG_ID_1</Submitter_Org_Id>
 <Solution_Provider>Supplier_A</Solution_Provider>
 <Contract_Create_Date>2006-11-14 21:15:43.569
 </Contract_Create_Date>
 <Contract_Exp_Date>2007-06-21 23:59:00.000
 </Contract_Exp_Date>
 <Attributes>
 <Submitter>Submitter_A</Submitter>
 <Currency_Type>USD</Currency_Type>
 <Contract_Value>10,000</Contract_Value>
 <Delivery_Type>Online electronic</Delivery_Type>
 <Contract_Category>Master</Contract_Category>
 <Country_Code>USA</Country_Code>
 <Signature_Type>2</Signature_Type>
 </Attributes>
 <Document_Infos>
 <Document_Info>
 <Doc_Name>Master Agreement</Doc_Name>
 <Doc_Type_Name>Negotiable contract
 </Doc_Type_Name>
 <Doc_Category>1</Doc_Category>
 <Org_Access>
 <Org_Id>ORG_ID_1</Org_Id>
 <Org_Role>S</Org_Role>
 <Is_Accessible>Y</Is_Accessible>
 </Org_Access>
 <Org_Access>
 <Org_Id>ORG_ID_2</Org_Id>
 <Org_Role>C</Org_Role>
 <Is_Accessible>Y</Is_Accessible>
 </Org_Access>
 </Document_Info>
 </Document_Infos>
 <Parties>
 <Party>
 <Party_Org_Id>ORG_ID_1</Party_Org_Id>
 <Party_Role>S</Party_Role>
 <Party_Seq_No>1</Party_Seq_No>
 </Party>
 <Party>
 <Party_Org_Id>ORG_ID_2</Party_Org_Id>
 <Party_Role>C</Party_Role>
 <Party_Seq_No>2</Party_Seq_No>
 </Party>
 </Parties>
 </Contract>
</econtract:Application>

5. Prototype Implementation

We have successfully implemented an enterprise
electronic contract management prototype system on a
service hosting platform supported by a number of IBM

WebSphere software products [9]. The platform services
include a WebSphere portal server and application server,
a DB2 server and a SMTP server. The common
middleware services include a DB2 Content Manager [10]
that offers both a configurable document workflow engine
and a scalable content repository database, and an IBM
Tivoli Access Manager WebSeal server that offers a
single sign-on security service. A number of user-facing
modules are developed as parts of the contract application
to provide user interactions. These modules expose their
user interfaces through Web pages with Ajax technologies
to enable rich and dynamic interactions.

An example of a Web page that lists all the contract
transactions and Web links to their details for a given user
in our electronic contract prototype system is shown in
Figure 6. By clicking on any contract transaction link, the
contract details of that particular contract will then be
displayed. Figure 7 shows another Web page that
displays the details of a particular contract transaction.

The left navigation bar of the Web pages displays the
accessible sub-modules and functions of the system. The
“Imported Draft Contracts” module handle all draft
contracts imported from any external contract authoring
applications that are integrated with the system using the
Integration services. The “My Task list” module lists all
personalized contract transactions that are waiting for
actions by the current logon user. Contract creation,
submission and management functions are provided in the
“Contracts In Progress” module. User and system
administration functions are provided in the
“Administration” module.

The right navigation bar of the Web pages optionally
lists some additional function links that a user can choose
to perform depending on his/her role and the current work
step and situation. For instance, when displaying the
“Contract details” page of a contract in “REVIEWED”
status that is awaiting the action by a reviewer of another
organization, the logon user who is the originator of the
contract can have access to links such as “Make
correction”, “Expire this contract” to modify the details
or cancel the contract before any action taken by other
users.

Our prototype system provides many configurable
options that a system or organization administrator can
choose to enable or disable. These functions were
supported and readily composed from the available
common services. The implementation of the prototype
system illustrated that the rapid development of an
electronic contract system using service-oriented
architecture to leverage available service resources is not
only feasible but much cost advantageous over other
approaches.

Figure 6. Web page showing lists of all

contracts for a user in the contract system

Figure 7. Web page showing details of a

contract in the contract system

6. Concluding Remarks

In this paper, we introduced an electronic contract
system based on a service-oriented architecture. The
system is structured as a Web application on a common

service platform that provides a number of common
middleware services. The basic common services include
the content repository services, the workflow and
document routing services, the security services, the
notification services and the integration services. These
services are conveniently provided as Web services, and
can be implemented using commercial available
middleware. A service-based electronic contract
prototype system has been implemented on a service
platform that is supported by a number of IBM
WebSphere middleware products. The prototype system
has demonstrated the benefits of simplicity, reusability,
interoperability and agility of our service-based design
approach.

7. References

[1] International Association of Contract and Commercial
Managers, http://www.iaccm.com.

[2] F. Griffel, M. Boger, H. Weinreich, W. Lamersdorf and M.
Merz, “Electronic contracting with COSMOS – how to
establish, negotiate and execute electronic contracts on the
Internet”, Proc. 2nd Int’l Enterprise Distributed Object
Computing Workshop, 1998, pp. 46-55.

[3] L. Xu, “Monitorable electronic contract”, Proc. IEEE Int’l
Conf. on E-Commerce, 2003, pp. 92-99.

[4] M. Iwaihara, H. Jiang and Y. Kambayashi, “An integrated
system for supporting problem solution in e-contract execution”,
Proc. IEEE Int’l Conf. on E-Commerce, 2004, pp. 9-16.

[5] O. Perrin and C. Godart, “An approach to implement
contracts as trusted intermediaries”, Proc. 1st IEEE Int’l
Workshop on Electronic Contracting, 2004, pp. 71-78.

[6] T. Kwok and T. Nguyen, “A Secure Electronic Contract
Management and Process System Automated with Predefined
Tasks”, 7th IEEE International Conference on e-Commerce
Technology (CEC 2005), IEEE Computer Society 2005,
Munich, Germany, pp. 479-502.

[7] L. Cherbakov, G. Galambos, R. arishankar, S. Kalyana and
G. Rackham, “Impact of Service Orientation at the Business
Level”, IBM System Journal, Vol. 44, no. 4, 2005, pp. 653-667.

[8] T. Kwok and T. Nguyen, “An Automatic Electronic Contract
Document Signing System in a Secure Environment”, 2005
IEEE International Conference on e-Technology, e-Commerce,
and e-Services (EEE 2005), IEEE Computer Society 2005, Hong
Kong, China, pp. 276-281.

[9] IBM WebSphere software,
http://www.ibm.com/software/websphere/.

[10] IBM DB2 Content Manager,
http://www.ibm.com/software/data/cm/cmgr/.

