
RC24256 (W0705-025) May 4, 2007
Computer Science

IBM Research Report

Aspect-Oriented Web Services for Distributed Resource
Monitoring in Utility Computing

Trieu C. Chieu, Hoi Chan
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Aspect-Oriented Web Services for Distributed Resource Monitoring in Utility
Computing

Trieu C. Chieu and Hoi Chan

IBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA
{tchieu, hychan}@us.ibm.com

Abstract

Monitoring resource utilization is an essential task in

Utility Computing (UC). Typically, a UC manager with
adaptors is used to orchestrate and collect the monitoring
results. However, large IT systems, such as those in data
centers are required to monitor dynamic resources
running in distributed platforms, thus demanding a
complex UC manager structure. This paper introduces a
novel approach that utilizes a platform specific Aspect-
Oriented Programming (AOP) tool to dynamically weave
a monitoring Web service into a running resource to
enable communication with a UC manager exposed with
standard monitoring Web service interfaces. This AO-
Web service approach provides a simple yet powerful and
effective means for the dynamic monitoring of distributed
resources running in heterogeneous platforms.

1. Introduction

Utility computing [1] promises to give IT department a
means to provide optimized resources in an on-demand
basis as business conditions change. This approach
enables flexible utilization of IT resources at lower
operating costs. However, if moving from a traditional
computing model to Utility Computing requires building
a whole new infrastructure, there will be few takers due to
high implementation and deployment costs. Thus, one of
the most important factors in deploying Utility
Computing is the ability to incrementally add intelligent
management functions to existing IT resources and
connect them to a utility manager. However, the key
problem lies in those existing resources running in
distributed environment where source code may not be
available for modification in order to introduce the
necessary monitoring functions.

In this paper, we propose to treat the monitoring
functions as additional concerns, and use Aspect-Oriented
Programming tool [2, 3] to dynamically weave them into
the applications at build time and/or dynamically at
runtime. To address the issue of connecting to distributed
resources, we introduce a standard monitoring web
service interface to facilitate interoperability without
concerning platform dependency. This approach also
offers a novel technique to dynamically integrate and
weave new services into existing applications to meet
unforeseen post-deployment requirements.

2. Aspect-Oriented Web Services
Aspect-oriented programming (AOP) is a software

engineering approach for separation of concerns, or the
ability to specify, encapsulate, and manipulate only the
parts of software which are relevant to a particular goal,
concept or purpose [3, 4]. The techniques of AOP system
design make it possible to modularize crosscutting
concerns in an application. Two concerns crosscut if the
methods related to those concerns intersect [5] different
aspects of a system. General tool such as AspectJ [6] is
well developed and readily available for Java at
development time. For legacy applications where source
code is not available, the same methodology can be
applied, but at object code level. For Java, the object
classes are intercepted, analyzed and decomposed before
they are loaded into JVM, and appropriate non-invasive
(without affecting the logic) constructs are then inserted
by a dynamic aspect weaver to provide appropriate
information to an external entity. The provided
information usually consists of the values of variables at
method entry and exit points. Examples of such Java
byte-code tools are AspectWerkz [7] and HyperJ [8].

In a typical Utility Computing (UC) system, a UC
manager relies on collected information from monitored
resources, and takes appropriate actions based on business
rules. Particularly, to monitor the state of a resource, one
needs to observe the values of its parameters as well as
the sequence of processes that the application has
executed. Since the monitoring function of an application
can be considered as a different concern, it can be
developed as a separate aspect from the main application.
Using an AOP tool, the monitoring functions can thus be
introduced in development time, where source code is
available.

Often, the use of AOP techniques to weave functions
into an application is under the assumption that they are
deployed on the same platform. For a virtual data center
where resources may be distributed across multiple
locations and run in different platforms, monitoring these
heterogeneous systems requires a different and more
flexible approach. We introduce an approach which
dedicates the UC manager to expose a standard
monitoring Web service interface, and assumes the
weaving of the web service as an aspect crosscut in each
of the monitored resources. Since Web services use
HTTP, WSDL and XML messaging standards to provide
connectivity and interoperability between diverse

components, functionality can be provided regardless of
how and where the service is implemented.

Figure 1 illustrates a conceptual view of how existing
resources in distributed client applications use AOP and
web services to interact with the UC Manager for
monitoring. Each client resource uses an AOP crosscut
defined for its platform to weave a Web service to expose
its resource parameters or operating results (e.g. average,
max or min usage over a period of time) to the UC
Manager. The resource data is typically embedded in the
payload of the monitoring Web service request. Upon
receiving the request, the UC manager will execute a
corresponding service method to process the data.

Utility
Computing

Manager

Application
X

Application
Y

Application
Z

Aspect
CrossCut

Aspect
CrossCut

Aspect
CrossCut

Monitoring
Web Service

Call

Monitoring
Web Service

Call

Monitoring
Web Service

Call

Monitoring
Web Service

Interface

Figure 1. Conceptual view of AOP crosscuts with web

services

3. Distributed Resource Monitoring Example
Our example scenario consists of a UC Manager to

monitor the utilization of a set of storage devices and
takes actions when utilization reaches a predefined value
in a virtual data center. Utilization of a device is defined
as the number of connections multiplied by a utilization
factor. For Java implementation, a “Device.connect(..)”
method of the “Device” object is called inside a client
application whenever a new connection is created. There
is no existing API for the UC Manager to access this
connection information. Following our AOP approach,
we define a “Utilization” aspect with a global variable
“numberOfConnections” declared externally for the
“Device” object to track the number of connections when
the “Device.connect(...)” method is called. This
information is then delivered to the UC Manager via a
monitoring Web service call invoked inside a
“newConnection” pointcut as shown in Figure 2 in
AspectJ syntax [6]. Particularly, after returning from the
“Device.connect(..)” method call, the global variable
“numberOfConnections” is incremented and a web
service call is set up to invoke the
“setUtilizationFactor(..)” service method of the UC
Manager monitoring services. Note that the original
“Device” object source code is not required, and all the
additional code used to support this monitoring capability
is declared within the “Utilization” aspect. For other

remote resources running on different platforms such as
Microsoft .Net framework, similar aspects can be
implemented using the platform-specific aspect tools to
allow cross-platform interoperability.

public aspect Utilization {

public static final long Device.FACTOR=0.2;
public static long Device.numberOfConnection=0;
// Define “newConnection” pointcut
pointcut newConnection(Device d):target(d)&&call(*Device.connect(..));
// Define after advice for “newConnection”
after(Device d) returning: newConnection(d) {

// Increment number of connections and calculate “utilFactor”
d.numberOfConnection++;
long utilFactor = d.numberOfConnection*d.FACTOR;
// Set up Web Service call to UC Manager
WSIFDynamicPortFactory portFactory = new

WSIFDynamicPortFactory(WSIFUtils.readWSDL(null,wsdlLocation),null, null);
WSIFPort port = portFactory.getPort(“SOAPPort”);
WSIFMessage input = port.createInputMessage();
input.setPart(“utilFactor”, new WSIFJavaPart(String.class, utilFactor));
WSIFMessage output = port.createOutputMessage();
// Make “setUtilzationFactor” service call
port.executeRequestResponseOperation(“setUtilizationFactor”, input,

output, null);
}

}

 Figure 2. Sample code fragment for a utilization
aspect with web service call

4. Future Work

To facilitate platform-independent development,
interoperability and utilization of our aspect-oriented Web
service approach on diverse platforms, we are exploring
an XML-based AOP tool that can directly manipulate
Web services and support dynamic binding of service
endpoints via runtime configuration. We will continue to
enhance the design by implementing a set of standard and
extensible monitoring and management operations in the
context of Utility Computing. Also, we plan to apply the
approach to a real case of Utility Computing scenario in a
data center to validate its effectiveness.

References
[1] “Utility Computing”, IBM Systems Journal, vol.43, no.1,
2004.
[2] H. Chan and T.C. Chieu, “An Approach to Monitor
Application States for Self-Managing (Autonomic) Systems”,
OOPSLA’03, Anaheim. California, USA, October 2003.
[3] Aspect Programming Software Development. http://aosd.net.
[4] H. Ossher and P. Tarr, "Using Multidimensional Separation
of Concerns to (Re)shape Evolving Software", Communications
of the ACM, vol.44, no. 10, October 2001, pp. 43-50.
[5] Elrad et. al., "Discussing Aspects of AOP", Communications
of ACM, vol. 44, no.10, October 2001, pp. 33-38.
[6] AspectJ. http://aspectJ.org.
[7] HyperJ. http://www.alphaworks.ibm.com/tech/hyperj.
[8] AspectWerkz. http://aspectwerkz.codehaus.org.

