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Abstract 
Pandemic is likely to occur in the near future, and it could cause significant disruptions in 
society.  Avian influenza is such an example as it can potentially evolve to be transmitted from 
human to human, and spread world-wide in a short period of time.  In order to prepare for such 
disaster and to develop global mitigation strategies for society, government as well as 
enterprises, need to understand how fast diseases would spread and also the magnitude of 
infection.  As world has became more global than ever, population, social network and 
transportation would make it much easier for diseases to spread than before.  In this paper, we 
describe a disease spread model that combines compartmental epidemiological model with 
connected network of geographical locations and airports using system dynamics method.  We 
also model how various mitigation actions would affect the spread of disease.  The model is 
intended to be used for firms in studying possible impact of pandemic disease on their business. 
Various scenarios of disease spreads are simulated and presented. 
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1. Introduction 
Influenza pandemic has occurred in every few decades in history (1918, 1957 and 1968) 
(Congressional Budget Office 2005). It caused severe social and economic disruptions. Most 
people still had fresh memory on Severe Acute Respiratory Syndrome (SARS) epidemic 
outbreak in 2002-2003 in several Asian countries and Canada even though it did not develop into 
pandemic. During the last couple years, the world has experienced unprecedented threat from 
avian influenza (H5N1 virus) in poultry. The virus could evolve in such a way that allows for 
efficient human-to-human transmission.  Potential pandemic outbreak in a visible future is quite 
likely. 

Social and economic environments have changed substantially as we have seen from 
1918 pandemic and 2002-2003 SARS epidemics. On one hand, the improved medical condition 
and communication system may reduce transmission of disease, improve awareness and prepare 
society in advance.  On the other hand, increased travels, globally integrated business operations 
increased the chances for disease to propagate much faster then ever as people travel around 
more frequently via ground and air transportation.  In fact, the 2002-2003 SARS, although it had 
just limited number of cases (about 8000 cases worldwide and 774 casualties), resulted in a 
meaningful influence on Asian countries and Canada’s economy activity (Hsu et al. 2006). 
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Governments concern about the pandemic outbreak, and private enterprises should also 
be aware of it because many businesses would be impacted.  Many businesses have their supply 
partners and markets in various parts of the world, and workforce are also shared from different 
geographical regions. The social and economic disruption resulting from pandemic will affect 
business operation in many different ways and will result in substantial loss of revenue for many 
enterprises.  Therefore, it is important for enterprise to understand the scope and pattern of 
pandemic impact on economy and workforce and to develop strategic plan to reduce risk of 
disaster-related disruption of their business activities. 

In order to estimate pandemic impact and understand disease propagation, we develop a 
model of disease propagation and mitigations. Specifically, we extend the single node 
epidemiological model, SEIR (Susceptible, Exposed, Infectious and Recovered) model 
(Kermack et al. 1927, Anderson et al. 1979), into a connected network model. To reflect the 
reality, we construct our parameters based on geographical and demographic data. Population 
density in each region is factored into the formulation of disease transmissibility. Information on 
adjacency of each region with neighboring regions is factored into the disease propagation rate.  
We have also used the information on air travel volume between paired airports for year 2005. 
The information is used to estimate the propagation rate between the regions where airports are 
located.  

Government is interested in studying pandemic outbreak and establishes mitigation 
policies and prepares for the worst scenarios (Congressional Budget Office 2005). In our model, 
user can specify two categories of mitigation policies. For individual region, medical care type of 
mitigation policies can be specified, such as face mask, vaccine, quarantine, Tami flu, hygiene 
etc. For connected networks of regions, government level policies, that can be deployed to 
prevent disease spreading from one region to the other, such as border closing, county closing 
and airport closing, can be specified. 

We develop a System Dynamics (SD) model to capture causal relationship and feedback 
loop.  The SD model includes 6000 regions and 3600 airports worldwide. Government airport 
closing action based on threshold on infectious rate is also modeled through feedback loops 
captured in the model. The model also has capability to retrieve data required for the model such 
as population density, neighboring among regions and air passenger volume between regions 
from database. Simulation capability of SD model is vital for us to examine different scenarios 
and to evaluate different mitigation actions. 

In this paper, we present simulation results for several scenarios with different outbreak 
origin, extent of disease and with mitigation actions. The most of simulation results look 
intuitively correct. The result also provides some very interesting propagation patterns that might 
be not intuitively obvious.  For instance, sometimes, airport closing could lead to a higher peak 
of infectious percentage in some region, or lead to last longer in infectious period in other region. 

This work is done as a part of global pandemic strategy study to assess economic impact 
of the pandemic on the firm (Chen-Rotzo et al. 2007). It includes an end-to-end story about 
infrastructure, workforce, and economic impact of the pandemic, and then supply and demand 
impact on the firm based on the underlying business nature. The model about workforce change 
under the pandemic is described by Lee et al. (2007). 

 The paper is organized as the following. In section 2, we review literatures and previous 
work.  Section 3 introduces the networked SEIR model.  Section 4 demonstrates some simulation 
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results for certain disease spreading scenarios. Section 5 concludes the paper and discusses 
further research direction. 

 

2. Literature Review and Previous Work 
Epidemiological modeling work went back to 1927 when Kermack and McKendrick (1927) 
developed a model, with three groups of population; Susceptible population (S), Infectious 
population (I) and Recovered population (R).  Such a model is long known as the SIR model and 
the mathematical equation is called Kermack-McKendrick equation.  The SIR model has been 
used widely in epidemiology. The system describes the evolution process of disease affecting 
population. In this model, a part of susceptible population (S) becomes infectious population (I) 
as a result of social contacts, and a part of the infectious population (I) becomes recovered the 
recovered population (R).  Note that some in the infectious population might die depending the 
mortality rate. Also the model typically assumes that a part of the recovered population would 
develop permanent immunity. For certain diseases, immunity assumption may not be valid, and 
the recovered person could get infected again. 

The model can be extended to include an additional group of population called Exposed 
population (E) (Anderson et al. 1979). In this version of model, a part of susceptible population 
can become the exposed population first, and then it can become the infectious population. Such 
a model is called SEIR model, and one such model is shown in the middle part of Figure 1. The 
top and bottom parts will be explained later due to our extension. There is a positive feedback 
loop in the SEIR model (indicated by loop sign). Higher Infectious Population leads to higher 
infection rate through social contact. There are many varieties of the SEIR model. For instance, 
Hsu et al. (2006) extended the model to study SARS outbreak from November 2002 to July 2003, 
and added several other population groups such as quarantined and isolated population. They 
examined compound effects from intervention measures, including quarantine, and public 
response.  

 
Figure 1: SEIR Disease Spread Model 
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The models mentioned above are deterministic models and they typically assume 
homogeneity of populations with respect to the four population categories.    There have also 
been stochastic modeling approaches including the work by Germann et al. (2006) who 
introduced a large-scale stochastic agent-based simulation model (EpiCast) to predict US 
nationwide spread of disease and to assess various mitigation strategies.  Ford et al. (2006) also 
created a software system and framework called STEM (Spatial and Temporal Epidemiological 
Model) for modeling multiple populations in geographically distributed locations. This 
framework is capable for putting additional model layer to represent airport connection network 
and specify different characteristic for each region. We develop a light-weighted networked 
model using a SD tool, and utilize available geographical and demographic data.  Mitigation 
strategies are implemented feedback loop, and they can be specified differently by regions. 

3. Networked SEIR Model 
We develop our disease spread model using system dynamics method  (Forrester 1961, Sterman 
2000), and used a modeling tool called Vensim (http://www.vensim.com).  Vensim has a 
capability of breaking each system variable into an array whose elements represent a sub-domain, 
and we separate the world into about 6000 regions using the array to differentiate disease spread 
in various regions of the world. Based on availability of data, the granularity of our model goes 
down to county level in some countries, state/province level for some country and even country 
level in some continents.  We assume that each region has homogeneous population structure. 
However, transmissibility would differ from region to region due to different population density. 
Also spreading of disease from one region to another depends on geographic contact among the 
regions and air transportation infrastructure. We include 3600 airports around the world in our 
model. 

 It is important to understand severity of disease in multiple regions. For single node 
model, the severity of disease is typically measured in terms of infectious population over total 
population, duration of infectiousness and the mortality ratio among infectious population. 
Another factor that indicates the severity of a pandemic is the scope of spread, i.e., how many 
regions, countries, continentals have been affected.  The SARS outbreak in 2002-2003 had a 
relatively high mortality rate (about 10% infectious people died).  However, due to quarantine 
measure deployed during the SARS breakout, the infected population was separated very 
effectively and the scope of the spread was not too high (mostly confined in Asian countries and 
a few rare occurrences in other places, totaling of 29 countries). 

3.1. Networked Model 
In order to model the propagation of pandemic around world, we extend a single node SEIR 
model to a connected network model with multiple nodes. Disease propagates along the 
connections in the network.  In our model, the connections represent people traveling by road or 
by air from a region to another. Transmissibility of disease in a region would be different from 
another as population densities are different from one another.  Figure 2 shows a networked 
model with two nodes.  The rate in which the susceptible population becomes the exposed 
population is affected by infectious population from both regions, when both regions are 
connected through either road or air.   

 In addition to modeling spread of disease, we also model how mitigation actions affect 
the spread of disease.  We include two types of mitigation actions in our model.  One type of 
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mitigation action, shown on the left side of the Figure 2 as Mitigation Action I, could affect 
transmission rate of disease between two regions through the connection, because these 
mitigation actions, such as airport closing, border closing, and port closing, would reduce or 
block movement of people from one region to another.  The other type of mitigation action, 
shown on the right side of the Figure 2 as Mitigation Actions II, would modify the 
transmissibility within a region, since those mitigation actions such as distributing medical 
supplies can be deployed independently for each region.  This model of disease transmissibility 
shown here is applied to all the regions that are connected. 

 
Figure 2: Two nodes SEIR model with mitigation 

Similarly, the concept in the two nodes model applies to the general networked model.   As 
shown in the figure 1, the middle part of the figure represents multiple nodes of SEIR process 
using arraying capability. The coupling among regions is shown in the top part; the link matrix 
(6,000 x 6,000) represents the quantified connection. For instance, if the entry at [i,j] is nonzero, 
it means there exists some movement of people between regions i and j through road and air 
transportation. We decompose the “link matrix” into “Adjacency Link” and “Air Link”.  
Mitigation policy, such as “region closing” and “port closing”, would reduce “Adjacency Link”. 
Mitigation policy, such as “airport closing”, would reduce “Air Link”. Mathematical formulation 
that describes the link will be given in Section 3.3. The bottom part of Figure 1 records the 
modification of “Reproductive Number”, which is related to population density, in each. Also 
medical preventive mitigation actions, like “Facemask” and “Vaccine”, affect “Reproductive 
Number” in that region. Mathematical formulation to quantify transmissibility change will be 
given in Section 3.2. In the bottom part of Figure 1, we also add additional negative feedback 
loop to automate “Airport Closing” mitigation action based on a specified threshold. First, we 
use the “Country to Region Map” to aggregate the infectious population and obtain “Infectious 
Percentage by Country”. Then If the value of “Infectious Percentage by Country” is greater then 
the specified “Threshold”, we close all airport going in and out of that country (the value of “Air 
Link” would be modified for some entries). 

Since the size of array for representing geographical regions is huge, it is impossible to manually 
enter data on population and area of 6,000 regions and 3600 airports into the Vensim model.  We 
first enter the geographic and demographic data into database, and then use programming model 
to retrieve such data and set value for the Vensim model before doing simulation. Similarly, 
SEIR data generated by simulation are retrieved from Vensim output file and are saved into 
database for further analysis. 
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3.2. Mathematical Models of Transmissibility 

In modeling transmissibility within a region, we first formulate how the population density 
affects the transmissibility (through Reproductive Number in model) as  
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where i is a subscript for different region; is the set of all indexes of regions with size of N 
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 To account influence of the second type of mitigation actions (Mitigation Action II), the 
expression for is further changed to be eR
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where j is the index for the second type mitigation set ; is for the effectiveness of the 
mitigation policy for region i for mitigation action j; represents percentage coverage 
(availability) of the mitigation action. represents effectiveness of the mitigation action j 
for region i.  Therefore, the third factor in the RHS of equation 2 counts for compounded effect 
of the second type mitigation actions. Note that, both and  is indexed by i, since 
mitigation actions can be applied to each region differently from the other regions.  
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3.3. Mathematical Model for Network Connections 

To account for the influence from different regions, the infectious rate  (“Infection Rate” in 
Figure 1) is adjusted by introducing a 
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where k is an index for region;  represents infected population in region indexed by k;  
is the susceptible population in region indexed by i;  is the population in region indexed 
by i;  is “Reproductive Number” in region k;  is “Duration of Infectiousness” i.e., the 
time taken for the susceptible population to become the exposed. Without the connection 
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influence (road or air),  would be an identity matrix, which contains value of one for 
diagonal entries, and value of zero for non-diagonal entries.  Let  be the total population of 
regions connected to the region i. Then the probability, , of people traveling from region i 
to region k would be  
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Suppose that daily travel percentage with neighboring regions is ][iβ . Then off-diagonal entries 
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The contribution from air transportation is formulated in the similar way. In the case of 
passenger volume information, , are available between regions i and k for a year,  we use 
the real data to populate the matrix as 
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mesh connection among hub airports, and non-hub airports are connected only to the hubs in the 
same country.  

To count for the first type mitigation actions (Mitigation Type I), the link matrix M is adjusted 
by an additional factor as, 
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where  represents the effectiveness of road or air closing between regions i and k.  The 
value   varies from 0 to 1, with zero representing no closing at all, and one for fully 
effective closing. 
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4. Simulation Scenarios and Results 
We setup simulation scenarios which may aid a firm in understanding the propagation of a 
pandemic disease and impact of mitigation actions.  We simulated a disease starting from a 
region, and some government mitigation policies being applied in certain regions. 

Due to global integrated economy and outsourcing, many companies are interested in the 
worldwide propagation pattern of pandemic disease. In particular, many companies expands 
financial invest in Asian market, such as China and India.  But Asian countries are more 
vulnerable to disease outbreak compared with Europe and the United States. Based on such 
concern, we choose Vietnam as the disease origin country and investigate the spread along 
network connection via ground and air transportation.  

First scenario is for a mild case of pandemic in which the unmodified reproductive number is 
relatively small.  We also assume that all airports are open at all time during the pandemic. 
Figure 3 shows changes of infectious population over time in several regions around world. The 
infectiousness in various countries outside Vietnam occurs in later time depending on the 
proximity of those countries from Vietnam.  The simulation result shows that the magnitude and 
duration of the infectiousness in various countries is different from country to country because of 
difference in population density. For Thailand, we simulate in the county level and aggregate 
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data to get country level. The curve has wider time span due to fact that the peak in different 
regions might not happen at the same time.  
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Figure 3. Scenario 1: Mild Disease Seeded in Vietnam, All Airports Open 

Note that spread along adjacent link and along air link have different patterns. For two regions 
that are far apart from one another, disease propagation from one to the other might take a while 
since it passes through several intermediate regions in sequential pattern.  For two regions that 
are connected with air link, the spread would be very fast and it would spread around the world 
rapidly. It can be seen from Figure 3 that the growth rate in Tokyo is faster then the growth rate 
in Chenzhen, China, since the later mainly be affected by adjacent link.  
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Figure 4. Scenario 2: Mild Case with SEA, Japan and China Airports Closed 

 Second scenario is also for a mild case but with airports in southeastern Asian, Japan and 
China closed. Figure 4 shows the simulation result. Comparing this scenario with the first 
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scenario, the infectiousness curves are very similar in shape and magnitude.  However, the 
mitigation action, airport closing, slows down propagation of the disease from one region to 
another. The magnitude of peak is almost same, but the curve will shift to the right indicating 
slower propagation of the disease. Assuming everything else is same, the disease gets to other 
regions slower because of airport closings, but as long as it gets there, the disease still causes 
infectious population in that region and the magnitude of the infectiousness is almost the same. 

Certain things that we observed from the simulation in above two scenarios are intuitive.  
And they are: 

1. Infectiousness in Chenzhen of China does not change too much as airports are closed 
since traveling between Vietnam and Chenzhen is mainly via ground transportation.  

2. Japan and Taiwan do not have infectiousness anymore after closing these airports 
because air transportation is only mean of transportation between Vietnam and these 
counties.  In fact, there are no land connections from those regions to Vietnam and 
traveling by sea is excluded from the model. 

3. Infectiousness in US and Malaysia occurs in later time because even without air 
transportation, there are still land transportation available between Vietnam and these 
countries.  Therefore, closing of airports delays the propagation of the disease to those 
counties. 

 We notice some interesting simulation results that are rather unexpected for Thailand. 
The profile of infectiousness for Thailand looks quite different from other regions and it 
represents the influence effect of connected network structure.  Its peak is not too high but lasts 
longer. It has a re-bouncing pattern during its decreasing period. The low peak of infectiousness 
in Thailand is not necessarily related to the lower population density there.  The magnitude of 
infectiousness is higher when airports are closed than when they are open.  After examining the 
infectiousness profile in its connected regions, we were able explain the simulation results.  In 
fact, formation of these propagating patterns is related to synchronizing and non-synchronizing 
effects of infectiousness in all the regions that are connected to the region, Thailand.   If the 
peaks of the infectiousness profiles of all the regions that are connected a particular region occur 
at around the same time, the peak of the infectiousness curve of the particular region, Thailand in 
this case, would occur around the same time and higher magnitude as the connected regions.  
However, if the peaks of the infectiousness profile of all the regions that are connected to a 
particular region occur in different times, then the infectious period would last longer. It is also 
possible that the infectiousness curve could have multiple peaks.  After closing some airports, the 
propagation of a disease from one region to other is altered. Some regions are affected through 
ground connection only, and the others are affected by both ground and air.  However, the arrival 
time would change since traveling path is different.  Therefore, depending on how a region is 
connected to surrounding regions, the profile of infectiousness of a particular region with respect 
to surrounding regions would be in three different shapes; (1) infectiousness profile is same as 
the surrounding regions with certain delay, (2) infectiousness profile is synchronized with 
surrounding regions and amplified, (3) infectious profile is not synchronized with surrounding 
regions and is weakened with several peaks.  

Fourth scenario is for a severe case with all airports open. In that case, we choose a 
higher reproductive number, different recovery time, latent period. Figure 5 shows higher 
magnitude of infectious population in the same regions comparing with Figure 3.  
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Figure 5. Scenario 3: Severe Disease Seeded in Vietnam with all Airports Open 

Fifth Scenario is also for a severe case with airports in southeastern Asian, Japan and China 
closed. Figure 6 shows result similar to Figure 4 but with higher infectious ratio. 
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Figure 6. Scenario 4: Severe Case with SEA, Japan and China Airports Closed 

 We also test a mitigation policy of closing airports only when the fraction of infected 
population reaches a certain threshold.  It was found out that it is difficult to simulate the 
conditional closing of airport in SD modeling.  When disease is propagated to some countries 
before closing airport, the local infectious growth rate is mainly determined by social contact 
there. Unless the infected persons previously reached there are quickly identified and 
quarantined, the disease would quickly spread in the community even if airport is closed.   
However, in the SD modeling, if transmissibility inside a region is the smallest possible number 
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e.g., a single person, the transmissibility of another region which is in contact with the region by 
air link can be much smaller number e.g. smaller than a person, which nevertheless would grow 
and infect other people.  This is not realistic situation but since we use a continuous model for 
connection between regions, disease can still spread to another region from a small fraction of a 
person.  It may be more realistic to model the connection by stochastic or discrete modeling 
approach, for which it is possible to model the conditional closing of airport. 

5. Conclusion and Discussion 
We develop a networked disease propagation model that combines compartmental 
epidemiological model with connected network of geographical locations and airports using 
system dynamics method.  The heterogeneity among various regions is taken into account 
through population density. The mathematical model incorporates two types of mitigation 
actions that would affect either transmissibility in individual region or propagating speed of 
disease from one region to the other.  This modeling work is a part of a corporate pandemic 
awareness project (Chen-Ritzo et al. 2007) that is intended to assess business impact of 
pandemic.  The disease propagation model allows the firm to simulate pattern and magnitude of 
disease spread and effectiveness of mitigation actions.  The simulation results of the model have 
been used in determining financial impact of possible pandemic occurrence on the firm.  The 
model can be further turned, for instance, to include heterogeneity with respect to time. In fact, 
transmissibility of a disease can change with time.  It is also possible incorporate infrastructure 
difference of various regions into the model to study how pandemic risk index 
(http://maps.maplecroft.com/downloads/PANDEM/index.pdf) would affect the disease 
propagation. Also the connection between regions can be modeled through stochastic approach. 
Government mitigation policies can be further assessed through simulation.  
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