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Abstract 

In this paper, we describe a study of the consequences of capacity allocation 

mechanisms at a large semiconductor manufacturer. We use a panel data set with 300,000 

observations spanning five years of forecasting and order transactions between a supplier 

and customers at the supplier’s manufacturing facility. Using Mixed Linear Models 

(MLM), we study the mutual interplay between a supplier’s capacity allocation 

mechanism and customers’ demand forecasts and orders. The results of our model 

suggest that the interaction causes two types of distortions: inter-temporal and cross-

sectional. Temporal forecast distortions result in forecast churn (short-term volatility in 

forecasts), undesirable forecast smoothing (a.k.a., batching), and customers exiting the 

facility. Cross-sectional forecast distortion (contagion) is characterized by temporal 

forecast distortions spreading across individual customers’ forecasts, attributable to the 

negative externalities imposed by commonly used capacity allocation policies. We 

present empirical tests for the presence and significance of these distortions in our data 

and note the impact of churn on buffer inventory stocks and contagion’s effect on risk 

pooling efforts.  Our findings have implications for contracting, capacity planning, and 

CPFR initiatives in supply chains. 
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1.  Introduction 
This paper studies a problem endemic to capital-intensive industries, namely, that of 

planning and managing forecasts and orders from customers to a supplier. We seek to 

understand how a supplier’s own capacity allocation policies can distort his view of 

downstream demand in a supply chain. We conduct our analysis using proprietary data 

from the years 1999-2004 from a large semiconductor firm. The issues examined in this 

study namely, forecast evolution, information sharing, contract design and capacity 

allocation policies, have ramifications for a broad spectrum of capital-intensive 

industries, including semiconductors. 

The primary goal of this paper is to investigate the effects of capacity allocation on 

customer behavior, i.e., to determine how customers revise their future forecasts and 

orders when faced with capacity allocation.  By capacity allocation we refer to situations 

where the total order quantity that a supplier receives from his customers exceeds his net 

available capacity and hence the supplier allocates his limited capacity to the customer 

base. We refer the reader to Cachon and Lariviere (1999a) for a review of some 

commonly used allocation policies such as priority-based and proportional contracts. To 

analyze capacity allocation policies, existing literature has focused on the dyadic 

relationship between a supplier and his customers. In this paper, we point to the presence 

of spillover effects of such dyadic interactions across customers.  We will show that these 

spillover effects can, in fact, be quite significant in the presence of uncertain supply 

conditions and undisclosed allocation policies.   

Three features of the semiconductor industry make it an interesting area for empirical 

study of supply-demand coordination and capacity allocation: (i) Semiconductor 

manufacturing is typically build-to-forecast, so that forecast churn and inaccuracies can 

lead both to capacity mis-utilization as well as tensions with customers. (ii) The 

semiconductor  industry is highly capital intensive; current initial fab investment costs 

around $3 billion and (according to S&P Industry Survey, 2005) is increasing in real 

terms as technological progress in wafer fabrication, following Moore’s Law (Intel Press 

Release, 2005), continues unabated.  In light of such large capital investments, sales and 

operating groups within firms face intense pressure to maintain high asset (fab) utilization 
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by attracting and retaining customers with large orders. Given this backdrop, capacity 

allocation and demand distortion can significantly impact profit.  (iii) The semiconductor 

industry offers a wide range of products – from commodities products (e.g., DRAMs) to 

proprietary products (e.g., Intel’s Centrino processor) to customized products that are 

designed for use by one customer on a specific application (e.g., Foundry and ASICs).  

This richness in product suite, together with the other features noted of semiconductor 

manufacturing, makes forecasting a center piece of effective capacity management.     

The paper proceeds as follows. In section 2, we present the academic literature that 

guides our hypotheses, in section 3 we present industry practices and the relevant 

business issues, followed by a description of the data from a manufacturer in section 4. In 

section 5, we describe the forecasting behavior of customers that we observed in the data 

that led us to develop hypotheses about information distortions in the supply chain of this 

supplier in section 6. In section 7, we present an econometric model followed by 

discussion of the results from estimation of this econometric model in section 8.  In 

section 9, we conclude with managerial implications of our findings and suggestions for 

future research.  

 

2. Literature Survey 
In this paper we investigate supply-demand mismatch problems and the relationship 

to these of customers’ forecasting policies and suppliers’ allocation policies. Four areas 

of the literature are directly pertinent to our paper: 1) forecasting models that buyers use 

to make ordering decisions, 2) value of information in forecast updates, 3) suppliers’ 

allocation policies and 4) the interaction between the forecasting and allocation policies. 

Since our paper spans all these four areas, we can only review the literature in brief, 

focusing on foundational and recent papers. 

Hausman (1969) alluded to the quasi-Markovian property of forecasts and the 

emergence of lognormal models (in finance theory) to approximate existing forecasts for 

use in dynamic programming models of production. Heath and Jackson (1994) 

generalized the Hausman model to a martingale Model of Forecast Evolution (MMFE) 

that can be used in a rolling horizon multi-period format. For our paper, we adopt the 
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MMFE convention for modeling forecasts and forecast updates. The Heath and Jackson 

model has since been adopted in prescriptive production planning models (Graves et al., 

1998; Toktay and Wein, 2000). Cattani and Hausman (2000) discuss why forecast 

updates may not reflect the true underlying demand distribution.  Miyaoka and Hausman 

(2004) analyze the design of inventory policies at both upstream and downstream supply 

chain partners to minimize bullwhip effects.  Our work borrows from the modeling 

framework of Heath and Jackson (1994), but it differs from the above literature in its 

intent, i.e., we take an empirical approach to investigate information distortions rather 

than seeking prescriptive solutions to known forms of information distortion (such as the 

bullwhip effect).  

In our paper, we use time series models in conjunction with MMFE notation to 

understand the value of private information signals that a supplier conveys to the buyer 

through his capacity allocation policy. Lee, So and Tang (2000) quantify the value of 

information sharing in a two-stage supply chain for a single-period lagged (i.e., AR(1)) 

demand model with non-negative autocorrelation coefficient. Gaur et al. (2005) extend 

the above model to a general ARMA(p,q) setting and show that the value of information 

sharing depends on the time series structure of the underlying demand. Our work 

contributes to this stream of literature by modeling and estimating the effect that the 

supplier’s allocation policy (supply information) has on the statistical structure and 

magnitude of demand forecasts over time.  

The foundational papers in the area of capacity allocation are Cachon and Lariviere 

(1999a,b, 2001), which study incentive contracts to elicit truthful forecasts from 

downstream retailers (customers) who may inflate their forecasts in anticipation of future 

capacity allocation. They consider a setting in which a single supplier faces demands for 

its scarce capacity from multiple retailers/customers, where the latter face deterministic 

demands unknown to the supplier.  When there is excess demand, the supplier allocates 

(rations) capacity.  Cachon and Lariviere consider a broad class of allocation policies and 

demonstrate how each is prone to manipulation by downstream customers of 

inventory/capacity.  They also show that there exists a class of mechanisms that induce 

truthful revelation of customer demands, but that do not maximize total retailer profits. 

The key idea that we seek to build on is that allocation policies can mask a customer’s 
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true demand. By extending the Cachon and Lariviere framework to a stochastic demand 

setting, we retain Cachon and Lariviere’s key intuition on the incentive effects of 

allocation policies on customer forecasts.  We obtain additional insights on the effects of 

individual forecast biases on aggregate, i.e. facility-level, demand from a group of 

customers facing possible capacity constraints.    

There are several other notable contributions to the interactions between forecasting 

and capacity allocation. Kaminsky and Swaminathan (2001) develop a forecast 

refinement method to plan for production in a capacitated facility. Heching and King 

(2005) discuss supplier’s inventory management policies for minimizing risks arising 

from long lead-times, a bane of the semiconductor industry.   At the interface of 

customers’ forecasting processes and supplier’s allocation policies, there arises the 

crucial question, how can better downstream forecast and information sharing practices 

improve upstream capacity planning? Aviv (2001, 2002) discusses the merits of 

collaborative forecasting practices under different demand conditions. Ferguson (2001), 

and Ferguson et al. (2003) study the customer’s problem of simultaneously managing 

demand forecasts and making commitments to the supplier. This framework of managing 

both supply and demand uncertainty is central to the ideas of our paper as well. Gavirneni 

et al. (1999) characterize the value of information sharing when capacity is costly and 

limited, while Milner and Kouvelis (2002) suggest that in managing both demand and 

supply uncertainty, there exist complementary benefits to improving demand forecasts 

and improving supplier flexibility. Plambeck and Taylor (2003) study the role of repeated 

buyer-supplier interactions in a strategic setting that has implications for the dynamic 

evolution of capacity planning models. We note that this stream of literature places 

capacity management as the center piece of attention in the forecasting-capacity 

interaction.  In the present paper,we investigate the endogeneity between capacity 

allocation policies and forecast accuracy. 

Related to the literature on supply allocation is that of bullwhip effect, attributed to 

information distortions in a supply chain (Lee, Padmanabhan and Whang, 1997).  

Empirical evidence in the OM literature concerning the nature of buyer-supplier 

interactions is of relatively recent vintage (Cachon et al., 2005; Ren et al., 2004). Cachon 

et al. (2005) investigate the prevalence of the bullwhip effect across industries and 
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echelons of the supply chain and concludes that while it is evident at the wholesaler level, 

it is not evident at other echelons of the supply chain (and particularly not at the 

manufacturer level).  In related experimental work, Croson and Donohue (2006) study the 

causes of the bullwhip effect in a controlled laboratory setting. Terwiesch et al. (2004) 

investigate forecast sharing between buyers and suppliers in the semiconductor 

equipment industry. They show how the past actions of a buyer affect the future actions 

of the supplier. A key differentiator between Terwiesch et al. (2004) and our paper is that 

we focus attention on the negative externalities that arise out of individually rational 

actions across buyers using a common supplier while their work is centered on the dyadic 

interaction between a buyer and supplier.  Our work on negative externalities and group 

behavior is inspired by Schelling (1978) in his classic treatise on “Micromotives and 

Macrobehavior” and by the early work of Forrester (1958) on interaction effects in 

dynamic industrial environments.  

To summarize, we study the effect of supplier’s allocation policies on buyers’ 

forecast (distortions). We borrow the notation of the MMFE model pioneered by Heath 

and Jackson (1994) to detect information distortions (such as churn, contagion and 

batching, all defined more precisely below, and the well-known bullwhip effect), that are 

group-level effects that arise out of supplier and buyer decisions and interactions in a 

capacitated (semiconductor) supply chain. 

 

3.  Context and Industry Practice  
Semiconductor manufacturing complexity and leadtime are highly dependent on the 

degree of product customization. The manufacturing process begins with a raw wafer, 

ordinarily purchased from a third-party.  Then, chemicals are applied to and removed 

from the wafer to create specific patterns. The manufacturing process may involve 

multiple iterations of this etching and patterning, resulting in multiple layers of the wafer. 

Total cycle time for wafer fabrication is typically 40-70 days; however, this process can 

take longer for more complicated products.  Following wafer fabrication, the next step in 

semiconductor manufacturing is packaging.  The wafer is cut into individual integrated 

circuits (die), the die are attached to the packaging, circuits are connected to the outside 
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of the packaging, and final packaging steps are completed.  Packaging typically takes 14 

days.  Various testing takes place throughout the manufacturing cycle and adds from 1-4 

days to the cycle time.     

Customized semiconductor devices typically have significant business integration 

costs associated with establishing a customer-supplier relationship.  These include, for 

example, the costs of prototyping, developing masks (specification of the circuit design 

through layered masks), and testing and validation procedures.  Thus, a customer often 

sources a semiconductor design from a single or very few suppliers. Downstream, there 

are additional steps in logistics and assembling of the products using semiconductors, 

from automobiles to consumer electronics.  In this paper, we focus on the supplier and its 

immediate customers.  The number of customers that could make demands over a two-

three year period at a large semiconductor manufacturer (such as the one we study here) 

would be on the order of hundreds, with major buyers comprising only 10-20% of the 

total number of customers but accounting for 70-80 % of total volume.  

 

3.1. Forecasting Process 

In this section we describe the forecasting process (see Figure 1 for graphical 

illustration).  The majority of the procurement contracts require the customer to provide 

the supplier with rolling horizon demand forecasts prior to placing actual orders.  The 

forecast horizon begins twelve months prior to the request date, where the product 

request date is the date that the customer wishes to receive the product.  The supplier uses 

the longer horizon demand forecasts to help with capacity planning; in some cases of 

anticipated capacity constraints, the supplier may contract for outside sources of capacity.  

Thus, accurate forecasts are advantageous both to the supplier and to the customer; the 

supplier can better coordinate demand and capacity (resulting in improved profitability) 

and the customer can enjoy better demand fulfillment.  Contract terms also often limit the 

allowable percentage modification of month-over-month demand forecasts (see Tsay and 

Lovejoy, 1999); within the production leadtime contracts often contain terms specifying 

the conditions under which customers may change the magnitude and delivery dates of 

their orders.  The purpose of contracting terms is to assure an orderly commitment of 
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capacity to customers.  From the supplier’s perspective, such terms are intended to 

protect the supplier against the risk of customers radically changing or canceling demand 

quantities, especially in the case of custom products, once production has begun.  In 

practice, however, such contract terms may be modified due to the competitive business 

environment in the semiconductor industry.  Nonetheless, customers are encouraged by a 

variety of means, both formal and informal, to abide by the terms of contracts and the 

forecasting constraints imposed by these.  However, not all customer orders are preceded 

by forecasts.  Depending on the nature of the product, some customer orders arrive in a 

“spot-market” like fashion, and the corresponding orders may be served without any prior 

demand forecasts.   

Following the sequence of demand forecasts the customer places a firm order.  A firm 

order consists of an order by a given customer for a given part number (p/n) for a 

specified request quantity, denoted by Qr, to be delivered on a given request date.  The 

supplier may not be able to meet all demands as they ultimately materialize, and the 

supplier’s sales and operations planning (S&OP) interface then makes the necessary 

adjustments, allocating capacity to the various customers and orders. The supplier 

responds to the request quantities with a quantity Qc, called the “commit quantity”.  We 

note that when the supplier responds to the customer, he is making decisions in the face 

of uncertainty.  Some demand is known with certainty (firm orders that the supplier has 

already received from customers) while some firm orders have not yet been received by 

the supplier though the supplier anticipates receiving them. Both customer and supplier 

face additional uncertainties due to the uncertainty of how many good die will yield from 

each wafer.   

Our interests in this paper are to understand the mutual interplay between the 

customers’ behavior in the face of capacity allocation and the supplier’s reaction to 

customers’ forecast updating process. Our analysis starts from a point where customers 

have already established a working relationship with the supplier and are otherwise 

qualified to make understandable demands on the capacity of the facility.  These might 

range from simple procedures for commodity products, which could be made using off-

the-shelf masks and procedures, to highly complex pre-testing and prototyping for 

customized products for which the manufacturer is the sole source due to the large set-up 
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costs for prototyping.   

Consider now the structure of forecasting (illustrated in Figure 2).  There are two 

types of customers: those who forecast prior to making an order and those who place 

orders without prior forecasts.  The forecasts occur in a 12-month rolling horizon format, 

i.e., the supplier begins to record forecasts twelve months ahead of the request date.   

Following the sequence of forecasts beginning up to 12 months in advance of actual order 

release date, the customer requests a quantity Qr of a specific part number for order 

release and delivery after the elapsed in-plant manufacturing time.  If the customer 

arrives in "spot-market like" fashion, he places a request Qr, with no associated forecasts. 

The supplier responds with the commit quantity Qc which is delivered to the customer on 

his requested date (or on a mutually agreed upon “commit date”).  Customers who 

receive less than their request quantity (Qr) may respond in various ways illustrated in 

Figure 2, from backordering to batching of future orders to seeking another supplier (i.e., 

exiting the facility).    

 

4. Data Description  
We analyze a proprietary panel data set with two cross-sectional components 

(customer and part number) and two longitudinal components (a series of date-specific 

quantity requests and the corresponding -- up to 12-month -- series of forecasts for each 

such quantity request).   We assume that each customer’s contract is devoid of any 

significant temporal variations over the 2000-2004 timeframe.  This assumption is 

reasonable, as contracts in semiconductor manufacturing are typically long-term in 

nature.  The contents of the database are summarized in Table 1.  The following is a 

description of the variables contained in Table 1: 

CUST = unique Customer ID.  CUST represents a customer who either reported a 

forecast or placed an order with the supplier; the data set contains 2,565 unique CUST 

values.    

P/N = unique part number for which the customer is reporting a demand forecast or 

placing an order. Our data set contains 11,868 unique P/N’s.   We note that products that 

undergo an engineering change or new release are typically assigned a new P/N.  Thus, 
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some of these 11,868 unique P/N’s may represent similar products.  The data set 

contained 28,800 unique CUST-P/N combinations suggesting that an average customer 

dealt in approximately 11 unique part numbers.  

SPOT = binary variable indicating whether a unit of the cross-section (CUST-P/N) 

did (SPOT=0) or did not (SPOT=1) provide demand forecasts.  

SYSEXIT= binary variable associated with each CUST-P/N pair.  SYSEXIT=1 

indicates that the CUST-P/N left the supplier with no future forecasts or orders.  In this 

data set, 20,523 of the CUST-P/N combinations (approximately 70%) have SYSEXIT=1.  

This annual turnover rate is approximately 75% at both the CUST level and P/N level.  

This phenomenon is not necessarily indicative of customer dissatisfaction. Alternative 

explanations include, for example: (i) 30-35% of P/N’s experience turnover due to 

engineering changes. Each time a product undergoes an engineering change, it is assigned 

a new P/N (thereby eliminating the original customer-p/n combination); (ii) Products 

under prototype are assigned a P/N.  When they become mature products, they are 

assigned a new P/N; (iii) Before placing the final order, a customer may transfer the order 

to a subcontractor, thereby changing the customer on the order (and eliminating the 

original CUST-P/N pair); (iv) Natural end of a product lifecycle.  Products such as 

mobile phones have an average 12-month lifespan.  Then, the part number is eliminated.  

 START = first month that demand forecasts (for a given CUST–P/N pair) were 

received relative to the request date (for the given pair).  In a 12-month forecasting 

horizon, START can take on values in the range [-12, 0] where START=-12 represents a 

demand forecast for demand 12 months prior to the request date. Similarly, START =3 

represents a demand forecast for demand three months prior to the request date, etc.  

FINISH = month that the final forecast (for a given CUST–P/N pair) was received 

relative to the request date.  FINISH can take on values in the range [-12, 0].  We observe 

in the data that the typical START value is -7 and the typical FINISH value is -2, 

however, the standard deviations around these values are significant (approximately 3-4 

months) suggesting heterogeneous forecast practices by customers and diversified 

demand portfolio.  

Qft-k,t = demand forecast quantity reported in period t-k for demand in period t, i.e., 

this is the lead-time k forecast.  We observe a pattern in the forecast data where for a 
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random CUST-P/N pair and for any given value of t, the values of Qft-k,t tend to increase 

as k increases from k=-12 to k=-6 and then gradually decrease again.  Also, note that the 

standard deviation of CUST-P/N forecast in each period is significantly higher compared 

to the average forecast a random customer-P/N might make, suggesting the presence of a 

wide range in the magnitude of CUST-P/N forecasts. The final forecast, Qft,t is denoted 

also as the customer request (Qr).  The supplier response to this customer request Qr is 

the supplier’s commit quantity (Qc).  

 

5. Data Transformation and Variable Description 
In this section we describe the creation of new variables from the raw data in Table 1. In 

subsequent sections, we suppress the subscripts i and j (which denote customer and P/N, 

respectively) unless the context requires such specification. We adopt the same 

terminology used by Heath and Jackson (1994).  To facilitate statistical analysis, we 

aggregated all monthly data into quarterly data after performing extensive data quality 

procedures.     

5.1. Forecast Series and vectors: 

At the beginning of each time period, customers forecast their anticipated demand for the 

upcoming H periods, We represent these forecasts using a “forecast vector” at time t of 

length H:{ }Ht,ft1t,ftt,ft Q,...,Q,Q ++
T where, as described in Section 4, ,f s tQ  denotes a 

demand forecast made in period s for anticipated demand in period t ≥ s (and { } denotes 

the transpose of the vector).   

T

Consider the set of four forecast vectors with length H=5, depicted in Figure 3a.  The 

first vector is populated at the beginning of period 1, the second is populated at the 

beginning of period 2, …, and the fifth at the beginning of period 5. Since the second 

forecast vector is populated at the beginning of period 2, its first element is , namely, 

the forecast made at the beginning of period 2 for delivery in period 2.  Thus, = 

Q

2,2fQ

2,2fQ

r(2), i.e., the forecast made at t = 2 for a delivery in 2 is the actual request made at t = 2.  

For the purpose of recognizing requests as final forecasts (e.g., following H-1 forecasts in 
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the preceding H-1 periods), the horizon is technically considered as an H-period horizon 

(although it only covers H-1 periods of calendar time). In our analysis, we will be 

concerned both with horizons of H = 5 and H = 13, corresponding to dividing the 12-

month period preceding final orders into quarterly or monthly periods.  Notice that as one 

moves up and to the right along the minor diagonals in the matrix in Figure 3, the second 

subscript remains constant and the first subscript increases. This represents forecasts 

made in increasing periods for a demand in a given future period. We refer to this 

sequence of H forecasts { }t,ftt,2Hftt,1Hft Q,...,Q,Q +−+−  made in increasing periods for 

demand in a given time period t as a “forecast series”.    

5.2. Churn:  

Churn is the change in the forecast values between any two forecasts for a given final 

period demand in a forecast series.  Formally, let { }t,ftt,2Hftt,1Hft Q,...,Q,Q +−+−  be a 

forecast series of length H for an order to be delivered in period t; then churn is defined, 

for s < t and s = t - H+1, …, t -1, as:  

tsf

tsftsf
ts Q

QQ
C

,

,,1
,

−
= + .       (1)  

Churn, as defined above, represents the percentage change in forecasts.  It is synonymous 

with the multiplicative model of forecast evolution used by Heath and Jackson (1994).  

Note from the above definition that churn can be either positive or negative.   

In parallel to our definitions of forecast series, the corresponding churn series is 

defined as the sequence of churn quantities along the minor diagonal and a churn vector 

as the corresponding vertical sequence.  For example, in Figure 3a forecast vector of 

length five at time t=2 is the second column containing the elements 

.  Similarly, the forecast series of length five at t = 1 

is

{ T
26f25f24f23f22f Q,Q,Q,Q,Q }

{ }5545352515 ,,,, fffff QQQQQ .  For forecast series and vectors of length H, churn series 

and vectors will be of length H-1.      
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5.2.1. Positive and Negative Churn:  

Measurement of churn is important to the supplier, as it is this variability and uncertainty 

in customer forecasts that is the greatest contributor to the supplier’s risk.  We 

decompose churn into its positive and negative components, 

defining .  (See Figure 3c.) Positive churn 

represents the month-over-month increase in forecasted demand for a given month t and a 

negative churn captures the month-over-month decrease in forecasted demand for a given 

month t.  We perform separate analysis on these two portions of churn because analysis 

of the economics of the semiconductor industry as well as discussions with management 

at the manufacturing facility revealed that positive and negative churn can have different 

impacts on the supply chain.  As an example, the 12-component churn vector C = {0, 0.1, 

1, -0.55, 0.2, -0.2, -0.2, 0.3, 0.4, -0.5, -0.1, -0.1} is decomposed into positive churn (C

]0,C[MinC],0,C[MaxC t,st,st,ct,s == −+

+) 

and negative churn (C-) as follows:  C+ ={0, 0.1, 1, 0, 0.2, 0, 0, 0.3, 0.4, 0, 0, 0}  and C- 

={0, 0, 0, -0.55,  0, -0.2, -0.2, 0, 0, -0.5, -0.1, -0.1}.  Notice that C = C+ + C-.   

5.2.2. Quarterly churn:  

In our dataset, the generic structure of a typical data element had twelve monthly 

forecasts leading to an order, i.e., thirteen entries in all.  This gave rise to a forecast 

vector of length thirteen which gave rise to twelve month churn vectors.  We note that 

some of the forecast data was missing; when it is, we simply assume that the missing 

forecast is equal to the last forecast made prior to the missing forecast. If the first forecast 

made occurs after t -12 (i.e., START for a given CUST-P/N pair is greater than -12), then 

the missing forecasts from t – 12 until t - START are set equal to 0. However, sales and 

operations planning departments in the semiconductor industry often plan based on 

quarterly aggregate forecasts and churn quantities. Therefore, we aggregated all data to 

the quarterly level. For instance, the positive vector C+={0,0.1, 1, 0, 0.2, 0, 0, 0.3, 0.4, 0, 

0, 0} was converted to {1.1, 0.2, 0.7, 0} and the negative vector C- ={0, 0, 0, -0.55,  0, -

0.2, -0.2, 0, 0, -0.5, -0.1, -0.1} was transformed to {0,-.75, -0.2, -0.7}.  

From here on, since we deal only with quarterly churn series and vectors, we use a 

terminology that is easier to interpret. We obtain quarterly churn by first computing 

monthly churn for the 12-month period preceding a given order.  This leads, per the 
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above discussion, to churn vectors and churn series, each of length 12.  From these we 

compute from these the positive and negative monthly churn vectors, also of length 12.  

We then aggregate these positive and negative churn vectors and series into 4 quarterly 

(positive and negative) churn vectors and series by summing the respective monthly 

periods in each quarter.  This leads to the following definitions: 

  

Cv-qk(t) = Aggregate negative churn at month t for quarter k = 1, 2, 3, 4 in the future  

Cv+qk(t) = Aggregate positive churn at month t for quarter k = 1, 2, 3, 4 in the future   

where 

Cv-qk(t) = C-
t,t+3(k-1)+1  +  C-

t, t+3(k-1)+2 +  C-
t, t+3(k-1)+3 , k = 1, 2, 3, 4  

Cv+qk(t) = C+
t, t+3(k-1)+1  +  C+

t, t+3(k-1)+2 +  C+
t, t+3(k-1)+3  , k = 1, 2, 3, 4  

 

Similarly, quarterly churn series are defined as quarterly aggregates of positive and 

negative churns for month t, as made k quarters in advance of month t.  More specifically, 

we define:  

 

Cs-qk(t) = Aggregate negative churn for month t as determined by forecasts made in 

quarter 5-k, k = 1, 2, 3, 4 preceding t. 

Cs+qk(t) = Aggregate positive churn for month t as determined by forecasts made in 

quarter 5-k, k = 1, 2, 3, 4 preceding t. 

where 

Cs-qk(t)  = C-
t-3(5-k),t    +  C-

t-3(5-k)+1,t  +  C-
t-3(5-k)+2,t  , k =1, 2, 3, 4  

Cs+qk(t) = C+
 t-3(5-k),t  + C+

 t-3(5-k)+1,t +  C+
 t-3(5-k)+2,t  , k =1, 2, 3, 4  

 

Thus, Cv-q1(t), Cs+q3(t) denote aggregate negative churn at time t in the 1st quarter and 

aggregate positive churn for time t in the 3rd quarter, respectively.  Cv-q1(t) is the churn at 

time t for {t+1, t+2, t+3} and Cs+q3(t) is the churn for time t at {t-6, t-5, t-4}.  Moreover, 

note that the churn quantities are aggregate quantities for the quarter, but the index t is 

denominated in months (namely, the monthly order quantity to which the underlying 

quarterly aggregates are targeted). To emphasize the difference between series and 

vectors, note that a churn series is a forecast update for time t that occurs along the minor 
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diagonal of a churn matrix, (see Figure 3) while a churn vector component is a forecast 

update that occurs at time t along the vertical column of a churn matrix.   

To summarize, the raw forecast data denoting 13 element rolling monthly forecast 

vectors (of which the final component is the actual order) were transformed into 

corresponding 12-month churn factors, which were transformed into their positive and 

negative parts.  These latter were further transformed to positive and negative 4-element 

quarterly churn vectors by aggregating positive and negative churn within each of the 

respective quarters.   

 

5.3.  Supply Allocation and Rationing:  

Customer i requests quantity Qrt of P/N j at time t to be delivered on a specific delivery 

date.  The supplier responds with a commit quantity Qct.  It is not always the case that Qrt 

= Qct. For example, if the supplier is facing constrained capacity he may be unable to 

meet all customer demand, in which case the supplier’s commit quantity may be less than 

the customer’s request quantity.   

We now define two related variables: allocation (alloc) and supplier allocation 

(Falloc). Allocation is defined at the customer level.  It represents the fraction of the 

customer’s request that the supplier commits to deliver.  Falloct is defined at the 

aggregate supplier level.  It represents the fraction of all orders for time period t that 

receive an allocation strictly less than one.   

More specifically, for customer i and P/N j, allocation for a request made at time t is 

the fraction of the customer’s request that the supplier commits to deliver.  Allocation is 

given by:  

cijt
ijt

rijt

Q
alloc

Q
= . 

If the supplier commits to deliver to the customer everything that the customer 

requests, then the customer receives a full allocation and =1. If the supplier is 

unable to meet the customer’s full request quantity, then allocation will be less than 1. In 

some cases it is possible that the allocation will exceed 1.  For example, the supplier may 

ijtalloc
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wish to smooth production and will encourage the customer to receive product earlier 

than the customer had planned and requested.   

Supplier level allocation in period t is defined as the fraction of all orders in period t 

that do not receive a full allocation.   

{ }
{ }
( , ) | 1

( , ) | 0

ijt

t

rijt

i j alloc
Falloc

i j Q

<
=

≠
. 

6. Episodic Forecasting Behavior and Hypotheses 
Development  

Forecasting Behavior   

In this section, we describe a phenomenological observation about the forecasting 

behavior of the customer pool as observed by the supplier’s manufacturing facility. 

Figure 4a shows the time series plot of the quarterly churn series; Cs-q1(t), Cs-q2(t), Cs-

q3(t) and Cs-q4(t). We observe that the four peaks in Figure 4a are equally spaced by 3 

months (in other words a “quarter”). Hence, if we displaced the 1st quarter churn by 9 

months, the second quarter churn by 6 months and the 3rd quarter churn by 3 months, all 

the peaks graphically align themselves in a straight vertical line. Not surprisingly, the 

lagging process as described above transforms the churn series to churn vectors. To avoid 

visual misperceptions, we show the corresponding correlation matrix (i.e., quarterly 

churn vector components) in Table 2b. Table 2a shows the correlation matrix of the four 

quarterly churn series components.  Comparing the correlations between the churn 

vectors (Table 2b) with the corresponding entries in the churn series (Table 2a), we see 

that the entries in Table 2b are significantly higher. For instance, the correlation between 

Cs-q4(t) and Cs-q2(t) is         -0.10 while the correlation between Cv-q4(t) and Cv-q2(t) is 

0.65.  

Figure 4b and Table 2b taken together suggest that the four components of the 

quarterly churn vector are modified almost equally, i.e., the information incorporated in 

each of the 12 monthly forecast updates is identical. This behavior, although non-intuitive 

at first, is consistent with the predictions of the MMFE model (see Heath and Jackson, 

1994). The high correlation between the components of the churn vector at time t, both 
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for positive and negative churn, suggests that customers observe episodes of supply and 

demand shocks that affect their perception of all future capacity requirements. We refer 

to this forecast updating process as “episodic forecast updates”.  

For the remainder of the paper, we investigate the underlying mechanics of the supply 

and demand process that produce this correlation matrix (in Table 2b). In practice, 

speaking to managers, forecast updates are not necessarily reflective of incremental 

information about customers’ demand. The forecasts are, in fact, an outcome of a 

decision model used by customers; a decision model that seeks to minimize the cost of 

supply and demand mismatch for a given finite horizon (12 months, in most cases).  

We take a closer look at the notion of perceived mismatch between supply and 

demand in rolling horizons (12 months to be precise); a multi-period setting, as causing 

the episodic behavior. The following section describes in detail the development of 

hypotheses deriving from the above observations.  

 

Hypotheses Development 

Customers receive common signals about demand conditions, supply conditions, and 

macroeconomic forecasts. They also receive a private signal via the supplier’s allocation 

policy. In our data, the supplier did not disclose his allocation policy, but only revealed 

the commit quantities once customer requests were made. We therefore use the allocation 

variables ( ) as a proxy for the customer’s private supply updates. The unintended 

consequences of the allocation policy are reflected broadly in the customer orders and 

forecast churn. In the spirit of Schelling (1978), we hypothesize about both the 

macrobehavior, i.e., orders at the level of the supplier’s manufacturing facility  (churn), 

and the possible distribution of micromotives, i.e., the miasma of CUST-P/N level 

behaviors, that could in aggregate lead to the macrobehavior we observe in the data 

(Figure 4a, Figure 4b). 

ijtalloc

 

Orders: We conjectured initially that, at the supplier level, all unfulfilled requests from 

customers would reappear as inflated requests in future periods. Thus, we expected 

customers would be backlogged when they were allocated less than 100% of their order. 

However, the data indicates that some unfilled customer requests are backlogged while 
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others disappear from the system altogether. The backlogging may be performed by the 

customer or by the supplier when he sees that supply is constrained.  Alternative 

explanations for unfilled demand that disappears from the system could be that some 

customers leave the supplier and go to a competitor or that the supplier may decide to 

drive part numbers out of the system because they are too costly to produce relative to 

their contribution to the bottom line.   

At the micro level, each CUST-P/N combination is treated differently by the supplier. 

Customers may be assigned different priority in allocation, due to such factors as the size 

of the customer, the nature of the customer’s relationship with the supplier, or due to 

other considerations.  Customers typically order multiple P/Ns from the supplier. We 

anticipated that the supplier sets allocation priorities based on relationships with 

customers and that the individual part numbers, to the extent that the part numbers face 

similar capacity constraints, do not affect this allocation priority.   (Clearly, if specific 

part numbers face particular capacity constraints for particular resources, then some 

(unconstrained) part numbers will not be affected while others will.  In short, the part 

number may play a role in the supplier allocation priority decisions.) 

 

Churn: Following our observation of the episodic behavior (in section 4), it follows that 

all components of a churn vector would respond to episodes of allocation. In the 

remaining part of this section, churn refers to the entire quarterly churn vector (four 

components), unless otherwise specified. 

 

-Positive Churn: While backlogs may manifest themselves as increased orders in future 

periods, customers may also over-react to rationing and inflate future orders well beyond 

the direct backlogged orders (see also Watson and Zheng, (2005)).  Given our empirical 

observation of episodic behavior, we conjecture that churn would increase at the supplier 

level following a period of heavy rationing. Even though customers’ underlying forecasts 

may not be correlated, their forecast updates may become correlated because they share a 

common rationing episode. Industry analysts commented to the authors2 that episodes of 

                                                 
2  Thus, Semico Research Corporation uses several methods of forecasting tight capacity.  Some of these 
are based directly on major customer demand forecasts for specific semiconductor demand segments. 
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capacity allocation are often signaled by a group of high priority customers increasing 

their forecasts.  A possible scenario is that the supplier reacts by allocating a larger share 

of the capacity to this high priority group and consequently allocates a smaller share of 

the production capacity to the lower priority customers. When faced with this allocation 

episode, the low priority customers could then over-react and increase all their forecasts 

in the belief that they would get their cumulative demand satisfied at some point within 

the next 12 months.  Building on this scenario where a common rationing episode is 

initiated by demand spikes of the high priority customers but the shocks spill over to the 

low priority customers’ forecasts, we refer to such spillover effects as contagion. 

Contagion would manifest itself as a correlation between seemingly uncorrelated 

“demand” forecasts driven by episodes of capacity allocation.3 Contagion can be detected 

by observing correlations between forecast updates (positive churn) ex-post of an 

allocation episode.  An unfortunate consequence of contagion, when forecast updates 

reflect positive correlation across CUST-P/N combinations, is that the supplier is unable 

to benefit from risk pooling of customer orders.  We will examine the existence and 

magnitude of contagion at the CUST-P/N (micro) level, with particular attention paid to 

whether the contagion is evident at the P/N level, the customer level, or both.  

 

-Negative Churn: At the level of the supplier’s manufacturing facility, one anticipates 

temporal shifts in forecasts, i.e., production smoothing following an allocation episode. 

Production smoothing is sometimes initiated by the supplier in coordination with 

customers. Discussions with industry managers suggested that end-of-quarter sales 

loading effects were very much in evidence in the industry.  These effects, if present, 

would lead to negative, respectively positive, churn at the beginning, respectively end, of 

a quarter in meeting or exceeding financial targets. The supplier studied did use quarterly 

targets during the study period, to track financial and sales performance.  Hence, we 

expected to see these end-of-quarter effects. Negative churn could also increase when 

customers leave the supplier’s manufacturing facility, with all their existing forecasts 

then terminated. 

                                                 
3 The phenomenon of forecast inflation in anticipation of allocation in a single-period setting is discussed 
by Cachon and Lariviere (2001). 

 19



 

7. Econometric Models 
In this section, we lay out the econometric models to test our hypotheses about customer 

orders and churn and contagion. As outlined in the previous section, episodic behavior 

manifests itself in the form of customers’ orders, positive churn and negative churn; at 

both at the level of the supplier’s manufacturing facility (macrobehavior) and at the 

CUST-P/N level (microscopic).  

7.1. Macrobehavior Models 
We begin our analysis by considering the impacts of allocation policies on aggregate 

forecasts at the supplier’s manufacturing facility level.  The observed churn effects, if 

any, associated with allocation may be thought of as the macrobehavioral outcomes of 

individual customer decisions as these interact with the supplier’s capacity and demand 

management processes.   

  

Macrobehavior Orders:  

   (2) t1t1
j,i

1rijt0
j,i

rijt FallocQ2M1M~Q εαα ++
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−∑∑

The LHS of (2) represents total requests to the supplier’s manufacturing  facility at 

time t. We expect it to be affected positively by the previous period’s aggregate requests 

and show a positive reaction to the rationing at t-1; if more customers are rationed then 

aggregate customer requests in the next period is larger. M1 and M2 are monthly 

dummies to capture the beginning and end-of-quarter effects. We estimate the above 

equation using a simple LSDV (least squares dummy variable) estimator. 

 

Macrobehavior of positive churn  

The positive churn vectors exhibited episodic behavior. (See Figure 3b, Table 2b.) 

Here, we quantify the effect of this positive churn at the supplier manufacturing facility 

level, by correlating against its first-order autoregressive (AR(1)) component and the 

strength of rationing at t-1.  
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       (3) 0 1 1 1
, ,

~ 1 2 , 1,2,3,4ijkt k ijkt k t t
i j i j

Cv q M M Cv q Falloc kχ χ ε+ +
− −

⎛ ⎞ ⎛ ⎞
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Consistent with the idea that all the churn components are affected by the common 

rationing variable, we estimate equations (2) and (3) independently of each other. 

Positive and statistically significant coefficients on 11χ , 12χ , 13χ  and 14χ would confirm 

our contagion hypothesis, i.e., rationing episodes cause a large scale cross sectional 

forecast distortion through positive churn; a sign that forecast churn across customers 

would increase in tandem following the rationing episode. M1 and M2 are monthly 

dummies to capture the beginning and end of quarter effects. We use a LSDV estimator 

to estimate each of the equations. 

 

Macrobehavior of negative churn 

Similar to the positive churn formulation, we use four independent linear equations to 

model the macro behavior at the level of the supplier’s manufacturing facility vis-à-vis 

negative churn. However, we also include an additional equation that models the process 

of customers exiting the facility following periods of rationing.  

       (4) 0 1 1 1
, ,

~ 1 2 , 1,2,3,4ijkt k ijkt k t t
i j i j

Cv q M M Cv q Falloc kη η ε− −
− −

⎛ ⎞ ⎛ ⎞
+ + + + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑

     0 1 1
, ,

~ 1 2ijt ijt t t
i j i j

sysexit M M sysexit Falloc 1ψ ψ−

⎛ ⎞ ⎛ ⎞
+ + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ε−   (5) 

 

We expect the coefficients of Falloct-1 in equation (4) to be negative, i.e., as the 

intensity of supply allocation increases, negative churn gets worse. However, we expect 

1ψ  in equation (5) to be positive, i.e., as supply allocation gets more intense, the number 

of CUST-P/N exiting the supplier’s manufacturing facility would also increase. M1 and 

M2 are monthly dummies to capture the beginning and end of quarter effects. We use a 

simple LSDV estimator to estimate (4) and (5). 

7.2. Micromotive Models 
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In this section, we consider the impact of rationing on individual CUST-P/N forecast 

churn.  This reflects the consequences of rationing policies on individual orders. 

 

Micromotives of customers’ orders: 

The customers and the supplier interact repeatedly in each period.  At the beginning 

of each period t customers place their requests, with the knowledge of the allocation they 

received in time t-1. The supplier sees the request quantities and responds with a commit 

quantity Qc. 

 

The customer’s reaction to allocation is modeled as: 

( )0 1 1 1~ijt ijt ij ijt ijtQr Qr allocα α− + % ε− +        (6) 

The supplier’s reaction to a customer request is modeled as: 

( )0 1 1~ijt ijt ij ijt ijtalloc alloc Qrβ β− + % δ+       (7) 

In (6), 1ijα% is the regression coefficient in the customer’s response equation that describes 

the sensitivity of the CUST-P/N combination to allocation in time t-1. We model 1 ,i jα%  as 

a random effect to capture the notion that CUST-P/N response to allocation could be 

drawn from a probability distribution. (See Maddala, 1992 for details.) Without any 

additional information on the natural sampling process in operation, we desist from using 

other alternatives such as a fixed effects model or a hierarchical linear model. Similar 

to 1 ,i jα% , we also model 1ijβ%  as a random effect. 1ijβ% models the supplier’s allocation policy 

as a random draw from a probability distribution. Note that both 1ijα% and 1ijβ%  are random 

effects that could also be modeled as 1iα% and 1iβ%  (independent of P/N) or 

1 jα% and 1 jβ% (independent of CUST). We indeed estimate the models using these 

alternative random effects to assess whether CUST, P/N or CUST-P/N best explain cross-

sectional variation. 

Both the customers’ and supplier’s responses require simultaneous estimation. 

Therefore, we use a vector auto-regression (VAR) model. (See Enders, 1995 for related 

theory.) The two equations represent a structural VAR. Since, we cannot estimate this 
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structural VAR as a Seemingly Unrelated Regression (SUR) Model, by using a 

transformation, we convert the equations to a reduced form VAR (RVAR) as follows. 

 

( )0 1 1 , 1~ijt ijt i j it tQr Qr allocα α− + % ε− +        (8) 

( ) ( ) ( )0 1 1 0 1 1 1 1~ijt ij ijt ij ij it t t ijalloc Qr allocα β β α β δ ε− −+ + + +% %% β%

                                                

    (9) 

 

The decoupled equations are treated as seemingly unrelated in the reduced form VAR 

and can now be estimated independently of each other. The customer’s response, given 

by (8), is estimated using an appropriate random effects MLE estimator. The supplier’s 

reduced form (9) is also estimated using a random effects estimator.  

 

Micromotives of positive and negative forecast churn 
�10 1 1 ,    (i,j); 1, 2,3, 4ijkijkt k ijkt ijt ijktCv q Cv q alloc kλ λ ε+ +

− −= + + ∀ =   (10) 

�10 1 1 ,    (i,j); 1, 2,3, 4ijkijkt k ijkt ijt ijktCv q Cv q alloc kϖ ϖ ε− −
− −= + + ∀ =   (11) 

As in the micromotives model of order backlogging (6), we use random effects to 

capture the reaction of customer churn to allocation. Churn (both positive and negative) is 

expected to have a AR(1) component and as before, the random effects (coefficient of 

 depend on i (CUST) and j (P/N). Similar to the order batching model, we could 

model the supplier’s reaction to churn as well. However, as we saw in the order 

backlogging micromotives model, the reduced form buyer equation 

1,, −tjialloc

(8) was identical to 

the SVAR equation (6). Since our interest centers on the customer’s response function, 

for the sake of brevity4, we do not explain the VAR form of the model.  

8. Results 
The results from the estimation of macro behavior models ((2)-(5)) are summarized in 

Table 3 and the results from the micromotives models ((6)-(11)) are summarized in 

Tables 4a, 4b and 4c.  

 
4 In a forecasting model of supplier and customer reactions to allocation and churn respectively, we would 
use the full fledged VAR model. For illustrating micromotives, the single equation model suffices. 
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Macrobehavior of Request Quantities Qr  

The request quantities/orders are modeled using (2) and the results are reported in Table 

3. The presence of dummy variables necessitates the use of a LSDV for this model. The 

AR(1), Falloct-1 and the dummy for beginning quarter (M1) are statistically significant at 

the 1% level and the second dummy (M2) is significant at the 5% level.  

The coefficient of Falloct-1, i.e., 1α , is positive and significant at the 1% level. Since 

Falloct-1 measures the percentage of customers who receive less than 100% allocation, 

this result is consistent with the notion of customers carrying backlogs from a previous 

period into the next period. The correlation between Qrt and Falloct is 0.09, which is 

consistent with the hypothesis that the facility does not respond to increased requests in 

one period by increasing capacity in the following period.  

The AR(1) coefficient i.e. 0α , is 0.8037, suggesting behavior close to unit root. The 

mean reversion exhibited by the request quantities is quite mild compared to the churn 

time series which exhibit smaller AR(1) coefficients (discussed in more detail in the next 

section). 

The monthly dummies are significant at the 1% and 5% levels, respectively. The 

negative coefficients suggest that the requests consistently drop in the beginning and the 

middle of a quarter and consistently spike upwards at the end of each quarter. One would 

therefore expect to a see a spike in orders in March, June, September and December. This 

could be explained by the fact that the supplier operates financially on a calendar quarter 

basis.  Thus, the data may reflect an incentive by the supplier to displace demand forward 

at the end of the quarter (e.g., by offering discounts) in order to meet projected numbers.  

Finally, the high R2 (95.02%) suggests excellent fit. The residuals from the regression 

were passed for normality using the Kolmogorov-Smirnoff test and the Chi-square tests. 

The Durbin-Watson statistic (1.96) for the data suggests negligible auto-correlation in 

residuals. Estimating the model as a simple ordinary least squares (OLS) without the 

dummy variables reduced the R2 to 75.6%, but the residuals showed partial auto-

correlations at a lag of 3 months (0.67) and 6 months (0.45).  
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Macrobehavior of Positive Forecast Churn (Cv+q1(t), Cv+q2(t), Cv+q3(t), 

Cv+q4(t)) 
The churn statistics modeled using (3) were estimated using LSDV. The AR(1) 

coefficients are significant at the 5% level for the first 3 quarters, but the 4th quarter 

AR(1) term is not statistically significant. Coefficient of Falloct-1 is significant for all 

quarters at the 5% level. The statistical significance of the monthly dummies (M1, M2) 

does not show any consistent patterns.  

The coefficient of Falloct-1 increases from first quarter (0.0431) to fourth quarter 

(0.3897). Figure 2a and Figure 2b depict this effect for negative churn. The consistent 

effect of Falloct-1 on every quarter of positive churn, suggests that customers are over-

reacting to supply allocation. One might expect customers to increase forecasts only in 

the short run, leaving the long run forecasts to adjust to macroeconomic factors. 

However, the impact of Falloct-1 increases with each quarter, so that Cv+q4(t) is more 

sensitive to Falloct-1 than Cv+q1(t).   

The AR(1) coefficients for positive churn suggest that the further out a month is the 

more volatile its forecasts would be. This behavior can be explained by Figure 1 which 

lays out the timeline of customer-supplier interaction. Note that at time (t-12) customers 

are speculating on the entire order they place at the facility which is whetted by the 

possibility that they might even cancel the order. Closer to the order date (t), the short run 

forecasts are likely to be focused on fine tuning existing current forecasts.  

The monthly dummies once again show consistently positive sign while their 

statistical significance does not exhibit any visible pattern across quarters. The positive 

sign suggests that the beginning of every quarter is characterized by an increase in 

positive churn.  

Finally, the high R2 on all the models suggests excellent fit. The residuals from the 

regression were passed for normality using the Kolmogorov-Smirnoff test and the Chi-

square tests as well for normality. The Durbin-Watson statistic for the residuals suggests 

negligible auto-correlation in residuals. When the dummy variables were removed and 

the model was estimated using simple OLS, the partial autocorrelation function across the 

residuals suggested strong quarterly seasonal effects.  
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Negative Churn (Cv-q1(t), Cv-q2(t), Cv-q3(t), Cv-q4(t)) 
We model the churn statistics using model (4). The presence of dummy variables 

necessitates the use of LSDV for this model. The AR(1) coefficients are significant at 1% 

level for all four quarters. The coefficient of Falloct-1 is significant for all quarters at the 

5% level. The monthly dummy for the beginning of a quarter (M1) is significant at the 

5% level in all quarters while the second dummy (M2) is only significant at the 10% level 

for Cv-q1.  

The effect of Falloct-1 on negative churn is quite pronounced. The magnitude of 

negative churn increases (negative regression coefficients) when the number of customers 

rationed increases. This effect is more pronounced in the medium and long run (Cv-q3, 

Cv-q4) compared to the short run forecasts (Cv-q1, Cv-q2). While the macrobehavior 

captures the aggregate effect, the underlying micromotives of customers are not revealed 

by this result. Unlike positive churn which reflects only forecast increases, negative churn 

is influenced by forecast changes, sysexits, and batching of forecasts.  

The AR(1) coefficients are all positive and significant at the 1% level. Mean reversion 

is strongest in the first quarter (short run forecasts) and weakest in the third quarter 

(medium run). Negative churn differs from positive churn in what it measures, i.e., 

negative churn can be produced by customers exiting the system and/or batching their 

existing forecasts.  

The monthly dummy for beginning of quarter (M1) is significant at the 1% level in all 

quarters. The negative sign on M1 in all quarters suggests that the magnitude of negative 

churn increases at the beginning of each quarter. Dummy variable M2 is consistently 

smaller by a factor of approximately 10, but statistically insignificant nonetheless. 

 

SystemExits (sysexit) 

In Table 1, we observed that roughly 70% of the cross section leaves the supplier’s 

manufacturing facility.  Thus, it is not clear if supply allocation is driving this behavior. 

Since negative churn also measures customers exiting the system, we test for the effect of 

allocations on sysexits. We find that sysexits shows a strong mean reversion (AR(1) = 

0.6399) and a statistically significant correlation with Falloct-1, suggesting that periods of 

high supply allocation are followed by periods of increased CUST-P/N exiting the 
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facility.  The monthly dummies (M1) are also significant at the 1% level, which is 

consistent with managers’ opinions that the supplier’s decisions may be influenced by 

quarterly financial and operational targets.   

 

Micromotives 

The estimation of the micromotives models is reported in Tables 4a, 4b and 4c. As 

discussed earlier, we report the VAR formulation only for the request quantities in Table 

4a.  

 

Request Quantities (Qr) 

We estimate the stochastic coefficients (mixed linear model) embedded in a VAR 

formulation. Since the stochastic coefficients depend on the cross-section, the cross 

section is specified in three different ways- CUST, P/N and CUST-P/N pair. The results 

of the estimation from the three different methods are described in Table 4a. In addition 

to the cross sections, Table 4a also specifies the 2-equation VAR estimation for request 

quantity (Qr) and alloc.  

The ANOVA comparison of the three cross sectional models (6)-(11) suggests that 

the CUST-P/N model is more appropriate for analysis as it better explains between-group 

variance. For Qr, the Akaike Information Criterion (AIC), and Bayesian Information 

Criterion (BIC) for the RVAR estimator is lowest for the CUST-P/N model. The Log 

likelihood is also greater for the CUST-P/N model compared to the CUST and P/N 

specifications. For further analysis, we continue with the interpretation of Model (6) 

(specified by CUST-P/N).  

 

Customer’s actions (Qr): The estimation results for the RVAR equation hold for the 

SVAR model as well. The fixed effect response to allocation is positive (0.0214), i.e., the 

data is consistent with customer orders decreasing in response to allocation. This appears 

to contradict the finding that unfilled customer orders are backlogged at the microlevel 

and is also in contrast to the supplier’s manufacturing facility level macro model.  (See 

Table 4a, coefficient of alloct-1.) This apparent contradiction is explained by the random 

effects coefficient of alloct-1=0.1901. This suggests that customer’s response to allocation 
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in period t-1; 1 ,i jα% ~ N(0.1024, 0.19012). While some customer orders are backlogged in 

response to allocation (a negative draw from this distribution), other customer orders are 

reduced or cancelled in response to allocation (positive draws from this distribution). The 

probability that a customer order is backlogged in response to allocation is calculated as 

( )1 ,Pr 0i jα <% =0.46. Thus, a significant fraction of unfilled customer requests (46% of the 

CUST-P/N population) is backlogged into the following period. Both the fixed effect 

terms are significant at the 1% level. The AR(1) coefficient (0.1024) suggests strong 

mean reversion properties at the microlevel. This is in contrast to the mild mean reversion 

property at the level of the supplier’s manufacturing facility (AR(1) coefficient was 

0.8037).  

 

Supplier’s actions (alloc): Analyzing the supplier’s response to customers’ requests is a 

little more involved because the stochastic effects are embedded on three independent 

variables. The fixed effect terms in the stochastic RVAR are all significant at the 1% 

level. The supplier’s response to customer requests depends on the CUST-P/N and this 

stochastic nature of 1 ,i jβ%  is estimated by the RVAR as N(0.1843, 0.2732), i.e., 

1 ,i jβ% ~N(1.798, 2.662).  The normal distribution assumption notwithstanding, the 

probability that the supplier responds to increased requests by rationing the CUST-P/N is 

calculated as =0.26, i.e., roughly 26% of the population gets rationed (lower 

priority).  

( 1 ,Pr 0i jβ <% )

The intercept is N(-0.0051, 0.0042), suggesting that the intercept is almost a constant 

and the stochastic coefficient is unnecessary. The AR(1) coefficient is (-0.046, 0.2022) 

which in the SVAR form translates to an expected AR(1) coefficient of -0.0043. The mild 

negative sign on the AR(1) coefficient agrees with our intuition of allocation having a 

strong mean reversion (almost oscillatory behavior around the mean).  

To summarize, ex-post linear regression analysis reveals that 26% of the CUST-P/N 

population in the data gets rationed, while roughly 46% of the population backlogs in 

response to order rationing. Ex ante, the supplier is not aware which 46% of the 
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population is prone to backlogging.  Similarly, the customers (CUST-P/N to be precise) 

are also not privy to their position in the allocation policy either.  

 

Positive Churn (Cv+q1(t), Cv+q2(t), Cv+q3(t), Cv+q4(t)) 
For each of the four quarters, we estimate the stochastic coefficient models using a 

restricted maximum likelihood estimator. The results of the estimation are summarized in 

Table 4b. We consider three forms of stochastic settings- CUST, P/N and CUST-P/N, as 

a basis for the stochastic coefficients. We compare the models based on their AIC, BIC, 

and Log Likelihood (see Maddala, 1992 for a detailed discussion of AIC, BIC and Log 

Likelihood goodness of fit measures.) We find that the model with random effects 

specified by P/N has the best fit. 

The stochastic coefficients in quarters k = 1, …,4 are estimated to be N(-0.0129, 

0.18082), N(-0.00054, 0.00072), N(-0.02, 0.05532) and N(-0.0091, 0.03162), respectively. 

The random coefficients suggests that roughly 53%, 78%, 63% and 59% of the customers 

react to allocation in period t-1 by increasing their churn in quarters k = 1, …, 4, 

respectively. The almost uniform increase in every quarter’s churn points to a propensity 

among customers to overreact to episodes of supply-demand mismatch (alloc) by 

increasing their positive churn, i.e., by increasing forecasts. The exaggerated positive 

shifts in every quarter’s churn in response to allocation are also observed at the supplier’s 

manufacturing facility level, thus confirming our hypothesis of micro-level over-reaction 

and macro-level contagion. 

The AR(1) components in each quarter are significantly smaller in magnitude 

compared to the macrobehavior model. Autoregression is weakest in the fourth quarter 

(0.1154) and strongest in the second quarter (0.3546), mirroring the macrobehavior 

predictions. Thus both the micromotives and the macrobehavior models suggest that the 

uncertainty in long term forecasts is greater than the short and medium term forecasts.  

Negative Churn (Cv-q1(t), Cv-q2(t), Cv-q3(t), Cv-q4(t)) 
Similar to the positive churn models, we estimate three models, specified by CUST, 

P/N, and CUST-P/N and choose the model with best fit based on AIC, BIC and 

LogLikelihood values for these models.  We find that a random effect specified by P/N 

has the best fit for the model.  
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Negative churn, unlike positive churn, is a manifestation of more than simple forecast 

decreases. Negative churn can also be produced by sysexits and forecast batching. The 

stochastic coefficients for alloct-1 are estimated to be N(0.0212, 0.24022), N(0.0136, 

0.17742), N(-0.0062, 0.00812), N(0.0749, 1.0112) which translates to roughly 54%, 53%, 

22% and 52% of the customers increasing the magnitude of their negative churn in 

response to allocation. The negative churn reaction seems to be uniformly pervading all 

quarters at the micro level and the same phenomenon was evident at the supplier’s level 

(macrobehavior model (2)-(5)) as well. Figure 2a and Figure 2b illustrate the high 

correlation between that churn vectors (lagged churn series).  Moreover, the above results 

show that the highly correlated churn vectors are, in fact, consistent with customer 

responses (in at least 50% of the customers) to capacity rationing. 

The AR(1) coefficients exhibit a pattern that mirrors the macrobehavior model, i.e., 

they increase in magnitude from Cv-q1(t) (0.2294) to Cv-q3(t) (0.4076) before dropping 

to 0.2655 in Cv-q4(t). The strong mean reversion property of the negative churn at the 

micro level is confirmed and is reflected in the macrobehavior at the supplier level as 

well.  

 

Summary of micromotives analysis 

 To  summarize  the  results  of  the  micromotives analysis, we find strong 

statistical  associations  between customers' orders, positive and negative forecast  churn,   

and   prior-period  allocation  (alloct-1).  Roughly 46% of instances where CUST-P/N 

pairs are rationed are followed by an order increase in the following period (these 

increases may be initiated by either customers or the supplier).  While these order 

increases might be considered normal effects of rationing and backlogging, rationing also 

leads to significant forecast increases in future periods for CUST-P/N pairs that remain 

with the supplier going forward.  Other important responses to rationing include leaving 

the supplier and batching of future forecasts. Whether these responses are customer 

driven or supplier driven, they indicate strong interdependencies between rationing and 

follow-up actions by the supplier and customers that have important implications for 

capacity management and supplier profitability.   
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9. Managerial Discussion 
The results of the econometric model and its estimation are given in Figure 5a. These 

results strongly suggest that observed macrobehavior/supplier manufacturing facility 

level information distortions in a semiconductor supply chain are statistically associated 

with the mismatch between supply and demand at the micro level (CUST-P/N level, but 

dictated more by P/N than CUST). Extant literature in supply chain management points 

to demand uncertainty as a cause of correlated forecasts, the bullwhip effect and forecast 

batching.  Building on the earlier theoretical results of Cachon and Lariviere, the results 

of this paper suggest that these effects may be reinforced by the supplier’s allocation 

policy in interaction with underlying demand properties.  

 

Demand Visibility: In a build-to-forecast manufacturing facility producing custom 

products with long production lead times, demand visibility is a difficult issue. The 

supplier bears the cost of overage and hence may use buffer inventory to smooth his 

production. Greater underlying demand uncertainty (variability at the customer level) and 

longer production lead times require larger amounts of buffer inventory to minimize total 

supply chain costs. In a large manufacturing facility (such as the one studied in this 

paper), the supplier depends on customers to use scientific forecasting methods (Time 

Series, MMFE, etc.), investments in information systems and coordinated downstream 

supply chains to gather information at least six months prior to production. This noisy 

forecast information is fed to the upper echelons of the supply chain for capacity planning 

and Sales & Operations Planning (S&OP) processes.  The results of excess churn in this 

forecast information can therefore be very costly in terms of capacity utilization and 

profitability. 

 

Supply Uncertainty: While demand uncertainty affects the supplier directly, the 

supplier’s uncertain actions may cause customers to speculate about supply and hence 

providing noisy forecasts to the supplier. This inevitable feedback loop of allocation 

policy and forecasting is verified using the micromotives/macrobehavior model. We find 

that supply uncertainty is often related to the allocation policy, but is nevertheless a 
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consequence of the supplier’s tendency to delay capacity commitments to a later stage in 

the forecasting horizon.  

 

Mismatch consequences: Our analysis reveals that the mismatch between supply and 

demand at the customer-P/N level causes four different results– positive and negative 

churn, bullwhipping, forecast batching, and contagion. One of the more interesting 

aspects of our findings is the tendency, whether customer driven or supplier driven, to 

batch forecasts around the beginning and end of quarters, a tendency that confounds the 

supplier’s ability to conduct temporal smoothing of production. Moreover, a comparison 

of the mean reverting properties (see AR(1) coefficients in Table 3) of the customer 

requests and churn suggests that churn is more volatile than requests. As one symptom of 

this, supplier manufacturing facility level forecasts for the twelve months preceding an 

order are between 22%-40% (depending on the month) more volatile than the associated 

final requests/orders made by customers. We also found that customers tend to churn 

their future forecasts positively in response to allocation. The result is that forecast churn 

interacts with rationing to obfuscate the supplier’s view of downstream temporal demand, 

resulting in a higher buffer stock and lower capacity utilization for the supplier. In a build 

to forecast system where forecasts six months prior to order commitment are used to pass 

on orders to upper echelons, these combined effects present a serious threat of 

bullwhipping. 

We also find evidence for this churning of forecasts to be occurring in tandem across 

large pools of CUST-P/N(s), giving rise to inflated demands for capacity at precisely the 

same period that the supplier finds himself short of capacity. We refer to this cross-

sectional (CUST-P/N) phenomenon of positively correlated forecasts as contagion. 

Clearly, such positive correlation erodes the benefits arising from risk pooling of CUST-

P/N orders.  

  

Managing Supply-Demand Mismatches 

We have thus far taken an investigative approach, seeking symptoms of information and 

forecast distortion in the semiconductor supply chain. In seeking ways to mitigate 

forecast distortions, the appropriate starting point is to investigate the root cause of the 
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supply-demand mismatches in the supply chain.  Prescriptions should therefore be 

directed to treating this underlying root cause rather than ad hoc solutions to suppress the 

malignant symptoms of churn, system exiting, batching, bullwhipping and contagion. 

Such prescriptions will certainly include better linking of customers and suppliers 

through CPFR (collaborative planning, forecasting and replenishment) practices, and may 

include modified allocation policies and innovations in contracting such as options-based 

contracts.  Let us consider these possibilities. 

 

CPFR Practices: CPFR is an initiative launched by this supplier with its customers 

whereby the arm’s length nature of relationships are transitioned to more long-term 

relationship based contracts. In addition to providing better information between 

suppliers and customers, the relationship-specific investments required in CPFR reinforce 

loyalty to the relationship.  Aviv (2001, 2002) quantifies the value of CPFR on supply 

chain performance, where this value is based on better information, reduced 

manufacturing lead times and increased supplier production flexibility to monthly 

variations in orders. With a more reactive and flexible supplier, the buyer’s incentive to 

batch forecasts is reduced. CPFR initiatives targeted at increasing forecast accuracy and 

reducing the information asymmetry between customers and the supplier encompass the 

gamut of forecast practices such as joint IT investments and making judgmental forecasts 

more accurate. Accurate forecasts of end user demand naturally address the issue of 

supply-demand uncertainty.  

 

Embedded Optionality in contracts 

In a manufacturing environment faced with contagion where risk pooling is rendered 

ineffective, we envision the use of tailored options-based contracts to develop a 

diversified demand-forecast portfolio. (See de Albeniz and Simchi-Levi, 2005a.) The 

notion of diversification through risk pooling is essential to capacity planning models in 

build to forecast environments. As de Albeniz and Simchi-Levi (2005) show, 

diversification can be obtained through embedding options within contracts even though 

the underlying demand might not provide good diversification possibilities. The use of 

options at this supplier was through pricing discounts for early commitments (the 
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customer gives up some flexibility in commitment dates in return for a price discount). 

Such options could be useful in controlling contagion through obtaining fixed, early 

commitments, which could also help in mitigating forecast churn, as described below. 

Since, the economic costs of churn affect the supplier and the upper echelons of the 

supply chain, conceptually it seems feasible to pass the costs of this churn through to the 

customer by contracting on forecasts of the underlying capacity instead of on the capacity 

(as is the norm). Our discussions with representatives from the semiconductor industry 

suggested that pricing policies packaged as penalty structures run against the spirit of 

collaborative efforts and hence equivalent transfer pricing mechanisms which reward 

“non-churn” would be more acceptable to customers.  By contracting on forecasts of the 

capacity needs instead of capacity itself, the customer would thus be provided with 

incentives to pay greater attention to forecasts lest his contractual forecast costs burgeon. 

For example, by rewarding customers who place firm orders earlier in the forecasting 

cycle with higher priority in the capacity allocation process or by providing pricing 

discounts, the supplier encourages shorter forecasting cycles and consequently lower 

churn. Ferguson (2003) and Ferguson et al. (2004) provide a rigorous analysis of the 

buyer’s decision to commit and update forecasts. 

 

Allocation Policies 

While our empirical analysis focused primarily on allocation policies, CPFR mechanisms 

have tended to focus entirely on relationship-based contracts and explicit rules for 

resolving demand-supply mismatches.  This is in contrast to the semiconductor industry’s 

proclivity toward undisclosed allocation policies and the resulting arm’s length nature of 

resolving demand-supply mismatches. For customers and part numbers which are not 

amenable to the direct resolution methods of CPFR and relationship-based contracting, 

the supplier could nonetheless significantly reduce the mismatch between supply and 

demand by expanding the dimension of allocation policies to time and commitment based 

policies. To illustrate the point; consider two customers, one that commits early in the 

forecasting process (at t=-11) and one that commits late in the forecasting process (t=-6). 

By giving priority to the early commitment forecast, the supplier has the freedom to plan 

his capacity well in advance (thus reducing churn) and communicate his orders more 
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accurately to the upper echelons (reduce bullwhip). Since the two customers commit at 

different times, the contagion effect (by definition) vanishes.  

Allocation policies could also be modified to isolate customers with highly correlated 

demand profiles. By dedicating capacity to sub groups of customers such that within-

group heterogeneity is maximized while between-group homogeneity is maintained, the 

supplier can effectively partition the underlying capacity commitments into sub groups. 

The notion of maintaining between-group homogeneity and within-group heterogeneity is 

meant to diversify within-group demand volatility, but still gain economies of scale due 

to the between-group homogeneity.  

The above represent a few areas where future empirical work has the potential for 

improving supplier profitability and customer satisfaction in the semiconductor industry. 

Other areas include the development of appropriate metrics for monitoring the 

performance and cost consequences of measures directed to mitigate churn and contagion 

and refinements in relationship-based contracting to share the gains from such improved 

performance.  Certainly, the diversity of behavioral responses observed in this study 

suggests that further development of supporting theory will need to be informed by the 

results of detailed empirical research.  The required analysis and experimentation should 

provide a good opportunity for collaboration between the research community and 

industry.  
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Table 1: Summary Statistics for the entire database 
 

Variable Count Min Max Mean 
Standard 
deviation Description 

TIME 60 01/2000 12/2004 - - Requested Delivery date 
CUST 2565 - - - - Unique Customer ID 
P/N 11868 - - - - Unique part number 
CUST-P/N 28800 - - - - Unique Cust-p/n combination 
SPOT 13575 0 1 - - Indicates if CustId-PartNo arrived without forecast 
SYSEXIT 20523 0 1 - - Indicates if CustId-P/n exited and never transacted again 
All statistics below are for a unit of the cross section (cust-p/n) 
START - -12 0 -7 3.7 # of months prior to requested date when forecast start 
FINISH - -12 0 -2 3.5 # of months prior to requested date when forecasts end 
Qft-12,t - 0 2400000 469 20179 Forecast 12 months ahead of requested delivery date 
Qft-11,t - 0 24594500 4913 101128 Forecast 11 months ahead of requested delivery date 
Qft-10,t - 0 12000000 6077 93274 Forecast 10 months ahead of requested delivery date 
Qft-9,t - 0 9000000 6734 96369 Forecast 9 months ahead of requested delivery date 
Qft-8,t - 0 6716000 6993 97625 Forecast 8 months ahead of requested delivery date 
Qft-7,t - 0 23000000 7437 111753 Forecast 7 months ahead of requested delivery date 
Qft-6,t - 0 7582500 7480 102243 Forecast 6 months ahead of requested delivery date 
Qft-5,t - 0 8278000 7517 102815 Forecast 5 months ahead of requested delivery date 
Qft-4,t - 0 19862480 7450 107058 Forecast 4 months ahead of requested delivery date 
Qft-3,t - 0 7564265 7375 105507 Forecast 3 months ahead of requested delivery date 
Qft-2,t - 0 8897000 7209 108096 Forecast 2 months ahead of requested delivery date 
Qft-1,t - 0 9865000 7348 115539 Forecast 1 months ahead of requested delivery date 
Qft,t - 0 8717000 7150 113707 Last forecast made prior to making order 
Qrt - 0 8739902 6341 103675 Quantity requested by the customer 
Qct - 0 9612500 6412 104947 Quantity committed to the customer by the supplier 
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Fig 3a: Forecast vectors of   Fig 3b: Churn quantities Fig 3c: Positive and Negative Churn obtained from the  
length 5 for months 1,2,3,4,5.   for each month.  churn matrix 
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Table 2a: Correlation between quarterly churn series        Table 2b: Correlation between quarterly churn vector  
components i.e. quarterly churn for time t         components i.e. quarterly churn at time t  

  Cs-q1(t) Cs-q2(t) Cs-q3(t) Cs-q4(t) 

Cs-q1(t) 1.00 0.81 0.24 0.03 

Cs-q2(t) 0.81 1.00 0.39 -0.10 

Cs-q3(t) 0.24 0.39 1.00 0.49 

Cs-q4(t) 0.03 -0.10 0.49 1.00 

  Cv-q1(t) Cvs-q2(t) Cv-q3(t) Cv-q4(t) 

Cv-q1(t) 1.00 0.86 0.71 0.43 

Cv-q2(t) 0.86 1.00 0.85 0.65 

Cv-q3(t) 0.71 0.85 1.00 0.78 

Cv-q4(t) 0.43 0.65 0.78 1.00 
  
Table 3: LSDV estimator for Macro-behavior Regression Model  
  Qr(t) Cv+q1(t) Cv+q2(t) Cv+q3(t) Cv+q4(t) Cv-q1(t) Cv-q2(t) Cv-q3(t) Cv-q4(t) sysexits(t) 
Qr(t-1) 0.8037***                   
  (0.1254)                   
Cv+q1(t-1)   0.6168***             
    (0.0924)             
Cv+q2(t-1)     0.6313***           
      (0.891)           
Cv+q3(t-1)       0.2464**         
        (0.1211)         
Cv+q4(t-1)         0.0609       
          (0.1419)       
Cv-q1(t-1)       0.4037***         
        (0.1201)         
Cv-q2(t-1)         0.622***       
          (0.1266)       
Cv-q3(t-1)           0.7306***     
            (0.0828)     
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Cv-q4(t-1)             0.5627***   
              (0.1176)   
sysexits(t-1)                   0.6399*** 
                    (0.1189) 
Falloc(t-1) 4.4e7*** 0.0431** 0.1087*** 0.2394*** 0.3897*** -0.1952** -0.2723* -0.24** -0.3691** 0.6479*** 
  (1.2e7) (0.0191) (0.0284) (0.0595) (0.0771) (0.0910) (0.1403) (0.1001) (0.1560) (0.1205) 
DUMMYM1 -1.4e7*** 0.0035 0.0025 0.0277** 0.0132 -0.0473** -0.072** -0.055*** -0.1288*** -188.57*** 
  (2.3e6) (0.0034) (0.0044) (0.0111) (0.0149) (0.022) (0.032) (0.0199) (0.0304) (46.04) 
DUMMYM2 -4.823e6** 0.0095** 0.0019 0.0162 0.0015 -0.0441* -0.018 -0.0088 -0.0242 -81.70*** 
  (1.8e6) (0.0039) (0.0047) (0.0128) (0.0169) (0.026) (0.034) (0.0213) (0.0334) (38.84) 

R2 0.9502 0.9199 0.9627 0.8509 0.7986 0.7286 0.8469 0.9502 0.9055 88.15%
p-v  alue 0 00 0 0 0 0 0 0 0

Note: Standard errors are in parenthesis. ***, **, * denote significance at the 1%, 5% and 10% levels, respectively  
 
Table 4a: Embedded Stochastic coefficients VAR estimator for Micromotives model of buyer-customer interactions (Qr-alloc 
simultaneous estimator). 

  CustId Model 1 PartNo Model 2 CustId-PartNo Model 3 
  Qr(t) alloc(t) Qr(t) alloc(t) Qr(t) alloc(t) 
Fixed Effects             

Intercept   -0.007***   -0.0066***   -0.0051** 
    (0.0022)   (0.0022)   (0.0021) 

Qr(t-1) 0.099*** 0.1855*** 0.1006*** 0.1955*** 0.1024*** 0.1843*** 
  (0.003) (0.0074) (0.003) (0.0054) (0.0031) (0.0041) 

alloc(t-1) 0.0278*** -0.042*** 0.0227*** -0.0482*** 0.0214*** -0.046*** 
  (0.006) (0.0065) (0.004) (0.0046) (0.0039) (0.0041) 
Random Effect             

Intercept   0.0035   0.0048   0.004 
Qr(t-1)   0.149   0.2293   0.273 

alloc(t-1) 0.115 0.115 0.163 0.1612 0.1901 0.202 
AIC 317354.3  315900.6 316970.7 314524.5 316449.7 313034.9 
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BIC 317393.4 315998.5 317009.8 314622.4 316488.8 313132.8 
LogLik -158673.1 -157940.3 -158481.3 -157252.2 -158220.8 -156507.4 

Note: Standard errors are in paranthesis. ***, **, * denote significance at the 1%, 5% and 10% level respectively  
 
Table 4b: Embedded Stochastic coefficients REML estimator of customer’s positive churn (Micromotives) behavior. 
  Cv+q1(t) Cv+q2(t) 
  CUST P/N CUST-P/N CUST P/N CUST-P/N 
Fixed Effects             

Cv+q1(t-1) 0.270*** 0.1932*** 0.1993***       
  (0.0042) (0.0043) (0.0043)       

Cv+q2(t-1)       0.3546*** 0.3546*** 0.3546*** 
        (0.0035) (0.0035) (0.0035) 

alloc(t-1) -0.0001 -0.0129** -0.012*** -0.0004* -0.00054* -0.00054* 
  (0.0005) (0.005) (0.0039) (0.0002) (0.0003) (0.0003) 

Random Effect             
alloc(t-1) 0.00162 0.1808 0.1571 0.0004 0.0007 0.0007 

AIC 14464.31 12537.17 12801.34 34239.7 34237.62 34237.64
BIC 14499.8 12572.66 12836.83 34276.09 34274.02 34274.04

LogLik -7228.155 -6264.583 -6396.672 -17115.85 -17114.81 -17114.82
       
  Cv+q3(t) Cv+q4(t) 
  CUST P/N CUST-P/N CUST P/N CUST-P/N 
Fixed Effects             

Cv+q3(t-1) 0.2754*** 0.2742*** 0.2736***      
  (0.0034) (0.0033) (0.0034)       

Cv+q4(t-1)       0.1172*** 0.1161*** 0.1154*** 
        (0.0034) (0.0034) (0.0034) 

alloc(t-1) -0.0052*** -0.02*** -0.022*** 0.0002* -0.0091*** -0.01*** 
  (0.0011) (0.002) (0.003) (0.0000) (0.002) (0.0021) 

Random Effect             
alloc(t-1) 0.0078 0.0553 0.0659 0.0000 0.0316 0.044 
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AIC 55796.66 55593.43 55531.59 49351.3 49373.18 49366.23
BIC 55833.83 55630.6 55568.76 49388.47 49410.36 49403.4

LogLik -27894.33 -27792.71 -27761.79 -24671.65 -24682.59 -24679.11
Note: Standard errors are in paranthesis. ***, **, * denote significance at the 1%, 5% and 10% level respectively  
 
Table 4c: Embedded Stochastic coefficients REML estimator of customer’s negative churn (Micromotives) behavior. 
  Cv-q1(t) Cv-q2(t) 
  CUST P/N CUST-P/N CUST P/N CUST-P/N 
Fixed Effects             

Cv-q1(t-1) 0.2469*** 0.2294*** 0.2287***       
  (0.0046) (0.0045) (0.0045)       

Cv-q2(t-1)       0.2456*** 0.2328*** 0.2276*** 
        (0.0037) (0.0036) (0.0036) 

alloc(t-1) 0.0001 0.0212*** 0.0208*** 0.0001 0.0136*** 0.01191*** 
  (0.0001) (0.0063) (0.0048) (0.00001) (0.0042) (0.0032) 

Random Effect             
alloc(t-1) 5.1e-7 0.2402 0.2113 6.4e-7 0.1774 0.1747 

AIC 26304.41 22386.47 22669.71 6773.368 2103.181 1103.359
BIC 26339.9 22421.96 22705.2 6810.898 2140.711 1140.889

LogLik -13148.2 -11189.23 -11330.85 -3382.684 -1047.59 -547.6796
       
  Cv-q3(t) Cv-q4(t) 
  CUST P/N CUST-P/N CUST P/N CUST-P/N 
Fixed Effects             

Cv-q3(t-1) 0.2658*** 0.2665*** 0.2628***       
  (0.0039) (0.0038) (0.0039)       

Cv-q4(t-1)       0.2653*** 0.2665*** 0.2628*** 
        (0.0039) (0.0038) (0.0039) 

alloc(t-1) 0.0451*** 0.075*** 0.0953*** 0.0451*** 0.0749*** 0.0953*** 
  (0.001) (0.0212) (0.001) (0.0049) (0.0212) (0.0104) 

Random Effect             
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alloc(t-1) 0.063 1.015 0.5640 0.063 1.011 0.564 
AIC 82114.22 80928.8 82131.68 82114.22 80928.8 82131.68
BIC 82150.78 80965.36 82168.23 82150.78 80965.36 82168.23

LogLik -41053.11 -40460.4 -41061.84 -41053.11 -40460.4 -41061.84
Note: Standard errors are in paranthesis. ***, **, * denote significance at the 1%, 5% and 10% level respectively  
 
Fig 5a: The consequences of supply-demand mismatch(es)  
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