
RC24252 (W0705-012) May 1, 2007
Computer Science

IBM Research Report

Improving the Performance of Web Services Using
Deployment-Time Binding Selection

SangJeong Lee
Computer Science Division

KAIST
Yuseong-gu, Daejeon 305-701

Korea

Kyung Dong Ryu, Kang-Won Lee, Jong-Deok Choi
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Improving the Performance of Web Services Using Deployment-Time Binding Selection

SangJeong Lee* Kyung Dong Ryu+ Kang-Won Lee+ Jong-Deok Choi+
*Computer Science Div., KAIST +IBM T. J. Watson Research Center

Yuseong-gu, Daejeon 305-701, Korea Yorktown Heights, NY 10598, U.S.A.
peterlee@kaist.ac.kr {kryu, kangwon, jdchoi}@us.ibm.com

ABSTRACT

In this paper, we present a novel deployment-time
binding selection framework for Web services to improve
the performance. Using the information about target
environments, we determine the best binding based on the
availability and the accessibility of a service, and the
performance characteristics of the bindings in a target
environment. We have implemented the proposed
mechanism as part of Eclipse-based development tools.
We present an extensive performance evaluation of our
methodology using benchmarks that we have created
following public Web service interfaces, and emulating
several e-business applications including a large scale
legacy transaction processing system that runs on a
mainframe.

1. Introduction

For seamless operation of business applications,
distributed modules communicate using various binding
technologies, such as RMI (Remote Method Invocation)
and SOAP (Simple Object Access Protocol). One of the
main goals of these technologies is to hide the complexity
of underlying systems, and to provide communication
among distributed modules regardless of their platform
and language differences. In this way, software developers
can focus on designing core algorithms while minimizing
the effort in communication and data exchange. In the
emerging Service Oriented Architecture (SOA),
distributed modules will be implemented as Web services
communicating via SOAP. However, a naïve adoption of
such technologies can result in suboptimal performance
due to heavyweight message processing.

Traditionally, the performance problem in middleware
layers has been addressed by optimizing the performance
of each layer. For example, related work has proposed to
improve the SOAP performance by caching SOAP
invocation results [1][2] or by accelerating XML
processing [3][4][5]. On the other hand, manual
optimizations based on best practices are common in real
life software development practices. For example, a skilled
software development team can design an application,
which can adapt to changing run-time environments, and
can select most appropriate access mechanisms based on

the run-time performance of the application [6][7].
However, these approaches increase software development
cost and prolongs the development and test cycles.
Recently, more systematic approaches have been proposed
to restructure distributed applications using the
information about target operation environments at
deployment time [8][9]. In [8], we introduced a general
deployment time optimization framework called, Blue
Pencil. In [9], Zhang et al. proposed a method to reduce
the memory footprint during deployment.

This paper explores the performance gain achievable
through careful binding selection during the deployment of
Web service applications. In particular, we study the
problem of automatically selecting the best performant
binding among multiple alternatives such as SOAP, RMI
or direct invocation. We find this problem to be nontrivial
because the accessibility and performance characteristics
of a binding changes depending on the configuration, e.g.
application server implementations and firewalls. Also one
of the old rule of thumbs, say RMI is much faster than
SOAP [10][11][12], does not hold any more due to recent
advances in SOAP/XML processing technologies. In this
paper, we report that the performance gap has narrowed to
a point that SOAP outperforms RMI under certain
workload in a latest enterprise-grade application server.

The main contribution of this paper is twofold: (a) the
design of a binding selection mechanism in the Blue Pencil
framework, and (b) an extensive performance evaluation
using several micro-benchmarks and a couple of business
application benchmarks.

The proposed binding selection mechanism is based on
a set of rules, and a novel performance prediction
algorithm presented in the paper. These mechanisms are
encoded in a lightweight interface module called, binding
proxy. To facilitate the development of Web service
applications, we have implemented a plugin to
automatically generate the binding proxy in two different
Eclipse-based integrated development environments
(IDEs), namely Rational Application Developer (RAD)
and WebSphere Developer for System z (WDz).

To evaluate the efficacy of the proposed approach, we
have measured the performance of various Web service
benchmarks in two different environments. First, in a
regular application server environment, we used several
benchmarks that we have created following popular Web
services (e.g. Google, Amazon, MapPoint). We have also

measured the performance using an internal benchmark
emulating a financial transaction system. Secondly, we
have tested the proposed mechanism in a legacy
transaction processing system, called the Customer
Information Control System (CICS) that runs on a
mainframe. In this environment, we used a COBOL-based
complex stock trading benchmark with Web interfaces.
Overall, we discover that careful selection of bindings can
reduce the average response time of a Web service by 34 –
80%. We also report the performance improvement in
terms of throughput and CPU load. The latter metric is
especially important for mainframes due to their typical
high utilization.

The remainder of the paper is organized as follows:
Section 2 motivates the main problem of this paper;
Section 3 presents an overview of the Blue Pencil
framework; Section 4 presents a special case for binding
selection algorithm based on message size estimation;
Sections 5 and 6 present performance result from the
benchmarks in regular Web service and mainframe
environments, respectively; and finally Section 7
concludes the paper with summary.

2. Binding Selection Problem

The efficiency of bindings between distributed
components can significantly impact the end-to-end
performance of a Web service. In the literature, the
SOAP/XML message processing delay has been reported
nontrivial compared to the network delay, the processing
delay at servers and clients. Over the years, this trend has
not changed fundamentally in one part due to the
abundance of network infrastructure and computing
resources at the backend, and in the other part due to the
introduction of new optimization techniques (e.g. DB
query caching).

To understand the breakdown of the end-to-end
performance of a well-provisioned Web service, we
performed a simple test on the Google SOAP Search API
using the popular keywords listed on Zeitgeist. We sent
1,000 search requests separated by 60 seconds, and
measured the end-to-end response time, the network
latency, and the search time returned by the server.

Average end-to-end response time 347.17 ms
Average search time 63.35 ms
Average round trip time (RTT) 29 ms

From these numbers, we can compute that the average

processing time of SOAP binding takes up to 254.82 ms,
which is equivalent to 73.4 % of the overall service
invocation time. Although this is an upper bound in some
sense because we used popular keywords, whose search
time will be minimal, we observe that binding processing
latency constitutes a significant part in the end-to-end

response time, and thus improving its efficiency is
important.

As introduced in the previous section, we approach the
issue of binding performance from the view point of
selecting the most performant binding among possible
alternatives. We assume this binding selection to happen
during the deployment of an application since at that time
we can discover the configuration of the target system and
make an informed decision [8].

When selecting a binding, we consider a set of
alternatives that satisfy the following properties:
 (P1) Availability: the binding mechanisms, which

can be handled by the service and offered in the
service description.

 (P2) Accessibility: among the bindings that satisfy
P1, the bindings that can access the service from
the relative location in a given configuration.

 (P3) Performance: among the bindings that satisfy
P2, the binding that performs better than other
bindings for a given service in a given operation
environment.

These properties can be illustrated using the following
example. Consider an application which calls a remote
service. The service publishes that it can handle SOAP,
RMI, and direct invocation (P1). The location of the
service may be anywhere in the network, e.g. outside a
corporate firewall, within the same subnet, within the same
machine, or even in the same address space. If the service
is within the same subnet, one can use either one of SOAP
or RMI (P2). Now suppose the service is running in a
certain application server, and the performance of RMI
binding is better than SOAP. Then, one can use RMI for
performance benefit (P3).

Typically, application developers do not have this
information about the target operation environment, and
may opt to use SOAP, which is guaranteed to work in all
cases at the expense of potential performance hit. In the
next section, we present how Blue Pencil supports this
selection process.

3. Blue Pencil Framework

This section provides an overview of the Blue Pencil
framework with an emphasis on the modules related to the
binding selection problem. The Blue Pencil framework
consists of five main components: (a) a component to
support publishing available bindings of a service, (b) a
component to generate a binding proxy, which is an
intermediary to assist application developer, (c) a
component to store various policy rules and a performance
estimation logic, (d) a component to discover the
configuration parameters of a target environment, and (e) a
component to transform applications using program
analysis techniques. In this paper, we do not consider code
transformation, and refer interested readers to [8].

3.1 Service Publication and Proxy Generation

To enable binding selection, the service provider must
publish multiple bindings for a service. This can be done
via WSDL (Web Services Description Language). The
standard WSDL only supports SOAP and HTTP bindings,
but we need to be able to publish additional binding types,
e.g., RMI, JCA, JMS, and direct invocation. Blue Pencil
employs Web Service Invocation Framework (WSIF) [7]
for this purpose. The resulting service descriptor will
specify which bindings are available at the server. To
support the service publisher, we provide a development
tool to auto-generate this extended service description [8].

The application programmer can create a client
application for a service using the service descriptor. In
Blue Pencil, we provide a concept of a binding proxy,
which encapsulates multiple bindings to be used for
remote service invocation. Essentially, this proxy is a
lightweight intermediary that provides a uniform interface
to hide the differences of various binding mechanisms.
Figure 1 presents an abstract view of a binding proxy
containing n bindings. Each binding type may interface
with a different transport layer. For example, binding 1 =
RMI and transport 1 = IIOP, binding 2 = SOAP and
transport 2 = HTTP, and so on.

We note that a proxy contains a decision logic that
selects a binding that has been derived from a set of policy
rules. These policy rules may have been compiled by
domain experts or published by middleware manufacturers
or a third party. Alternatively, the decision logic may
contain a simple algorithm to predict the performance of
certain bindings in a particular configuration. Depending
on the operation environment, static rules may be
sufficient to make a decision, or algorithmic performance
estimation may be required. In the next section, we present
a performance prediction algorithm that is based on the
message size estimation.

During the generation of a binding proxy, the generator
module contacts a policy repository and collects the
relevant rules. While we do not restrict how the policy
rules should be specified or stored, our current design is
inspired by the autonomic computing policy language
(ACPL) [13]. At minimum ACPL can specify if-then rules

that read “if the condition is true, then execute the action.”
In our context, conditions are typically complex Boolean
expressions defined on the value space of configuration
parameters, such as string (e.g. the manufacturer of an
application server), boolean (e.g. the existence of a
firewall), number (e.g. the version number of a
middleware component). The use of a policy-based design
provides simplicity, structure, and flexibility. For example,
updating the decision logic for new types of application
server is as easy as updating the rules.

3.2 Environment Discovery

When the user deploys a client application using the
Blue Pencil deployment module, the module invokes an
environment discovery function to discover the
configuration parameters of the target environment. The
parameters that we want to discover include information
about the application package, information about the
application server, relative location of the service, and
other constraints between the application and the service.

Blue Pencil employs the following three approaches to
discover these parameters. First, we discover information
from a well known location in the system such as
configuration files (e.g. deployment descriptor) or schema
files specified by URLs. A similar technique is to examine
the type of package files. We detect if an application runs
on a Java platform by checking the type of application
packages, e.g. checking if the package is an EAR
(enterprise application archive), WAR (Web application
archive), or JAR (Java archive) file.

Second, the discovery module uses a programmatic
approach to query the features of the environment. In [8],
we presented a scenario where the environment discovery
module queries the capabilities implemented by a database
management system (DBMS) via the Database Metadata
interface. Using this mechanism, we can discover if a
correlated subquery is supported by calling the
supportsCorrelatedSubqueries method, for instance.
This approach relies on a well-defined interface to
examine the target environment.

Third, it employs various target-specific techniques.
For instance, the discovery module finds out if the client
runs on the same object request broker (ORB) as the
service, by calling the javax.rmi.CORBA.Util.isLocal
method. Discovering this information is useful since in
this case, the client can invoke the service via a local Java
call, which will be much faster than remote invocations.
Another example is the case when the discovery module
checks if the client is located in the same security domain
as the server by querying the database that contains the
network configuration information. Finally, the module
checks if firewalls exist between the client and the server
by sending probe packets (e.g. telnet connection request)
to a particular port, and see if a response is returned.

Application

Binding Proxy

Decision Logic

Binding
2

Binding
1

Transport
2

Transport
1

Deployment Optimization

Environment Discovery
Module

Target Environment

Binding
n

Transport
n

Application

Binding Proxy

Decision Logic

Binding
2

Binding
1

Transport
2

Transport
1

Deployment Optimization

Environment Discovery
Module

Target Environment

Binding
n

Transport
n

Figure 1. Structure of a Binding Proxy

The collected information in this step will be fed to the
decision logic in a binding proxy as input, and the proxy
will configure itself with the most appropriate binding. We
note that this configuration discovery and binding
selection process may be used during a major
reconfiguration of the application not just during the initial
deployment.

4. Performance Predictor Design

On the contrary to the traditional belief that SOAP
involves much communication overhead 1 , we observed
that the binding performance of SOAP is sometimes better
than that of RMI for certain workload in the latest
enterprise-grade application server implementation,
namely WebSphere Application Server v6 that employs
various SOAP/XML acceleration technologies such as pre-
compiled serializers and deserializers based on schema-
specific XML parsing technologies [3][4]. Therefore,
some binding decisions cannot be made from static rules.
In this section, we first explore the performance inversion
issue happening in WAS, then we design a novel
performance predictor based on message size estimation
for WAS.

4.1 Performance Variance

In this section, we present the performance of two
different types of Web services to motivate that
performance prediction is necessary. For the simplicity of
exposition, we consider only SOAP and RMI-IIOP
bindings in WAS.

For the workload, we use a benchmark modeling the
Google search service and a benchmark for a financial
transaction service. Detailed description of these
workloads and the testbed environment is presented in
Section 5.1. For our discussion in this section, we only
need to know that: (a) both the client and the server were
running in a local testbed environment, (b) the control
parameter for search is the number of search results, and
(c) the control parameter for the financial benchmark is the
size of request and response messages. Table 1
summarizes the result.

For Google services, RMI performs about 2.5 times
better both in terms of response time and throughput.
However, with the financial benchmark, performance of
SOAP is sometimes better than RMI under certain
workload, while for other workload it is the other way
around. These results show that the performance of
binding varies depending on two parameters: the remote

1 We also have tested the binding performance of SOAP and

RMI using JBoss and WebLogic. The results show that RMI
always outperforms SOAP with our benchmarks.

service type (Google vs. financial), and the message type
(1KB vs. 100KB).

To understand these results better, we analyzed the
messages exchanged between the client and the server.
From this study, we discovered that the slow performance
of RMI in financial benchmark is related to an extensive
use of Java String objects and Java Calendar objects. More
precisely, IIOP uses UTF-16 encoding, consuming two
bytes for each character, whereas SOAP uses UTF-8,
which requires only one byte for each character.
Furthermore, Calendar objects become extremely bloated
in RMI-IIOP, adding about 1,000 bytes to describe the
Calendar type, consisting of more than 100 different
primitive fields and consuming about 500 bytes to describe
their values. On the other hand, SOAP needs at most 24
bytes to represent Calendar in XML’s dateTime format,
e.g., “2005-09-09T18:18:30.830Z”. From this study, we
infer that the data types contained in the messages have
some impact on the binding performance.

4.2 Message Format and Binding Performance

To gain further insight, we investigate the correlation
between the message format and the binding performance
using synthetic workload with controllable parameters. For
this study, we have generated three types of synthetic
messages: (1) metadata-oriented messages with simple
string/integer data and deep class nesting up to 10 levels
(denoted by Meta/Deep); (2) metadata-oriented messages
with simple data and arrays containing 100 – 3,000
elements (denoted by Meta/Array); (3) data-oriented
messages with many integer and string fields (denoted by
Data).

Figure 2 presents the correlation between the response
time and the message size for different types of objects
with SOAP and RMI-IIOP. From the chart, we make the
following observations. First, the message size for the
same object differs significantly for different bindings, e.g.
the rightmost points marked by squares in Figure 2(a).
Second, the initial response time (i.e. the y-intercept) of
each curve shown in the magnified chart in Figure 2(b) is
much higher for SOAP (about 160 ms) than RMI (about
20 ms). This is due to the heavy initial cost of extra HTTP
routing via a Web container to deliver requests to an EJB
container. Thus, RMI offers better performance for small

Table 1. SOAP and RMI Performance with WAS
Response Time (msec) Throughput (reqs/sec)

 Parameter
SOAP RMI SOAP/RMI SOAP RMI RMI/SOAP

10 results 235.7 82.6 2.85x 212.1 605.3 2.85x
Google

100 results 1252.7 515.8 2.43x 39.9 96.9 2.43x

1KB 183.3 137.6 1.33x 272.8 363.4 1.33x

10KB 370.8 553.5 0.67x 134.8 90.3 0.67x financial

100KB 3075.1 4495.5 0.68x 16.3 11.1 0.68x

messages (< 10KB). Finally, the slopes for RMI and
SOAP plots are almost equal for the same type of objects
(Figure 2(a)). In particular, the slope of metadata-oriented
messages and that of data-oriented messages are different
but both protocols show similar slopes.

The first observation is interesting, but does not help us
in predicting the performance. The second observation can
be easily encoded as a static rule, thus we do not consider
in performance prediction. The third observation is
potentially valuable for designing a performance predictor
for WAS. If this trend holds in general, then we can
predict the binding performance from the size of a
message – because the size-performance slope is the same
for the same message (and different bindings). When we
consider the ongoing trend in optimizing binding
performance this observation makes an intuitive sense. For
example, as the SOAP/XML processing modules become
optimized, the parser and the (de)serializer will process
messages without the inefficiencies of unnecessary data
conversion and data copy between layers, or suboptimal
schema validation. In the end, it will make only one pass
for parsing and (de)serialization, whose processing time
will be proportional to the message sizes, and it may take
similar time to process different types of bindings.2

4.3 Message Size Estimation

To build a performance predictor for WAS based on the
intuition from the previous section, we proceed to develop
a simple model to estimate the average message size. As a
proof of concept we just consider SOAP and RMI-IIOP
protocols, but it is easy to generalize the idea to include
other protocols. The main challenge in this step is to
estimate the message size using only the static information
available at deployment time.

4.3.1 SOAP message structure

2 This statement assumes that the message size counts only the

bytes that are important for parsing and (de)serialization. If
some part of messages will be skipped by the parsers, they
should not be counted.

A SOAP message is structured with three main parts:
HTTP header, SOAP metadata, and payload. Empirically,
we find that the size of HTTP headers varies in a small
range. Thus, in our model, we treat them as constant. The
SOAP metadata can be further divided into two parts:
message information (e.g. header information and name
space) and payload tags. The size of these fields can also
be either treated as constants, or obtained from a WSDL
file. Finally, the size of payload data is a sum of all data
length. This is a variable part in the message, which cannot
be determined by the static information in WSDL.

4.3.2 RMI-IIOP message structure

The structure of an RMI-IIOP message consists of two
main parts: IIOP header and payload. An IIOP header
again consists of message ID, version, and the variable
part depending on the message type (e.g., request, reply,
cancel request). The size of IIOP headers can be treated as
constants for our purpose since their size is typically small
with a small variance.

The size of payload can be divided into three parts:
GIOP primitive type data (e.g. octet, short, long), OMG
IDL constructed types, and null data. The size of primitive
type data can be simply computed by counting how many
data instances occur in an RMI message. Thus, we get:

])()([_ ∑ ×= iitypeprimitive typeStypeNS ,
where N(typei) is the number of occurrences of typei data
and S(typei) is the size of a typei data value. The size of
fixed data types can be calculated from WSDL. However,
we need actual data value to calculate the size for variable
length data, such as string.

Constructed data defined by the OMG IDL supports
complex data types (e.g. struct, array, etc.). When a
constructed data type object first appears in a message,
several fields about type definition must be inserted such
as codebase URL, and type name, which are mostly
constant. When the same type of constructed data objects
appear more than once in a message, the later occurrence
refers to the original type definition. Finally, each null data
consumes fixed 4 bytes in an IIOP message.

4.3.3 Performance Predictor Design

In general, both SOAP and RMI message consists of
three parts: (1) constant part, (2) variable part that can be
calculated from the static information, and (3) variable part
that cannot be calculated from the static information, such
as payload data. The first two parts can be determined
from the interface definition. However, the third one must
be determined in some other way, and thus requires further
discussion.

In this paper, we consider two ways to estimate the size
of the variable parts. The first one is a grey box approach
that uses general hints for a given service type. For

0

1000

2000

3000

4000

5000

0 50000 100000 150000 200000 250000
Message Size (Bytes)

R
es

p
Ti

m
e

(m
s)

S/Meta/Deep
R/Meta/Deep
S/Meta/Arr
R/Meta/Arr
S/Data
R/Data

0

1000

2000

3000

4000

5000

0 50000 100000 150000 200000 250000
Message Size (Bytes)

R
es

p
Ti

m
e

(m
s)

S/Meta/Deep
R/Meta/Deep
S/Meta/Arr
R/Meta/Arr
S/Data
R/Data

0

200

400

600

800

1000

1200

0 20000 40000 60000
Message Size (Bytes)

R
es

p
Ti

m
e

(m
s)

S/Meta/Deep
R/Meta/Deep
S/Meta/Arr
R/Meta/Arr
S/Data
R/Data

 (a) Overall graph (b) Magnified graph

Figure 2. Relationship of Message Size and Response Time

example, when we deploy a client for a bank application,
we can use a general parameter space that has been
derived from some other bank services. While the new
application may exhibit different workload characteristics,
this approach may be useful in practice. The second
approach tries to estimate the size using some default
value range that is large enough to cover most probable
cases. This approach is useful for primitive types (e.g.
numbers) since they have clear bounds. For complex
types, e.g. arrays and strings, we can place an upper bound
from empirical values or from a reasonable limit on the
maximum message size. This approach is effective since
most business applications exchange relatively small
message size. An exception to this rule of thumb is
scientific applications in a Grid environment; validating
our design in such a scenario is a future research topic.

Once we have a total value space for the variable data
types, we can design an estimation algorithm for average
message size. This estimation algorithm will effectively
predict the performance of the bindings (from the third
observation in Section 4.2). In this paper, we use a simple
algorithm that takes a majority vote on all the message size
estimates on the entire parameter space. For example, if
the number of size estimate that RMI message will be
smallest is f(RMI), that of SOAP will be smaller is
f(SOAP), and that of JCA will be smaller is f(JCA), then
the predictor simply chooses the binding with the argmax
f(x). We note that this performance prediction result will
be combined with the static rule (such as the one from the
second observation in Section 4.2), before making the
final decision. We validate the performance of this
predictor design in the next section.

5. Performance Evaluation in WAS

This section provides performance evaluation of the
proposed prediction algorithm. Then it presents the results
from various Web services in the WebSphere Application
Server environment.

5.1 Workload

We have created benchmarks modeling various real-
world applications with different characteristics: Amazon
search, Google search, Microsoft MapPoint, and
Financial Transaction. The Google service provides
keyword-based search, whose messages are heavily string-
based and relatively small. The Amazon service provides
operation to inquire products, customers, and sellers,
modeling online shopping site. The Microsoft MapPoint
provides Internet map services such as find-address,
calculate-driving-directions, and retrieve-maps. The find-
address operation consists of simple string messages,
while calculating route and map operations involve
heterogeneous data types including binary data. The

Financial Transaction benchmark models money transfer
operations between banks. Thus its message structure is
complex, involving arrays, mixed data types; and the
message size can be large, up to a few hundred Kbytes.

As key parameters that characterize the workload, we
consider average string length, binary object size, null
probability, average array size. The null probability
represents how many parameters are unspecified when a
service is invoked. Generic Web services typically have
high null probabilities (e.g. over 80% for Amazon)
because a single service interface is used for different
purposes based on the parameters (e.g. book or restaurant
search). Except the financial benchmark (up to 264), we
have discovered that the average array size is relatively
small (less than 7) in our workload.

5.2 Efficacy of Performance Prediction

In this section, we evaluate the effectiveness of binding
selection based upon the proposed performance estimation
algorithm. As we discussed earlier, we explore two
different approaches: (1) estimation without hint, and (2)
estimation with hint at various levels. For the case without
hint, we set the maximum message size to 300 KB and the
other parameters to have values in the following space:

 String length: 5 – 75
 Binary data size: 1.5KB – 45KB
 Null probability: 0% - 90%
 Array size: 2, 5, 10

There are three types of hint that we consider. The first
one is the maximum message size: we bound simple
messages (e.g. text search) with 100KB, and complex
messages (e.g. financial data) with 300KB (Hint A). The
second hint is the average size of string from the
measurement (Hint B). The third hint is a tighter range of
null probability, ± 10% of the measured value for each
service (Hint C). Table 2 presents the accuracy (or
confidence level) of the performance predictor. For each
benchmark, it shows the percentage of votes for the final
decision with different levels of hint. For instance, the
predictor selected RMI for Google service based on the
votes for RMI – 91.7%, 91.7%, 88.9% for the three levels
of hints, respectively. The resulting binding of this voting

Table 2. Performance Prediction
(hint A: max message size, B: strlen, C: null%)

Vote Percentage of Majority Service
No hint Hint: A Hint: A, B, C

Decisio
n

Google - doGoogleSearch 91.7 % 91.7 % 88.9 % RMI
Amazon - itemSearch 62.5 % 62.5 % 100 % RMI
MapPoint - findAddress 84.2 % 100 % 100 % RMI
MapPoint - calculateRoute 81.6 % 81.6 % 100 % RMI
MapPoint - getMap 95.2 % 95.2 % 100 % RMI
Financial - handleAddShort1 97.1 % 97.1 % 100 % RMI
Financial - handleAddShort10 77.1 % 77.1 % 100 % SOAP
Financial - handleAddShort100 55.2 % 55.2 % 100 % SOAP
TRS - getTravelPlan 100 % 100% 100 % RMI
TRS - getFlightInfo 62.0 % 62.0 % 100 % SOAP

is finally selected. We use these results for the evaluation
in the subsequent sections.

5.3 Performance Impact

We now present the performance benefits from the
proposed binding selection mechanism in our local
testbed. The testbed consists of a Pentium 4, 2 GHz
machine with 1.5GB memory (the server), and a Pentium
4, 3 GHz machine with 3.0 GB memory (the client) both
running Windows XP. In all our experiment, we assume
that the client and the server are on the same network to
demonstrate the selection between RMI and SOAP. On the
client side, we have created multiple threads, each
simulating the behavior of an individual client to keep the
server busy. We assume the default binding (without Blue
Pencil) to be SOAP binding since it is widely used in Web
services for general connectivity. In all cases, we present
the average response time measured from 5,000 queries.
Figure 3 presents the results.

Figure 3(a) shows the results from the Google service
with different search keywords (Q.A – Q.E). From the
figure, we observe that the response time improves by 59 –
62% with Blue Pencil, which employs deployment-time
binding selection with message size estimation. Figure
3(b) presents the results from Amazon service with
different types of search (restaurant, video, books, music).
In this case also, we observe performance improvement
with Blue Pencil by 34 – 80%. Figure 3(c) presents the
results from MapPoint service with different types of
queries (find-address, calculate-route, get-map), which
differ significantly in terms of message format and size.
Overall, we observe performance improvement of 41 –
72%. Finally, Figure 3(d) shows the results from financial
benchmark with different request/response sizes (1KB x
1KB – 100KB x 100KB). From the figure, we observe that
Blue Pencil gives a performance benefit for small

messages, but for large messages it performs the same as
the default configuration. This is due to the messages that
are heavy on String and Calendar objects, which result in
poor RMI performance. In this case, Blue Pencil selects
SOAP, which is the correct choice.

6. Optimizing Web Services of Legacy
Information System

The wide popularity of Web services has affected not
only the regular server systems, but also the legacy
information processing systems. For example, the
Customer Information Control System (CICS) of IBM
now provides SOAP binding interfaces so that a Web
services client can communicate with its applications.

Originally, CICS was used for terminal based operation.
Later it added a mechanism for information access by
other applications programmatically through shared
memory area, called the Communications Area
(COMMAREA). It now offers remote access mechanisms
for Web Service requester, Java Servlets or EJBs running
on J2EE, .NET applications, and Web browsers. The box
denoted by label “CICS TS” in Figure 4 illustrates three
main access mechanisms: (a) J2EE Connector Architecture
(JCA), (b) Web Services using SOAP, and (c) Enterprise
JavaBean.

For binding selection in CICS, service providers must
publish multiple CICS connectors. To denote JCA, we use
cics namespace defined by WSIF. We then need a proxy
generation support for CICS application developers. For
this we have extended the WebSphere Developer for
System z (WDz), an Eclipse-based IDE for mainframes, to
include WSDL extension and proxy generation features.
The structure of generated binding proxy for CICS is
illustrated in the box denoted by label “J2EE” in Figure 4.

We use a benchmark application to evaluate the benefit
of binding selection, called Trader, which emulates stock
trading activities through Web applications. Trader
consists of two parts: the CICS part that manages
persistent information about companies and customers in
COBOL, and the J2EE part that handles the presentation
of retrieved information through servlets and accesses
CICS through J2EE EJBs. It mimics the state transition
involved in stock trading, and the benchmark is driven by

0

50

100

150

200

250

300

Q.A Q.B Q.C Q.D Q.E
Query

R
es

p
Ti

m
e

(m
s)

Default
Blue Pencil

0

300

600

900

1200

1500

Rest-
aurants

Video Books Music

SearchIndex

R
es

p
Ti

m
e

(m
s)

Default
Blue Pencil

0

50

100

150

200

250

300

Q.A Q.B Q.C Q.D Q.E
Query

R
es

p
Ti

m
e

(m
s)

Default
Blue Pencil

0

300

600

900

1200

1500

Rest-
aurants

Video Books Music

SearchIndex

R
es

p
Ti

m
e

(m
s)

Default
Blue Pencil

 (a) Google – doGoogleSearch (b) Amazon – itemSearch

0

100

200

300

400

500

find Address calculate
Route

getMap

Functions

R
es

p
Ti

m
e

(m
s)

Default
Blue Pencil

0

1000

2000

3000

4000

1x1 1x10 10x1 10x10 100
x100Message

R
es

p
Ti

m
e

(m
s)

Default
Blue Pencil

0

100

200

300

400

500

find Address calculate
Route

getMap

Functions

R
es

p
Ti

m
e

(m
s)

Default
Blue Pencil

0

1000

2000

3000

4000

1x1 1x10 10x1 10x10 100
x100Message

R
es

p
Ti

m
e

(m
s)

Default
Blue Pencil

 (c) MapPoint (d) financial - handleAddShort

Figure 3. Average Response Time with Benchmarks

Business LogicClient
Enterprise JavaBean

CICS
EJB Server

CICS
Web Services

CICS TSJ2EE

COMMAREA

SOAP Stub RMI Stub JCA RA

HTTP ORB Java ORB

EJB

Web Support

CICS for SOAP

CICS TG

EXCI

Proxy

Business LogicClient
Enterprise JavaBean

CICS
EJB Server

CICS
Web Services

CICS TSJ2EE

COMMAREA

SOAP Stub RMI Stub JCA RA

HTTP ORB Java ORB

EJB

Web Support

CICS for SOAP

CICS TG

EXCI

Proxy

Figure 4. CICS binding proxy and three CICS connection

mechanisms

a script that automatically navigates the pages based on
predefined transition probabilities.

For evaluation, we have set up CICS Transaction
Server v3.1 and WebSphere Application Server v6.1. In
particular, to represent the current server consolidation
trend in system z, we installed the client, CICS TS and
WAS on the same mainframe machine but on different
logical partitions (LPARs). However, CICS TG was run
on the same LPAR as CICS TS.

For simplicity we discuss the binding selection between
SOAP and JCA. Existing reports on the performance of
SOAP connector teaches us that it is much slower (6 to 7
times) than that of JCA with CICS TG. Thus we have
encoded a simple rule that when JCA is available and
accessible, use JCA over other bindings. We are now
ready to quantify how much performance benefit such a
simple transformation can bring.

Now we examine the performance gains from Trader.
For this, we consider three application modes: “Read”,
which primarily models reading data from the CICS server
(by weighing the probability of transition to the ‘Quotes’
state k times higher than update operations); “Write”
which models updating data (by assigning k times more
weights to the update probability); and “Equal”, which has
same rate of read and write operations. Figure 5 presents
the result for Trader when k = 3. We examine throughput,
response time, and CPU ms/trans measured at WAS and
CICS. From the figure, we observe significant
performance gains in terms of response time, throughput,
and the processing overhead by selecting JCA over SOAP
binding – up to 73.7 % reduction in response time, 275 %
increase in throughput, 78.9 % reduction of CPU load of
WAS, and 25.3 % reduction in CPU load of CICS.

7. Conclusion

This paper presents the Blue Pencil framework that is
designed to improve the performance of Web services.
The framework automates the process of checking the
availability, accessibility and performance properties of
multiple bindings in the target environment, and selecting
the best performing binding at the deployment time. With
the extensive performance evaluation, we present that the
deployment-time binding selection results in the
significant performance improvement of J2EE Web
services – up to 82 % reduction in response time. The
result with CICS services provides more promising
performance gain – up to 74 % reduction in response time,
275 % increase in throughput, 78.9 % and 25.3%
reduction in CPU load of WAS and CICS, respectively. It
is important to note that Blue Pencil provides these
performance gains without burdening developers with new
programming models or libraries; Blue Pencil features are
enabled transparently and easily through plugins in RAD
and WDz.

REFERENCES

[1] N. Abu-Ghazaleh, M. J. Lewis, and M. Govindaraju,

“Differential Serialization for Optimized SOAP
Performance,” in Proc. of HPDC-13, June 2004.

[2] D. Andresen, D. Sexton, K. Devaram, and V. Ranganath,
“LYE: a high-performance caching SOAP
implementation,” in Proc of ICPP-04, Aug. 2004.

[3] M. Kostoulas, M. Matsa, N. Mendelsohn, E. Perkins, and
A. Heifets, “XML screamer: an integrated approach to
high performance XML parsing, validation and
deserialization,” in Proc of WWW 2006, May 2006.

[4] R. A. van Engelen, “Constructing Finite State Automata
for High-Performance XML Web Services,” in Proc. of
ISWS’04, June 2004.

[5] R. A. van Engelen and K. A. Gallivan, “The gSOAP
Toolkit for Web Services and Peer-To-Peer Computing
Networks,” in Proc. of CCGrid2002, May 2002.

[6] N. K. Mukhi, R. Konuru, and F. Curbera, “Cooperative
Middleware Specialization for Service Oriented
Architectures,” in Proc. of WWW2004, May 2004.

[7] Web Service Invocation Framework,
http://ws.apache.org/wsif/

[8] S. Lee, K.-W. Lee, K. D. Ryu, J.-D. Choi, and D. Verma,
“Deployment Time Performance Optimization of Internet
Services,” in Proc of Globecom 2006, Nov. 2006.

[9] O. Demir, P. Devanbu, E. Wohlstadter, and S. Tai,
“Optimizing Layered Middleware,” in Proc of SEM 2005,
Sep. 2005.

[10] M. Govidaraju, A. Slominski, V. Choppella, R. Bramley,
and D. Gannon, “Requirements for and Evaluation of RMI
Protocols for Scientific Computing,” in Proc. of
IEEE/ACM SC2000 Conference (SC’00), Nov. 2000.

[11] C. Kohlhoff and R. Steele, “Evaluating SOAP for High
Performance Business Applications: Real-Time Trading
Systems,” in Proc. of WWW2003, May 2003.

[12] D. Davis and M. Parashar, “Latency performance of SOAP
implementations,” in Proc. of CCGrid2002, May 2002.

0

100

200

300

400

500

600

700

Read Equal Write
Dominant transactions

P
ag

e
th

ro
ug

hp
ut

 (p
ag

e/
se

c)

Blue Pencil
Default

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Read Equal Write
Dominant transactions

H
TT

P
 re

sp
on

se
 ti

m
e

(s
ec

) Blue Pencil
Default

0

100

200

300

400

500

600

700

Read Equal Write
Dominant transactions

P
ag

e
th

ro
ug

hp
ut

 (p
ag

e/
se

c)

Blue Pencil
Default

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Read Equal Write
Dominant transactions

H
TT

P
 re

sp
on

se
 ti

m
e

(s
ec

) Blue Pencil
Default

(a) Page throughput (b) Average page response time

0

4

8

12

16

20

Read Equal Write
Dominant transactions

C
P

U
 m

s
pe

r p
ag

e
(m

se
c/

pa
ge

) Blue Pencil
Default

0

2

4

6

8

10

12

14

Read Equal Write
Dominant transactions

C
P

U
 m

s
pe

r t
ra

ns
ac

tio
n

(m
se

c/
tra

ns
)

Blue Pencil
Default

0

4

8

12

16

20

Read Equal Write
Dominant transactions

C
P

U
 m

s
pe

r p
ag

e
(m

se
c/

pa
ge

) Blue Pencil
Default

0

2

4

6

8

10

12

14

Read Equal Write
Dominant transactions

C
P

U
 m

s
pe

r t
ra

ns
ac

tio
n

(m
se

c/
tra

ns
)

Blue Pencil
Default

(c) CPU msec per page of WAS (d) CPU msec per transaction of CICS

Figure 5. Performance result with Trader application

[13] Policy Management for Autonomic Computing, on-line
document available at http://www.alphaworks.ibm.com/
tech/pmac, March 2005.

