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ABSTRACT 
 

In this paper, we present a novel deployment-time 
binding selection framework for Web services to improve 
the performance. Using the information about target 
environments, we determine the best binding based on the 
availability and the accessibility of a service, and the 
performance characteristics of the bindings in a target 
environment. We have implemented the proposed 
mechanism as part of Eclipse-based development tools. 
We present an extensive performance evaluation of our 
methodology using benchmarks that we have created 
following public Web service interfaces, and emulating 
several e-business applications including a large scale 
legacy transaction processing system that runs on a 
mainframe. 
 
1. Introduction 
 

For seamless operation of business applications, 
distributed modules communicate using various binding 
technologies, such as RMI (Remote Method Invocation) 
and SOAP (Simple Object Access Protocol).  One of the 
main goals of these technologies is to hide the complexity 
of underlying systems, and to provide communication 
among distributed modules regardless of their platform 
and language differences. In this way, software developers 
can focus on designing core algorithms while minimizing 
the effort in communication and data exchange. In the 
emerging Service Oriented Architecture (SOA), 
distributed modules will be implemented as Web services 
communicating via SOAP. However, a naïve adoption of 
such technologies can result in suboptimal performance 
due to heavyweight message processing.  

Traditionally, the performance problem in middleware 
layers has been addressed by optimizing the performance 
of each layer. For example, related work has proposed to 
improve the SOAP performance by caching SOAP 
invocation results [1][2] or by accelerating XML 
processing [3][4][5]. On the other hand, manual 
optimizations based on best practices are common in real 
life software development practices. For example, a skilled 
software development team can design an application, 
which can adapt to changing run-time environments, and 
can select most appropriate access mechanisms based on 

the run-time performance of the application [6][7]. 
However, these approaches increase software development 
cost and prolongs the development and test cycles. 
Recently, more systematic approaches have been proposed 
to restructure distributed applications using the 
information about target operation environments at 
deployment time [8][9]. In [8], we introduced a general 
deployment time optimization framework called, Blue 
Pencil. In [9], Zhang et al. proposed a method to reduce 
the memory footprint during deployment. 

This paper explores the performance gain achievable 
through careful binding selection during the deployment of 
Web service applications. In particular, we study the 
problem of automatically selecting the best performant 
binding among multiple alternatives such as SOAP, RMI 
or direct invocation. We find this problem to be nontrivial 
because the accessibility and performance characteristics 
of a binding changes depending on the configuration, e.g. 
application server implementations and firewalls. Also one 
of the old rule of thumbs, say RMI is much faster than 
SOAP [10][11][12], does not hold any more due to recent 
advances in SOAP/XML processing technologies. In this 
paper, we report that the performance gap has narrowed to 
a point that SOAP outperforms RMI under certain 
workload in a latest enterprise-grade application server.  

The main contribution of this paper is twofold: (a) the 
design of a binding selection mechanism in the Blue Pencil 
framework, and (b) an extensive performance evaluation 
using several micro-benchmarks and a couple of business 
application benchmarks. 

The proposed binding selection mechanism is based on 
a set of rules, and a novel performance prediction 
algorithm presented in the paper. These mechanisms are 
encoded in a lightweight interface module called, binding 
proxy. To facilitate the development of Web service 
applications, we have implemented a plugin to 
automatically generate the binding proxy in two different 
Eclipse-based integrated development environments 
(IDEs), namely Rational Application Developer (RAD) 
and WebSphere Developer for System z (WDz).  

To evaluate the efficacy of the proposed approach, we 
have measured the performance of various Web service 
benchmarks in two different environments. First, in a 
regular application server environment, we used several 
benchmarks that we have created following popular Web 
services (e.g. Google, Amazon, MapPoint). We have also 



measured the performance using an internal benchmark 
emulating a financial transaction system. Secondly, we 
have tested the proposed mechanism in a legacy 
transaction processing system, called the Customer 
Information Control System (CICS) that runs on a 
mainframe. In this environment, we used a COBOL-based 
complex stock trading benchmark with Web interfaces. 
Overall, we discover that careful selection of bindings can 
reduce the average response time of a Web service by 34 – 
80%. We also report the performance improvement in 
terms of throughput and CPU load. The latter metric is 
especially important for mainframes due to their typical 
high utilization. 

The remainder of the paper is organized as follows: 
Section 2 motivates the main problem of this paper; 
Section 3 presents an overview of the Blue Pencil 
framework; Section 4 presents a special case for binding 
selection algorithm based on message size estimation; 
Sections 5 and 6 present performance result from the 
benchmarks in regular Web service and mainframe 
environments, respectively; and finally Section 7 
concludes the paper with summary. 
 
2. Binding Selection Problem 
 

The efficiency of bindings between distributed 
components can significantly impact the end-to-end 
performance of a Web service. In the literature, the 
SOAP/XML message processing delay has been reported 
nontrivial compared to the network delay, the processing 
delay at servers and clients. Over the years, this trend has 
not changed fundamentally in one part due to the 
abundance of network infrastructure and computing 
resources at the backend, and in the other part due to the 
introduction of new optimization techniques (e.g. DB 
query caching).  

To understand the breakdown of the end-to-end 
performance of a well-provisioned Web service, we 
performed a simple test on the Google SOAP Search API  
using the popular keywords listed on Zeitgeist. We sent 
1,000 search requests separated by 60 seconds, and 
measured the end-to-end response time, the network 
latency, and the search time returned by the server. 

 
Average end-to-end response time 347.17 ms  
Average search time 63.35 ms 
Average round trip time (RTT) 29 ms 

 
From these numbers, we can compute that the average 

processing time of SOAP binding takes up to 254.82 ms, 
which is equivalent to 73.4 % of the overall service 
invocation time. Although this is an upper bound in some 
sense because we used popular keywords, whose search 
time will be minimal, we observe that binding processing 
latency constitutes a significant part in the end-to-end 

response time, and thus improving its efficiency is 
important. 

As introduced in the previous section, we approach the 
issue of binding performance from the view point of 
selecting the most performant binding among possible 
alternatives. We assume this binding selection to happen 
during the deployment of an application since at that time 
we can discover the configuration of the target system and 
make an informed decision [8].  

When selecting a binding, we consider a set of 
alternatives that satisfy the following properties: 
 (P1) Availability: the binding mechanisms, which 

can be handled by the service and offered in the 
service description. 

 (P2) Accessibility: among the bindings that satisfy 
P1, the bindings that can access the service from 
the relative location in a given configuration. 

 (P3) Performance: among the bindings that satisfy 
P2, the binding that performs better than other 
bindings for a given service in a given operation 
environment.  

These properties can be illustrated using the following 
example. Consider an application which calls a remote 
service. The service publishes that it can handle SOAP, 
RMI, and direct invocation (P1). The location of the 
service may be anywhere in the network, e.g. outside a 
corporate firewall, within the same subnet, within the same 
machine, or even in the same address space. If the service 
is within the same subnet, one can use either one of SOAP 
or RMI (P2). Now suppose the service is running in a 
certain application server, and the performance of RMI 
binding is better than SOAP. Then, one can use RMI for 
performance benefit (P3). 

Typically, application developers do not have this 
information about the target operation environment, and 
may opt to use SOAP, which is guaranteed to work in all 
cases at the expense of potential performance hit. In the 
next section, we present how Blue Pencil supports this 
selection process. 
 
3. Blue Pencil Framework 
 

This section provides an overview of the Blue Pencil 
framework with an emphasis on the modules related to the 
binding selection problem. The Blue Pencil framework 
consists of five main components: (a) a component to 
support publishing available bindings of a service, (b) a 
component to generate a binding proxy, which is an 
intermediary to assist application developer, (c) a 
component to store various policy rules and a performance 
estimation logic, (d) a component to discover the 
configuration parameters of a target environment, and (e) a 
component to transform applications using program 
analysis techniques. In this paper, we do not consider code 
transformation, and refer interested readers to [8]. 



 
3.1 Service Publication and Proxy Generation 
 

To enable binding selection, the service provider must 
publish multiple bindings for a service. This can be done 
via WSDL (Web Services Description Language). The 
standard WSDL only supports SOAP and HTTP bindings, 
but we need to be able to publish additional binding types, 
e.g., RMI, JCA, JMS, and direct invocation. Blue Pencil 
employs Web Service Invocation Framework (WSIF) [7] 
for this purpose. The resulting service descriptor will 
specify which bindings are available at the server. To 
support the service publisher, we provide a development 
tool to auto-generate this extended service description [8].  

The application programmer can create a client 
application for a service using the service descriptor. In 
Blue Pencil, we provide a concept of a binding proxy, 
which encapsulates multiple bindings to be used for 
remote service invocation. Essentially, this proxy is a 
lightweight intermediary that provides a uniform interface 
to hide the differences of various binding mechanisms. 
Figure 1 presents an abstract view of a binding proxy 
containing n bindings. Each binding type may interface 
with a different transport layer. For example, binding 1 = 
RMI and transport 1 = IIOP, binding 2 = SOAP and 
transport 2 = HTTP, and so on. 

We note that a proxy contains a decision logic that 
selects a binding that has been derived from a set of policy 
rules. These policy rules may have been compiled by 
domain experts or published by middleware manufacturers 
or a third party. Alternatively, the decision logic may 
contain a simple algorithm to predict the performance of 
certain bindings in a particular configuration. Depending 
on the operation environment, static rules may be 
sufficient to make a decision, or algorithmic performance 
estimation may be required. In the next section, we present 
a performance prediction algorithm that is based on the 
message size estimation. 

During the generation of a binding proxy, the generator 
module contacts a policy repository and collects the 
relevant rules. While we do not restrict how the policy 
rules should be specified or stored, our current design is 
inspired by the autonomic computing policy language 
(ACPL) [13]. At minimum ACPL can specify if-then rules 

that read “if the condition is true, then execute the action.” 
In our context, conditions are typically complex Boolean 
expressions defined on the value space of configuration 
parameters, such as string (e.g. the manufacturer of an 
application server), boolean (e.g. the existence of a 
firewall), number (e.g. the version number of a 
middleware component). The use of a policy-based design 
provides simplicity, structure, and flexibility. For example, 
updating the decision logic for new types of application 
server is as easy as updating the rules.  
 
3.2 Environment Discovery 
 

When the user deploys a client application using the 
Blue Pencil deployment module, the module invokes an 
environment discovery function to discover the 
configuration parameters of the target environment. The 
parameters that we want to discover include information 
about the application package, information about the 
application server, relative location of the service, and 
other constraints between the application and the service. 

Blue Pencil employs the following three approaches to 
discover these parameters. First, we discover information 
from a well known location in the system such as 
configuration files (e.g. deployment descriptor) or schema 
files specified by URLs. A similar technique is to examine 
the type of package files. We detect if an application runs 
on a Java platform by checking the type of application 
packages, e.g. checking if the package is an EAR 
(enterprise application archive), WAR (Web application 
archive), or JAR (Java archive) file.  

Second, the discovery module uses a programmatic 
approach to query the features of the environment. In [8], 
we presented a scenario where the environment discovery 
module queries the capabilities implemented by a database 
management system (DBMS) via the Database Metadata 
interface. Using this mechanism, we can discover if a 
correlated subquery is supported by calling the 
supportsCorrelatedSubqueries method, for instance. 
This approach relies on a well-defined interface to 
examine the target environment.  

Third, it employs various target-specific techniques. 
For instance, the discovery module finds out if the client 
runs on the same object request broker (ORB) as the 
service, by calling the javax.rmi.CORBA.Util.isLocal 
method. Discovering this information is useful since in 
this case, the client can invoke the service via a local Java 
call, which will be much faster than remote invocations. 
Another example is the case when the discovery module 
checks if the client is located in the same security domain 
as the server by querying the database that contains the 
network configuration information. Finally, the module 
checks if firewalls exist between the client and the server 
by sending probe packets (e.g. telnet connection request) 
to a particular port, and see if a response is returned. 
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The collected information in this step will be fed to the 
decision logic in a binding proxy as input, and the proxy 
will configure itself with the most appropriate binding. We 
note that this configuration discovery and binding 
selection process may be used during a major 
reconfiguration of the application not just during the initial 
deployment. 
 
4. Performance Predictor Design 
 

On the contrary to the traditional belief that SOAP 
involves much communication overhead 1 , we observed 
that the binding performance of SOAP is sometimes better 
than that of RMI for certain workload in the latest 
enterprise-grade application server implementation, 
namely WebSphere Application Server v6 that employs 
various SOAP/XML acceleration technologies such as pre-
compiled serializers and deserializers based on schema-
specific XML parsing technologies [3][4]. Therefore, 
some binding decisions cannot be made from static rules. 
In this section, we first explore the performance inversion 
issue happening in WAS, then we design a novel 
performance predictor based on message size estimation 
for WAS.  
 
4.1 Performance Variance 
 

In this section, we present the performance of two 
different types of Web services to motivate that 
performance prediction is necessary. For the simplicity of 
exposition, we consider only SOAP and RMI-IIOP 
bindings in WAS. 

For the workload, we use a benchmark modeling the 
Google search service and a benchmark for a financial 
transaction service. Detailed description of these 
workloads and the testbed environment is presented in 
Section 5.1.  For our discussion in this section, we only 
need to know that: (a) both the client and the server were 
running in a local testbed environment, (b) the control 
parameter for search is the number of search results, and 
(c) the control parameter for the financial benchmark is the 
size of request and response messages. Table 1 
summarizes the result. 

For Google services, RMI performs about 2.5 times 
better both in terms of response time and throughput. 
However, with the financial benchmark, performance of 
SOAP is sometimes better than RMI under certain 
workload, while for other workload it is the other way 
around. These results show that the performance of 
binding varies depending on two parameters: the remote 

                                                                 
1 We also have tested the binding performance of SOAP and 

RMI using JBoss and WebLogic. The results show that RMI 
always outperforms SOAP with our benchmarks. 

service type (Google vs. financial), and the message type 
(1KB vs. 100KB).  

To understand these results better, we analyzed the 
messages exchanged between the client and the server. 
From this study, we discovered that the slow performance 
of RMI in financial benchmark is related to an extensive 
use of Java String objects and Java Calendar objects. More 
precisely, IIOP uses UTF-16 encoding, consuming two 
bytes for each character, whereas SOAP uses UTF-8, 
which requires only one byte for each character. 
Furthermore, Calendar objects become extremely bloated 
in RMI-IIOP, adding about 1,000 bytes to describe the 
Calendar type, consisting of more than 100 different 
primitive fields and consuming about 500 bytes to describe 
their values. On the other hand, SOAP needs at most 24 
bytes to represent Calendar in XML’s dateTime format, 
e.g., “2005-09-09T18:18:30.830Z”. From this study, we 
infer that the data types contained in the messages have 
some impact on the binding performance.  
 
4.2 Message Format and Binding Performance 
 

To gain further insight, we investigate the correlation 
between the message format and the binding performance 
using synthetic workload with controllable parameters. For 
this study, we have generated three types of synthetic 
messages: (1) metadata-oriented messages with simple 
string/integer data and deep class nesting up to 10 levels 
(denoted by Meta/Deep); (2) metadata-oriented messages 
with simple data and arrays containing 100 – 3,000 
elements (denoted by Meta/Array); (3) data-oriented 
messages with many integer and string fields (denoted by 
Data). 

Figure 2 presents the correlation between the response 
time and the message size for different types of objects 
with SOAP and RMI-IIOP. From the chart, we make the 
following observations. First, the message size for the 
same object differs significantly for different bindings, e.g. 
the rightmost points marked by squares in Figure 2(a). 
Second, the initial response time (i.e. the y-intercept) of 
each curve shown in the magnified chart in Figure 2(b) is 
much higher for SOAP (about 160 ms) than RMI (about 
20 ms). This is due to the heavy initial cost of extra HTTP 
routing via a Web container to deliver requests to an EJB 
container. Thus, RMI offers better performance for small 

Table 1. SOAP and RMI Performance with WAS 
Response Time (msec) Throughput (reqs/sec) 

 Parameter
SOAP RMI SOAP/RMI SOAP RMI RMI/SOAP

10 results 235.7 82.6 2.85x 212.1 605.3 2.85x 
Google 

100 results 1252.7 515.8 2.43x 39.9 96.9 2.43x 

1KB 183.3 137.6 1.33x 272.8 363.4 1.33x 

10KB 370.8 553.5 0.67x 134.8 90.3 0.67x financial

100KB 3075.1 4495.5 0.68x 16.3 11.1 0.68x 



messages (< 10KB). Finally, the slopes for RMI and 
SOAP plots are almost equal for the same type of objects 
(Figure 2(a)). In particular, the slope of metadata-oriented 
messages and that of data-oriented messages are different 
but both protocols show similar slopes.  

The first observation is interesting, but does not help us 
in predicting the performance. The second observation can 
be easily encoded as a static rule, thus we do not consider 
in performance prediction. The third observation is 
potentially valuable for designing a performance predictor 
for WAS. If this trend holds in general, then we can 
predict the binding performance from the size of a 
message – because the size-performance slope is the same 
for the same message (and different bindings). When we 
consider the ongoing trend in optimizing binding 
performance this observation makes an intuitive sense. For 
example, as the SOAP/XML processing modules become 
optimized, the parser and the (de)serializer will process 
messages without the inefficiencies of unnecessary data 
conversion and data copy between layers, or suboptimal 
schema validation. In the end, it will make only one pass 
for parsing and (de)serialization, whose processing time 
will be proportional to the message sizes, and it may take 
similar time to process different types of bindings.2  
 
4.3 Message Size Estimation 
 

To build a performance predictor for WAS based on the 
intuition from the previous section, we proceed to develop 
a simple model to estimate the average message size. As a 
proof of concept we just consider SOAP and RMI-IIOP 
protocols, but it is easy to generalize the idea to include 
other protocols. The main challenge in this step is to 
estimate the message size using only the static information 
available at deployment time. 
 
4.3.1 SOAP message structure 
 

                                                                 
2 This statement assumes that the message size counts only the 

bytes that are important for parsing and (de)serialization. If 
some part of messages will be skipped by the parsers, they 
should not be counted. 

A SOAP message is structured with three main parts: 
HTTP header, SOAP metadata, and payload. Empirically, 
we find that the size of HTTP headers varies in a small 
range. Thus, in our model, we treat them as constant. The 
SOAP metadata can be further divided into two parts: 
message information (e.g. header information and name 
space) and payload tags. The size of these fields can also 
be either treated as constants, or obtained from a WSDL 
file. Finally, the size of payload data is a sum of all data 
length. This is a variable part in the message, which cannot 
be determined by the static information in WSDL. 
 
4.3.2 RMI-IIOP message structure 
 

The structure of an RMI-IIOP message consists of two 
main parts: IIOP header and payload. An IIOP header 
again consists of message ID, version, and the variable 
part depending on the message type (e.g., request, reply, 
cancel request). The size of IIOP headers can be treated as 
constants for our purpose since their size is typically small 
with a small variance.  

The size of payload can be divided into three parts: 
GIOP primitive type data (e.g. octet, short, long), OMG 
IDL constructed types, and null data. The size of primitive 
type data can be simply computed by counting how many 
data instances occur in an RMI message. Thus, we get: 

 ])()([_ ∑ ×= iitypeprimitive typeStypeNS , 
where N(typei) is the number of occurrences of typei data 
and S(typei) is the size of a typei data value. The size of 
fixed data types can be calculated from WSDL. However, 
we need actual data value to calculate the size for variable 
length data, such as string. 

Constructed data defined by the OMG IDL supports 
complex data types (e.g. struct, array, etc.). When a 
constructed data type object first appears in a message, 
several fields about type definition must be inserted such 
as codebase URL, and type name, which are mostly 
constant. When the same type of constructed data objects 
appear more than once in a message, the later occurrence 
refers to the original type definition. Finally, each null data 
consumes fixed 4 bytes in an IIOP message. 
 
4.3.3 Performance Predictor Design 
 

In general, both SOAP and RMI message consists of 
three parts: (1) constant part, (2) variable part that can be 
calculated from the static information, and (3) variable part 
that cannot be calculated from the static information, such 
as payload data. The first two parts can be determined 
from the interface definition. However, the third one must 
be determined in some other way, and thus requires further 
discussion. 

In this paper, we consider two ways to estimate the size 
of the variable parts. The first one is a grey box approach 
that uses general hints for a given service type. For 
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Figure 2. Relationship of Message Size and Response Time 



example, when we deploy a client for a bank application, 
we can use a general parameter space that has been 
derived from some other bank services. While the new 
application may exhibit different workload characteristics, 
this approach may be useful in practice. The second 
approach tries to estimate the size using some default 
value range that is large enough to cover most probable 
cases. This approach is useful for primitive types (e.g. 
numbers) since they have clear bounds. For complex 
types, e.g. arrays and strings, we can place an upper bound 
from empirical values or from a reasonable limit on the 
maximum message size. This approach is effective since 
most business applications exchange relatively small 
message size. An exception to this rule of thumb is 
scientific applications in a Grid environment; validating 
our design in such a scenario is a future research topic. 

Once we have a total value space for the variable data 
types, we can design an estimation algorithm for average 
message size. This estimation algorithm will effectively 
predict the performance of the bindings (from the third 
observation in Section 4.2). In this paper, we use a simple 
algorithm that takes a majority vote on all the message size 
estimates on the entire parameter space. For example, if 
the number of size estimate that RMI message will be 
smallest is f(RMI), that of SOAP will be smaller is 
f(SOAP), and that of JCA will be smaller is f(JCA), then 
the predictor simply chooses the binding with the argmax 
f(x). We note that this performance prediction result will 
be combined with the static rule (such as the one from the 
second observation in Section 4.2), before making the 
final decision. We validate the performance of this 
predictor design in the next section. 
 
5. Performance Evaluation in WAS 
 

This section provides performance evaluation of the 
proposed prediction algorithm. Then it presents the results 
from various Web services in the WebSphere Application 
Server environment.  
 
5.1 Workload 
 

We have created benchmarks modeling various real-
world applications with different characteristics: Amazon 
search, Google search, Microsoft MapPoint, and 
Financial Transaction. The Google service provides 
keyword-based search, whose messages are heavily string-
based and relatively small. The Amazon service provides 
operation to inquire products, customers, and sellers, 
modeling online shopping site. The Microsoft MapPoint 
provides Internet map services such as find-address, 
calculate-driving-directions, and retrieve-maps. The find-
address operation consists of simple string messages, 
while calculating route and map operations involve 
heterogeneous data types including binary data. The 

Financial Transaction benchmark models money transfer 
operations between banks. Thus its message structure is 
complex, involving arrays, mixed data types; and the 
message size can be large, up to a few hundred Kbytes.  

As key parameters that characterize the workload, we 
consider average string length, binary object size, null 
probability, average array size. The null probability 
represents how many parameters are unspecified when a 
service is invoked. Generic Web services typically have 
high null probabilities (e.g. over 80% for Amazon) 
because a single service interface is used for different 
purposes based on the parameters (e.g. book or restaurant 
search). Except the financial benchmark (up to 264), we 
have discovered that the average array size is relatively 
small (less than 7) in our workload. 
 
5.2 Efficacy of Performance Prediction 
 

In this section, we evaluate the effectiveness of binding 
selection based upon the proposed performance estimation 
algorithm. As we discussed earlier, we explore two 
different approaches: (1) estimation without hint, and (2) 
estimation with hint at various levels. For the case without 
hint, we set the maximum message size to 300 KB and the 
other parameters to have values in the following space:  

 String length: 5 – 75 
 Binary data size: 1.5KB – 45KB 
 Null probability: 0% - 90% 
 Array size: 2, 5, 10 

There are three types of hint that we consider. The first 
one is the maximum message size: we bound simple 
messages (e.g. text search) with 100KB, and complex 
messages (e.g. financial data) with 300KB (Hint A). The 
second hint is the average size of string from the 
measurement (Hint B). The third hint is a tighter range of 
null probability, ± 10% of the measured value for each 
service (Hint C). Table 2 presents the accuracy (or 
confidence level) of the performance predictor. For each 
benchmark, it shows the percentage of votes for the final 
decision with different levels of hint. For instance, the 
predictor selected RMI for Google service based on the 
votes for RMI – 91.7%, 91.7%, 88.9% for the three levels 
of hints, respectively. The resulting binding of this voting 

Table 2. Performance Prediction  
(hint A: max message size, B: strlen, C: null%) 

Vote Percentage of Majority Service 
No hint Hint: A Hint: A, B, C 

Decisio
n 

Google - doGoogleSearch 91.7 % 91.7 % 88.9 % RMI 
Amazon - itemSearch 62.5 % 62.5 % 100 % RMI 
MapPoint - findAddress 84.2 % 100 % 100 % RMI 
MapPoint - calculateRoute 81.6 % 81.6 % 100 % RMI 
MapPoint - getMap 95.2 % 95.2 % 100 % RMI 
Financial - handleAddShort1 97.1 % 97.1 % 100 % RMI 
Financial - handleAddShort10 77.1 % 77.1 % 100 % SOAP 
Financial - handleAddShort100 55.2 % 55.2 % 100 % SOAP 
TRS - getTravelPlan 100 % 100% 100 % RMI 
TRS - getFlightInfo 62.0 % 62.0 % 100 % SOAP 



is finally selected. We use these results for the evaluation 
in the subsequent sections. 
 
5.3 Performance Impact 
 

We now present the performance benefits from the 
proposed binding selection mechanism in our local 
testbed. The testbed consists of a Pentium 4, 2 GHz 
machine with 1.5GB memory (the server), and a Pentium 
4, 3 GHz machine with 3.0 GB memory (the client) both 
running Windows XP. In all our experiment, we assume 
that the client and the server are on the same network to 
demonstrate the selection between RMI and SOAP. On the 
client side, we have created multiple threads, each 
simulating the behavior of an individual client to keep the 
server busy. We assume the default binding (without Blue 
Pencil) to be SOAP binding since it is widely used in Web 
services for general connectivity. In all cases, we present 
the average response time measured from 5,000 queries. 
Figure 3 presents the results.  

Figure 3(a) shows the results from the Google service 
with different search keywords (Q.A – Q.E). From the 
figure, we observe that the response time improves by 59 – 
62% with Blue Pencil, which employs deployment-time 
binding selection with message size estimation. Figure 
3(b) presents the results from Amazon service with 
different types of search (restaurant, video, books, music). 
In this case also, we observe performance improvement 
with Blue Pencil by 34 – 80%. Figure 3(c) presents the 
results from MapPoint service with different types of 
queries (find-address, calculate-route, get-map), which 
differ significantly in terms of message format and size. 
Overall, we observe performance improvement of 41 – 
72%. Finally, Figure 3(d) shows the results from financial 
benchmark with different request/response sizes (1KB x 
1KB – 100KB x 100KB). From the figure, we observe that 
Blue Pencil gives a performance benefit for small 

messages, but for large messages it performs the same as 
the default configuration. This is due to the messages that 
are heavy on String and Calendar objects, which result in 
poor RMI performance. In this case, Blue Pencil selects 
SOAP, which is the correct choice.  
 
6. Optimizing Web Services of Legacy 
Information System 
 

The wide popularity of Web services has affected not 
only the regular server systems, but also the legacy 
information processing systems. For example, the 
Customer Information Control System (CICS) of IBM 
now provides SOAP binding interfaces so that a Web 
services client can communicate with its applications.  

Originally, CICS was used for terminal based operation. 
Later it added a mechanism for information access by 
other applications programmatically through shared 
memory area, called the Communications Area 
(COMMAREA). It now offers remote access mechanisms 
for Web Service requester, Java Servlets or EJBs running 
on J2EE, .NET applications, and Web browsers. The box 
denoted by label “CICS TS” in Figure 4 illustrates three 
main access mechanisms: (a) J2EE Connector Architecture 
(JCA), (b) Web Services using SOAP, and (c) Enterprise 
JavaBean. 

For binding selection in CICS, service providers must 
publish multiple CICS connectors. To denote JCA, we use 
cics namespace defined by WSIF. We then need a proxy 
generation support for CICS application developers. For 
this we have extended the WebSphere Developer for 
System z (WDz), an Eclipse-based IDE for mainframes, to 
include WSDL extension and proxy generation features. 
The structure of generated binding proxy for CICS is 
illustrated in the box denoted by label “J2EE” in Figure 4. 

We use a benchmark application to evaluate the benefit 
of binding selection, called Trader, which emulates stock 
trading activities through Web applications. Trader 
consists of two parts: the CICS part that manages 
persistent information about companies and customers in 
COBOL, and the J2EE part that handles the presentation 
of retrieved information through servlets and accesses 
CICS through J2EE EJBs. It mimics the state transition 
involved in stock trading, and the benchmark is driven by 
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a script that automatically navigates the pages based on 
predefined transition probabilities.  

For evaluation, we have set up CICS Transaction 
Server v3.1 and WebSphere Application Server v6.1. In 
particular, to represent the current server consolidation 
trend in system z, we installed the client, CICS TS and 
WAS on the same mainframe machine but on different 
logical partitions (LPARs). However, CICS TG was run 
on the same LPAR as CICS TS.  

For simplicity we discuss the binding selection between 
SOAP and JCA. Existing reports on the performance of 
SOAP connector teaches us that it is much slower (6 to 7 
times) than that of JCA with CICS TG. Thus we have 
encoded a simple rule that when JCA is available and 
accessible, use JCA over other bindings. We are now 
ready to quantify how much performance benefit such a 
simple transformation can bring.  

Now we examine the performance gains from Trader. 
For this, we consider three application modes: “Read”, 
which primarily models reading data from the CICS server 
(by weighing the probability of transition to the ‘Quotes’ 
state k times higher than update operations); “Write” 
which models updating data (by assigning k times more 
weights to the update probability); and “Equal”, which has 
same rate of read and write operations. Figure 5 presents 
the result for Trader when k = 3. We examine throughput, 
response time, and CPU ms/trans measured at WAS and 
CICS. From the figure, we observe significant 
performance gains in terms of response time, throughput, 
and the processing overhead by selecting JCA over SOAP 
binding – up to 73.7 % reduction in response time, 275 % 
increase in throughput, 78.9 % reduction of CPU load of 
WAS, and 25.3 % reduction in CPU load of CICS. 
 
7. Conclusion 
 

This paper presents the Blue Pencil framework that is 
designed to improve the performance of Web services. 
The framework automates the process of checking the 
availability, accessibility and performance properties of 
multiple bindings in the target environment, and selecting 
the best performing binding at the deployment time. With 
the extensive performance evaluation, we present that the 
deployment-time binding selection results in the 
significant performance improvement of J2EE Web 
services – up to 82 % reduction in response time. The 
result with CICS services provides more promising 
performance gain – up to 74 % reduction in response time, 
275 % increase in throughput, 78.9 % and 25.3% 
reduction in CPU load of WAS and CICS, respectively. It 
is important to note that Blue Pencil provides these 
performance gains without burdening developers with new 
programming models or libraries; Blue Pencil features are 
enabled transparently and easily through plugins in RAD 
and WDz. 
 
REFERENCES 
 
[1] N. Abu-Ghazaleh, M. J. Lewis, and M. Govindaraju, 

“Differential Serialization for Optimized SOAP 
Performance,” in Proc. of HPDC-13, June 2004. 

[2] D. Andresen, D. Sexton, K. Devaram, and V. Ranganath, 
“LYE: a high-performance caching SOAP 
implementation,” in Proc of ICPP-04, Aug. 2004. 

[3] M. Kostoulas, M. Matsa, N. Mendelsohn, E. Perkins, and 
A. Heifets, “XML screamer: an integrated approach to 
high performance XML parsing, validation and 
deserialization,” in Proc of WWW 2006, May 2006. 

[4] R. A. van Engelen, “Constructing Finite State Automata 
for High-Performance XML Web Services,” in Proc. of 
ISWS’04, June 2004. 

[5] R. A. van Engelen and K. A. Gallivan, “The gSOAP 
Toolkit for Web Services and Peer-To-Peer Computing 
Networks,” in Proc. of CCGrid2002, May 2002. 

[6] N. K. Mukhi, R. Konuru, and F. Curbera, “Cooperative 
Middleware Specialization for Service Oriented 
Architectures,” in Proc. of WWW2004, May 2004. 

[7] Web Service Invocation Framework, 
http://ws.apache.org/wsif/ 

[8] S. Lee, K.-W. Lee, K. D. Ryu, J.-D. Choi, and D. Verma, 
“Deployment Time Performance Optimization of Internet 
Services,” in Proc of Globecom 2006, Nov. 2006. 

[9] O. Demir, P. Devanbu, E. Wohlstadter, and S. Tai, 
“Optimizing Layered Middleware,” in Proc of SEM 2005, 
Sep. 2005. 

[10] M. Govidaraju, A. Slominski, V. Choppella, R. Bramley, 
and D. Gannon, “Requirements for and Evaluation of RMI 
Protocols for Scientific Computing,” in Proc. of 
IEEE/ACM SC2000 Conference (SC’00), Nov. 2000. 

[11] C. Kohlhoff and R. Steele, “Evaluating SOAP for High 
Performance Business Applications: Real-Time Trading 
Systems,” in Proc. of WWW2003, May 2003. 

[12] D. Davis and M. Parashar, “Latency performance of SOAP 
implementations,” in Proc. of CCGrid2002, May 2002. 

0

100

200

300

400

500

600

700

Read Equal Write
Dominant transactions

P
ag

e 
th

ro
ug

hp
ut

 (p
ag

e/
se

c)

Blue Pencil
Default

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Read Equal Write
Dominant transactions

H
TT

P
 re

sp
on

se
 ti

m
e 

(s
ec

) Blue Pencil
Default

0

100

200

300

400

500

600

700

Read Equal Write
Dominant transactions

P
ag

e 
th

ro
ug

hp
ut

 (p
ag

e/
se

c)

Blue Pencil
Default

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Read Equal Write
Dominant transactions

H
TT

P
 re

sp
on

se
 ti

m
e 

(s
ec

) Blue Pencil
Default

(a) Page throughput               (b) Average page response time 

0

4

8

12

16

20

Read Equal Write
Dominant transactions

C
P

U
 m

s 
pe

r p
ag

e 
(m

se
c/

pa
ge

) Blue Pencil
Default

0

2

4

6

8

10

12

14

Read Equal Write
Dominant transactions

C
P

U
 m

s 
pe

r t
ra

ns
ac

tio
n

(m
se

c/
tra

ns
)

Blue Pencil
Default

0

4

8

12

16

20

Read Equal Write
Dominant transactions

C
P

U
 m

s 
pe

r p
ag

e 
(m

se
c/

pa
ge

) Blue Pencil
Default

0

2

4

6

8

10

12

14

Read Equal Write
Dominant transactions

C
P

U
 m

s 
pe

r t
ra

ns
ac

tio
n

(m
se

c/
tra

ns
)

Blue Pencil
Default

(c) CPU msec per page of WAS   (d) CPU msec per transaction of CICS 

Figure 5. Performance result with Trader application 



[13] Policy Management for Autonomic Computing, on-line 
document available at http://www.alphaworks.ibm.com/ 
tech/pmac, March 2005. 


