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Abstract 
 

Traditional workload management methods mainly 
focus on the current system status while information 
about the interaction between queued and running 
transactions is largely ignored. An exception to this is 
the transaction reordering method, which reorders the 
transaction sequence submitted to the RDBMS and 
improves the transaction throughput by considering 
both the current system status and information about 
the interaction between queued and running 
transactions. The existing transaction reordering 
method only considers the reordering opportunities 
provided by analyzing the lock conflict information 
among multiple transactions. This significantly limits 
the applicability of the transaction reordering method. 
In this paper, we extend the existing transaction 
reordering method into a general transaction 
reordering framework that can incorporate various 
factors as the reordering criteria. We show that by 
analyzing the resource utilization information of 
transactions, the transaction reordering method can 
also improve the system throughput by increasing the 
resource sharing opportunities among multiple 
transactions. We provide a concrete example on 
synchronized scans and demonstrate the advantages of 
our method through experiments with a commercial 
parallel RDBMS. 
 

1. Introduction 

 
Traditional workload management methods mainly 

focus on the current system status [CKL90, FNS91]. 
For example, in a typical RDBMS, the load controller 
only allows a certain number of complex queries to run 
concurrently. Also, if the system is in the danger of 
thrashing (i.e., admitting more transactions for 
execution will lead to excessive overhead and severe 
performance degradation [CKL90]), the load controller 
may choose not to run any new transactions.  

To support modern applications, users are 
continually requiring higher performance from 
RDBMSs. To meet this requirement, Luo et al. 

[LNE06] proposed the transaction reordering method 
for continuous data loading [Ter]. This workload 
management method uses information about the 
interaction between queued and running transactions to 
improve the throughput of an RDBMS by reordering 
the transactions before submitting them for execution. 
Although the general idea is interesting, the 
applicability of the existing transaction reordering 
method is limited, as that method only considers the 
reordering opportunities provided by analyzing the 
lock conflict information among multiple transactions. 

 In this paper, we extend the existing transaction 
reordering method into a general transaction reordering 
framework that can incorporate various factors as the 
reordering criteria for different applications. We show 
that the resource utilization information of transactions 
can provide another opportunity for the transaction 
reordering method to improve the throughput of an 
RDBMS. Our idea is to reorder transactions to increase 
the likelihood that they can share resources (e.g., 
sharing data in the buffer pool, or perhaps even sharing 
intermediate computations common to several 
transactions). As a concrete example, we show how to 
exploit synchronized scans [Fer94, LBM07] to reorder 
transactions so that buffer pool performance can be 
improved. 

Reordering transactions requires CPU cycles. 
However, the increasing disparity between CPU and 
disk performance renders trading CPU cycles for disk 
I/Os more attractive as a way of improving DBMS 
performance [RDS02]. Our transaction reordering 
method for exploiting synchronized scans can be 
regarded as a way to trade CPU cycles for disk I/Os. 
Our experiments in a commercial parallel RDBMS 
show that with minor overhead, our proposed 
transaction reordering method greatly improves the 
throughput of a targeted class of transactions while it 
has only a minor impact on the throughput of other 
classes of transactions. 

There are two main reasons why transaction 
reordering might be effective. The first is system 
independent – for example, it might be that a 
reordering of a transaction sequence truly eliminates 
some intrinsic lock conflicts between adjacent 
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transactions (as discussed in Luo et al. [LNE06]) 
and/or makes resource sharing possible. The second is 
system dependent – for example, a system may have a 
particular implementation of buffer management or 
concurrency control that renders one order of 
transactions superior to another. Even reordering to 
exploit system dependent opportunities is useful. 
Commercial RDBMSs are large, complex pieces of 
code, and changes in functionality can require a very 
long design-implement-test-release cycle. In many 
cases it may be far simpler to do some reordering of 
transactions outside of the RDBMS before submitting 
them to the RDBMS for execution than it would be to 
change, say, the concurrency control subsystem of the 
RDBMS. This is especially true for database 
application developers who are unable to change the 
database engine. This system dependent issue has 
never been discussed before and we show such an 
example here in a major commercial RDBMS. 

In related work, the operating system community has 
explored the approach of adding a module outside of a 
system to reorder web server requests based on the 
knowledge of OS buffer contents [AA01, BBA02]. 
The database community has proposed multi-query 
optimization [RSS00, Sel88] for resource sharing. The 
traditional multi-query optimization approach work in 
a batch fashion, as the optimizer needs to wait for a 
sufficient number of incoming queries with common 
sub-expressions to arrive, and then before executing 
them, changes their query plans to share common sub-
expressions. Our transaction reordering method is 
dynamic and online: there is no need for either 
changing the query plans or waiting.  

The rest of this paper is organized as follows. 
Section 2 extends the existing transaction reordering 
method into a general transaction reordering 
framework. Section 3 discusses our transaction 
reordering method for exploiting synchronized scans. 
Section 4 investigates the performance of the 
transaction reordering method through an evaluation in 
two commercial RDBMSs. We conclude in Section 5. 
 

2. General Transaction Reordering 
Framework 

 
The transaction reordering method was originally 

proposed in Luo et al. [LNE06]. That method uses lock 
conflict analysis as the single reordering criterion and 
only works for continuous data loading [Ter]. Actually, 
transaction reordering is a general technique to 
improve RDBMS performance. It can be applied to 
multiple applications. In this section, we extend the 
existing transaction reordering method in Luo et al. 
[LNE06] into a general transaction reordering 

framework. This framework can easily take different 
factors into consideration as various reordering criteria. 
In Section 3, we show how to use buffer pool analysis 
as the reordering criterion to exploit synchronized 
scans. In our discussion, we assume that the strict two-
phase locking protocol is used and all the transactions 
have the same priority. 

The basic concept of transaction reordering is 
simple. In an RDBMS, generally, at any time there are 
M1 transactions waiting in a FIFO transaction 
admission queue Q to be admitted to the system for 
execution, while another M2 transactions forming a set 
Sr are currently running in the system. Such a 
transaction admission queue Q is commonly used for 
load control purpose [CKL90, FNS91].  
 
 
 
 
 
 
 
 
 

Figure 1. The general transaction reordering 
framework. 

 
Those transactions in the transaction admission 

queue Q are the candidates for reordering. That is, the 
reorderer reorders the transactions waiting in Q so that 
the expected throughput of the reordered transaction 
sequence exceeds that of the original transaction 
sequence. In its reordering decisions, the reorderer 
exploits properties it deduces about the blocked 
transactions in Q and the properties it knows about the 
active transactions in Sr. The improvement in overall 
system throughput is a function of (a) the number of 
factors considered for reordering transactions, and (b) 
the quality of the original transaction sequence. The 
more factors considered, the better quality the 
reordered transaction sequence has. However, the time 
spent on reordering cannot be unlimited, as we need to 
ensure that the reordering overhead is smaller than the 
benefit we gain in throughput. Also, we need to ensure 
acceptable transaction response time in the sense that 
no transaction is subject to starvation. There are a wide 
range of reordering algorithms that could be used. At 
the extremes, we could:  
(1) Do no analysis. Run all the transactions in the 

order that they arrive at the RDBMS.  
(2) Take a snapshot of the system. Analyze every 

possible order of the transactions and record the 
corresponding throughput. Pick the optimal order 
to run all the transactions.  

Q

Sr 

move transaction from Q to Sr 

transaction enters Q 

transaction leaves Sr 

… 

… 
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The first extreme may be undesirable if some amount 
of reordering can improve the throughput. The second 
extreme is obviously unrealistic due to the exponential 
analysis overhead. Our goal is to find a good 
compromise between these two extremes. That is, 
under the constraint of acceptable transaction response 
time, we want to maximize the difference between the 
gain in throughput and the reordering overhead. 

In the general transaction reordering framework, we 
reorder transactions in the follow way: 
(1) Operation 1: Suppose we want to schedule a 

transaction for execution. We scan Q sequentially 
until a desirable transaction T is found or we scan 
all the transactions in Q. A desirable transaction T 
is chosen according to some reordering criteria. If 
such a transaction is found, it is moved from Q to 
Sr and executed.  

(2) Operation 2: Once a transaction is committed or 
aborted, it leaves Sr. 

When we search for the desirable transaction, we are 
essentially looking for a transaction that is 
“compatible” with the running transactions in Sr. That 
is, we implicitly divide transactions into different types 
and only concurrently execute the transactions that are 
of “compatible” types. In Luo et al. [LNE06], this 
criterion is that the desirable transaction has no lock 
conflicts with the transactions in Sr. The idea of using 
transaction types to improve database performance has 
been investigated previously [BSR80, GM83]. 
However, those methods are mainly used for 
concurrency control purpose rather than for reordering 
transactions. Also, their classification methods are 
different from ours: 
(1) In [BSR80], two transactions are of the same type 

if they have similar access patterns, conflict 
heavily, and cannot be interleaved. Here, in our 
classification, transactions of the same type ideally 
do not conflict and can be interleaved.  

(2) The purpose of the classification in [GM83] is to 
allow non-serializable schedules which preserve 
consistency and which are acceptable to the users. 
In our transaction reordering method, we still 
preserve serializability. This is because we assume 
that the strict two-phase locking protocol is used 
and transaction reordering is done outside of the 
query execution engine. 

During transaction reordering, we need to prevent 
transactions from starvation. We refer the reader to 
Luo et al. [LNE06] for a detailed discussion of the 
starvation prevention algorithm and its impact on 
transaction response time. 

The above discussion assumes that transaction 
reordering is implemented inside the RDBMS. 
Transaction reordering can also be implemented 
outside the RDBMS as an add-on module. These two 

choices are shown in Figure 2, where the dotted 
rectangle denotes the RDBMS. The inside-RDBMS 
choice affords more opportunities for reordering, as the 
reorderer is tightly integrated with the RDBMS and 
can use detailed information about the current state of 
the system. Also, certain reordering policy (such as the 
one described in Section 3 for exploiting synchronized 
scans) can only be implemented using the inside-
RDBMS choice if it requires support of other modules 
in the RDBMS. The outside-RDBMS choice has the 
advantage of not needing to change the database 
engine and is especially suitable for database 
application developers. However, putting the reorderer 
outside the system means that it might have to treat the 
system as a “black box” and certain opportunities for 
reordering will be missed. It also requires an additional 
parsing of each transaction (once in the reorderer, once 
in the system). Section 4.2 gives an example of the 
outside-RDBMS choice. 

 
 

 
 
 
 
 
 
 
 

 
(1) reorderer resides inside the RDBMS 

 
 
 
 
 
 
 
 
 
 

(2) reorderer resides outside the RDBMS 
 

Figure 2. Transaction reordering architecture. 
 

3. A Transaction Reordering Algorithm 
for Exploiting Synchronized Scans 

 
In this section, we show how buffer pool analysis 

can be used as the reordering criterion. When we 
mention a transaction T that does full table scan on 
relation R, we mean that transaction T only reads 
relation R and executes no other operations. We use 
synchronized scan [ZDN98] as a concrete example to 
illustrate our techniques. We first show in Section 3.1 

parser & optimizer 

reorderer 

query execution engine 

transaction 

parser & optimizer 

reorderer 

query execution engine 

transaction 
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that the existing buffer management methods cannot 
utilize the synchronized scan technique efficiently 
when the RDBMS is heavily loaded. Then in Section 
3.2, we provide a solution to this problem using 
transaction reordering. 
 

3.1 Synchronized Scans and Load 
Management 

 
In a typical data warehouse, there are a few very 

large relations with multiple queries submitted against 
them simultaneously. Some of these queries involve 
expensive full table scans. Such full table scans are 
unavoidable, as it is impossible to predict every 
possible access path into these large relations and/or 
afford the disk space and maintenance overhead to 
create all the indices that might be needed [Slo92]. As 
ad hoc querying of data warehouses is becoming more 
common [PF00, LBM07], the number of full table 
scans is greatly increased. Such a large number of 
expensive full table scans will consume a large portion 
of the disk I/O capability in the RDBMS and 
significantly decrease the amount of disk I/O capability 
available to the other transactions. To attack this 
problem, people have developed the synchronized scan 
technique that is available in at least four commercial 
database systems: Teradata [ZDN98], Red Brick 
[Fer94], Microsoft SQL Server [SQL07], and IBM 
DB2 [LBM07]. The main idea of the synchronized 
scan technique is that if two transactions are scanning 
the same relation, then we can group them together so 
that I/Os can be shared between them. This reduces the 
cumulative number of I/Os required by the scans while 
additionally saving CPU cycles that would otherwise 
have been required to process the extra I/Os. 

As discussed below, synchronized scans are 
typically implemented in the following way (minor 
differences in implementation details will not influence 
our transaction reordering algorithm). Consider a 
relation R containing K1 pages in total. When a 
transaction T1 starts a full table scan on relation R, we 
add some information recording this fact into an in-
memory data structure DS (this information is dropped 
out of DS when transaction T1 finishes the scan). Also, 
transaction T1 keeps K2 buffer pages (a predefined 
number) as a cache to hold the most recent K2 pages 
that it just accessed in relation R.  When a second 
transaction T2 starts a full table scan on relation R, we 
first check the in-memory data structure DS to see 
whether some transaction is currently scanning relation 
R or not. If so, e.g., suppose transaction T1 is 
processing the J-th page of relation R, then transaction 
T2 starts scanning relation R from the J-th page. In this 
way, transactions T1 and T2 can hopefully share the K1-

J+1 I/Os when they scan relation R.  When transaction 
T2 finishes processing the last page of relation R, it 
goes back to the beginning of relation R to make up the 
previously omitted first J-1 pages (other transactions 
may do synchronized scan with transaction T2 for these 
J-1 pages). Note transactions T1 and T2 are not always 
“locked” together, but may drift apart if the required 
processing time for the scans differ too much from 
each other. For example, as long as the two scans are 
separated by less than K2 pages, the K2 buffer pages are 
used to save the intermediate blocks until the slower 
scan catches up. However, if the divergence exceeds 
K2 pages, the two scans are separated and run 
independently, and no caching is performed. This 
prevents us from experiencing large response times due 
to a fast scan waiting for a slow scan to catch up. 

From the above description, we can see that after 
transaction T2 joins transaction T1 for synchronized 
scan, transaction T2 does not consume many extra 
buffer pages (except for a few buffer pages to 
temporarily store the query results) unless sometime 
later the two scans drift too far away from each other. 
However, the latter situation does not occur frequently. 
This is because the fast scan needs to be in charge of 
doing the time-consuming operation of fetching pages 
from disk into the buffer pool. During this period, the 
slow scan can catch up, as all the pages that it is 
currently working on reside in the buffer pool. Also, 
Lang et al. [LBM07] proposed a few techniques to 
reduce the likelihood that two scans drift too far away 
from each other. 

The state-of-the-art buffer management algorithms 
cannot utilize the synchronized scan technique 
efficiently when the RDBMS is heavily loaded. This is 
because in a typical buffer management algorithm 
[FNS91, JS94, CD85, SS82], after all the buffer pages 
in the buffer pool are committed, no new transactions 
are allowed to enter the RDBMS for execution. (In 
fact, in a typical implementation, after a large percent 
(not all ⎯ this is mainly for the purpose of safety) of 
the buffer pages in the buffer pool are committed, no 
new transactions are allowed to enter the RDBMS for 
execution.) That is, after all the buffer pages are used 
up, even if some transaction T1 is currently doing a full 
table scan on relation R, a new transaction T2 scanning 
relation R is not allowed to enter the system to join 
transaction T1 for synchronized scan. However, in this 
case, synchronized scan would be desirable (i.e., we 
should push transaction T2 to enter the system for 
execution), as it usually does not consume many extra 
buffer pages (except for a few buffer pages to 
temporarily store the query results). Later, when 
transaction T2 is finally allowed to enter the system, 
transaction T1 may have already finished execution so 
that transaction T2 cannot utilize synchronized scan any 
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more. Rather, transaction T2 needs to reread all the 
pages of relation R from disk into the buffer pool. This 
leads to the waste of a large number of disk I/Os and 
CPU cycles.  
 

3.2 Applying Transaction Reordering 
 
To address the above problem, we use buffer pool 

analysis as another reordering criterion. This is to 
maximize the chance that the synchronized scan 
technique can be utilized. In the discussion below, we 
only apply synchronized scan to transactions (queries) 
that do full table scan on a single relation. The case 
with more complex transactions (e.g., queries including 
joins) is left for future work. 
(1) Technique 1: We maintain an in-memory hash 

table HT that keeps track of all the full table scans 
in the transaction admission queue Q, as shown in 
Figure 3. Each element in HT is of the following 
format: (relation name, list of transactions in Q 
that does full table scan on this relation). Each 
time we find a desirable transaction T in Q, if 
transaction T does full table scan on relation R, we 
move some (or all) of the transactions in Q that 
does full table scan on relation R to Sr for 
execution. Note we may not be able to move all 
such transactions in Q to Sr for execution. For 
example, the system may not have enough threads 
to run all such transactions in Q. However, as long 
as the system permits, we move as many such 
transactions to Sr as possible.  

(2) Technique 2: When a new transaction T that does 
full table scan on relation R arrives, before it is 
blocked in Q, we first check the data structure DS 
to see whether some transaction in Sr is currently 
doing a full table scan on relation R.  If so, and if 
we have threads available and the system is not on 
the edge of thrashing due to a large number of lock 
conflicts [CKL90], we run transaction T 
immediately so that it does not get blocked in Q. 
Note in this case, transaction T does not have 
table-level lock conflict (on relation R) with any 
transaction in Sr, otherwise it is impossible to have 
a transaction in Sr that is currently doing a full 
table scan on relation R. 

 
 

 
 
 
 
 
 
 
 

 
Figure 3. Hash table HT. 

 
Multiple scans in the same synchronized scan group 

may occasionally get separated if their scanning speeds 
differ too much from each other (as explained in 
Section 3.1, such chance is very low). This would 
cause synchronized scan to consume (possibly a large 
number of) extra buffer pages so that the system may 
be running out of buffer pages (in this case, the system 
may abort some running transactions). If this happens, 
or if the system is running out of threads or on the edge 
of thrashing due to a large number of lock conflicts, we 
stop using Technique 1 and Technique 2 until the 
system returns to normal state. 

In a typical scenario, most long-running transactions 
in the RDBMS are I/O-bound rather than CPU-bound 
[RDS02]. Our transaction reordering method for 
exploiting synchronized scans requires a few CPU 
cycles and can be regarded as a way to trade CPU 
cycles for disk I/Os. It can greatly improve the 
throughput of a targeted class of transactions that can 
share synchronized scans and reduce the processing 
load on the database engine, while it has only a minor 
impact on the throughput of other classes of 
transactions. This is because the “extra” transactions 
that are scheduled to run by our transaction reordering 
method use synchronized scans and basically do not 
compete with existing transactions on I/Os. 
 

4. Performance Evaluation 

 
In this section, we describe experiments that were 

performed in two commercial RDBMSs: Teradata and 
another commercial RDBMS. In Teradata, we 
investigated the performance of the transaction 
reordering method when buffer pool analysis was 
considered. In the other commercial RDBMS, we use 
the transaction ordering method with lock conflict 
analysis to address certain system dependent issue 
without changing the database engine.  

In the first case, we focus on the throughput of a 
targeted class of transactions (i.e., transactions that 
may share table scans). This is because in a mixed 
workload environment, our method would greatly 
improve the throughput of the targeted class of 
transactions while the throughput of other classes of 
transactions would remain much the same. Our 
measurements were performed with the database client 
application and server running on an Intel x86 Family 
6 Model 5 Stepping 3 workstation with four 400MHz 
processors, 1GB main memory, six 8GB disks, and 
running the Microsoft Windows 2000 operating 
system.  

HT 

… 

… 

relation id 

relation id 
transaction 

id … 
transaction 

id 

relation id 
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Figure 4. Throughput achieved by the transaction 

reordering method (with buffer pool analysis).
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4.1 Experiments in Teradata 
 
We first conducted experiments in the commercial 

parallel RDBMS Teradata Release V2R5. We allocated 
a processor and a disk for each data server, so there 
were at most four data servers on each workstation. 

We created w relations Ri (1≤i≤w) and a set of other 
relations St. All the relations Ri (1≤i≤w) are of the same 
schema and contain the same number of tuples (and 
thus are of the same size), as shown in Table 1. w is an 
arbitrarily large number. Its specific value does not 
matter, as we only focus on the transaction throughput 
of the RDBMS. 

 

Table 1. Test data set. 
 number of tuples total size 

Ri (1≤i≤w) 8.4M 408MB 

 
There are two kinds of transactions that we used for 

the testing: 
(1) Ti (1≤i≤w): Perform a full table scan on relation 

Ri. All the full table scans use the same query 
(except for the relation name). Such kind of full 
table scan queries are frequently encountered, as 
adhoc querying of real-time data warehouses is 
becoming increasingly common [Kla, PF00, 
LBM07]. 

(2) U: Execute some query on the relations in St. 
We evaluated the performance of the transaction 

reordering method and the baseline method in the 
following way: 
(1) We tested the system configurations with four data 

server nodes (L=4) and eight data server nodes 
(L=8). 

(2) We ran multiple long running U’s so that most 
buffer pages in the buffer pool were committed. 
The remaining free buffer pages in the buffer pool 
only allowed the database to run y different Ti’s. 

(3) For each i (1≤i≤w), we ran z Ti’s. That is, we ran 
w×z Ti’s in total.  

(4) In the baseline method, we sent all the w×z Ti’s to 
the database simultaneously (so that the original 
transaction sequence arriving at the RDBMS was 
in a random order).  

(5) In the transaction reordering method, we used a 
centralized reorderer to reorder all the 
transactions.  

We measured the throughput of the w×z Ti’s. The 
transaction throughput achieved by the transaction 
reordering method is shown in Figure 4. As long as 
w>>z, the transaction throughput of the baseline 
method does not depend on the specific value of z and 
is fairly close to that of the transaction reordering 

method in the z=1 case. This is because in this case, no 
matter how large z is, the probability that in the 
baseline method, the database runs multiple Ti’s with 
the same i value concurrently is low. That is, the 
probability that the baseline method uses the 
synchronized scan technique is low. 

 

 
When z>1, the transaction reordering method 

schedules the z Ti’s with the same i value to run 
concurrently using the synchronized scan technique. 
Hence, the throughput of the transaction reordering 
method increases with z and becomes higher than that 
of the baseline method. When z becomes large enough 
(e.g., z=8), the CPU becomes the bottleneck. Because 
of this, the CPU speed approximately bounds the 
throughput achieved by the transaction reordering 
method. In more detail, as z increases, the throughput 
achieved by the transaction reordering method 
approaches a constant, where all CPUs are fully 
utilized. Since the 8-node configuration has twice the 
number of data server nodes than the 4-node 
configuration, and the sizes of the relation Ri’s remain 
the same, the throughput of the transaction reordering 
method in the 8-node configuration case is close to 
twice that of the 4-node configuration. 

The larger the y is, the more different Ti’s compete 
for the disk I/O capability of Teradata. This will cause 
the disk heads to continuously oscillate among the 
different tracks where different Ri’s are located. The 
effective disk I/O capability available for each Ti 
decreases as y increases. Hence, before all CPUs are 
fully utilized (i.e., when z is small), for a fixed z, the 
throughput achieved by the transaction reordering 
method decreases as y increases. However, when all 
CPUs become fully utilized (i.e., when z is large 
enough), the throughput achieved by the transaction 
reordering method approaches a constant that is 
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Figure 5. Throughput improvement gained by the 

transaction reordering method (with buffer pool analysis).
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independent of y, as that constant is almost solely 
determined by the CPU speed. 

 
We show the ratio of the transaction throughput of 

the transaction reordering method to that of the 
baseline method in Figure 5. As explained above, 
(1) The throughput of the transaction reordering 

method approaches a constant as z increases while 
the throughput of the baseline method is almost 
independent of z. Hence, the ratio approaches a 
constant as z increases. 

(2) The throughput of the transaction reordering 
method (the baseline method) in the 8-node 
configuration case is close to twice that of the 4-
node configuration. Hence, the ratio in the 8-node 
configuration is close to the ratio in the 4-node 
configuration.  

(3) As z increases, the throughput achieved by the 
transaction reordering method approaches a 
constant that is independent of y. The throughput 
of the baseline method (which is close to the 
throughput achieved by the transaction reordering 
method in the z=1 case) decreases as y increases. 
Hence, as y increases, so does the constant that the 
ratio approaches as z increases. 

In our testing, we never observed that once joined 
for synchronized scan, two scans drifted too far away 
from each other and got separated. This confirms our 
theory in Section 3.1. 
 

4.2 Experiments in Another RDBMS 
 
To demonstrate the wide applicability of the 

transaction reordering method, we conducted 
experiments in the latest version of another commercial 
RDBMS from a major vendor. This RDBMS uses a 
different concurrency control mechanism than 
Teradata. In this system, if multiple transactions run 
concurrently, each updating a base relation that has a 
materialized view defined on it, only one transaction 
can commit successfully while all the other 

transactions are aborted. This holds true no matter 
whether the base relations updated by these 
transactions are the same or not. It would be desirable 
to reorder transactions for this system so that at any 
time, at most one such transaction runs in the database 
updating a base relation that has a materialized view 
defined on it. 

We analyzed the performance of the transaction 
reordering method in this RDBMS when lock conflicts 
were considered (see Luo et al. [LNE06] for details of 
the lock conflict analysis). We created a set of relations 
S1 and another set of relations S2. Each relation in S1 is 
a base relation of some materialized join view. 
Different relations in S1 may have different 
materialized join views defined on them. No 
materialized view is defined on any relation in S2. 
There are two kinds of transactions that we used for the 
testing: 
(1) T1: Insert multiple tuples into some relation in S1. 
(2) T2: Execute some query/update on the relations in 

S2. No T2 conflicts with either a T1 or another T2. 
We evaluated the performance of the transaction 

reordering method and the baseline method in the 
following way: 
(1) We used a uni-processor database configuration. 

At any time, at most n transactions were allowed 
to run concurrently in the database (n is a large 
number whose specific value does not matter). 

(2) We ran x transactions in total. x is an arbitrarily 
large number. Its specific value does not matter, as 
we only focus on the transaction throughput of the 
RDBMS. u% of these x transactions are T1. The 
remaining (100-u)% of these x transactions were 
T2. If some transaction aborted, we automatically 
re-executed it until it committed. 

(3) In the baseline method, we sent all the transactions 
to the database simultaneously (so that the original 
transaction sequence arriving at the RDBMS was 
in a random order). In this case, as multiple T1’s 
may run concurrently in the database, some of 
them were aborted and re-executed. This 
decreased the transaction throughput of the 
RDBMS. 

(4) In the transaction reordering method, we used a 
reorderer to reorder all the transactions so that at 
any time, at most one T1 was running. 

We show the ratio of the transaction throughput of 
the transaction reordering method to that of the 
baseline method in Figure 6. In the baseline method, if 
multiple T1’s run concurrently, all but one of these T1’s 
are aborted and re-executed. The probability that 
multiple T1’s run concurrently increases with u. When 
u is small, such probability is small. In this case, 
almost no transaction is aborted. Even if a transaction 
gets aborted, its first-time execution has already 
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Figure 6. Throughput improvement gained by the 

transaction reordering method in another RDBMS (with 

lock conflict analysis) .
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fetched the necessary pages into memory. Re-
executing the same transaction a second time is quick 
[FRT92]. Hence, the throughput of the transaction 
reordering method is the same as that of the baseline 
method. However, when u becomes large, the 
probability that multiple T1’s run concurrently also 
becomes large. This will cause a substantial percentage 
of the T1’s to get aborted and re-executed in the 
baseline method. Some of those re-executed T1’s may 
run concurrently with other (either first-time or re-
executed) T1’s and get aborted and re-executed again. 
That is, in the baseline method, a T1 may be aborted 
and re-executed multiple times before it is finally 
committed. The average number of times that a T1 is 
aborted and re-executed increases with u. Hence, when 
u becomes large enough, the performance advantage of 
the transaction reordering method, i.e., the throughput 
ratio, becomes significant and keeps increasing with u.  
In the extreme case, when u=100 (i.e., when all the 
transactions are T1), the throughput of the transaction 
reordering method is 3.85 times that of the baseline 
method. 

 

5. Conclusion  

 
This paper proposes a general transaction reordering 

framework to improve the performance of an RDBMS. 
The basic idea underlying transaction reordering is that 
by combining knowledge about the currently running 
transactions and the transactions waiting to be run, a 
system can improve performance by selecting for 
running those transactions that “fit best” with those 
that are already running. In this paper we explored two 
different techniques, the first based upon increasing 
buffer pool hit rates, the second upon reducing 
concurrency control conflicts. Our experiments with 
two commercial systems are promising, showing that 
the transaction reordering method can significantly 
improve throughput for certain workloads.  

Developing and exploring ways to define and detect 
which transactions “fit best” is a rich area for future 
work. Such future work can either seek to exploit 
intrinsic properties of sequences of transactions, or it 
can seek to exploit performance problems that arise 
due to idiosyncrasies of specific commercial systems. 
Both approaches are interesting – as commercial 
RDBMSs continue to grow in complexity, the 
difficulty of making major changes to their 
functionality also grows, to the point where it is 
interesting in some cases to view them as artifacts to be 
studied rather than as programs to be modified. 
Transaction reordering research is one example of this 
approach. 
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