
RC24264 (W0705-106) May 22, 2007
Computer Science

IBM Research Report

Transaction Reordering with Application to
Synchronized Scans

Gang Luo
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Jeffrey F. Naughton, Curt J. Ellmann
University of Wisconsin

Madison

Michael W. Watzke
Teradata

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Transaction Reordering with Application to Synchronized Scans

Gang Luo1 Jeffrey F. Naughton2 Curt J. Ellmann3 Michael W. Watzke3
IBM T.J. Watson Research Center1 University of Wisconsin-Madison2 Teradata3

luog@us.ibm.com naughton@cs.wisc.edu ellmann@wisc.edu michael.watzke@ncr.com

Abstract

Traditional workload management methods mainly
focus on the current system status while information
about the interaction between queued and running
transactions is largely ignored. An exception to this is
the transaction reordering method, which reorders the
transaction sequence submitted to the RDBMS and
improves the transaction throughput by considering
both the current system status and information about
the interaction between queued and running
transactions. The existing transaction reordering
method only considers the reordering opportunities
provided by analyzing the lock conflict information
among multiple transactions. This significantly limits
the applicability of the transaction reordering method.
In this paper, we extend the existing transaction
reordering method into a general transaction
reordering framework that can incorporate various
factors as the reordering criteria. We show that by
analyzing the resource utilization information of
transactions, the transaction reordering method can
also improve the system throughput by increasing the
resource sharing opportunities among multiple
transactions. We provide a concrete example on
synchronized scans and demonstrate the advantages of
our method through experiments with a commercial
parallel RDBMS.

1. Introduction

Traditional workload management methods mainly

focus on the current system status [CKL90, FNS91].
For example, in a typical RDBMS, the load controller
only allows a certain number of complex queries to run
concurrently. Also, if the system is in the danger of
thrashing (i.e., admitting more transactions for
execution will lead to excessive overhead and severe
performance degradation [CKL90]), the load controller
may choose not to run any new transactions.

To support modern applications, users are
continually requiring higher performance from
RDBMSs. To meet this requirement, Luo et al.

[LNE06] proposed the transaction reordering method
for continuous data loading [Ter]. This workload
management method uses information about the
interaction between queued and running transactions to
improve the throughput of an RDBMS by reordering
the transactions before submitting them for execution.
Although the general idea is interesting, the
applicability of the existing transaction reordering
method is limited, as that method only considers the
reordering opportunities provided by analyzing the
lock conflict information among multiple transactions.

 In this paper, we extend the existing transaction
reordering method into a general transaction reordering
framework that can incorporate various factors as the
reordering criteria for different applications. We show
that the resource utilization information of transactions
can provide another opportunity for the transaction
reordering method to improve the throughput of an
RDBMS. Our idea is to reorder transactions to increase
the likelihood that they can share resources (e.g.,
sharing data in the buffer pool, or perhaps even sharing
intermediate computations common to several
transactions). As a concrete example, we show how to
exploit synchronized scans [Fer94, LBM07] to reorder
transactions so that buffer pool performance can be
improved.

Reordering transactions requires CPU cycles.
However, the increasing disparity between CPU and
disk performance renders trading CPU cycles for disk
I/Os more attractive as a way of improving DBMS
performance [RDS02]. Our transaction reordering
method for exploiting synchronized scans can be
regarded as a way to trade CPU cycles for disk I/Os.
Our experiments in a commercial parallel RDBMS
show that with minor overhead, our proposed
transaction reordering method greatly improves the
throughput of a targeted class of transactions while it
has only a minor impact on the throughput of other
classes of transactions.

There are two main reasons why transaction
reordering might be effective. The first is system
independent – for example, it might be that a
reordering of a transaction sequence truly eliminates
some intrinsic lock conflicts between adjacent

 2

transactions (as discussed in Luo et al. [LNE06])
and/or makes resource sharing possible. The second is
system dependent – for example, a system may have a
particular implementation of buffer management or
concurrency control that renders one order of
transactions superior to another. Even reordering to
exploit system dependent opportunities is useful.
Commercial RDBMSs are large, complex pieces of
code, and changes in functionality can require a very
long design-implement-test-release cycle. In many
cases it may be far simpler to do some reordering of
transactions outside of the RDBMS before submitting
them to the RDBMS for execution than it would be to
change, say, the concurrency control subsystem of the
RDBMS. This is especially true for database
application developers who are unable to change the
database engine. This system dependent issue has
never been discussed before and we show such an
example here in a major commercial RDBMS.

In related work, the operating system community has
explored the approach of adding a module outside of a
system to reorder web server requests based on the
knowledge of OS buffer contents [AA01, BBA02].
The database community has proposed multi-query
optimization [RSS00, Sel88] for resource sharing. The
traditional multi-query optimization approach work in
a batch fashion, as the optimizer needs to wait for a
sufficient number of incoming queries with common
sub-expressions to arrive, and then before executing
them, changes their query plans to share common sub-
expressions. Our transaction reordering method is
dynamic and online: there is no need for either
changing the query plans or waiting.

The rest of this paper is organized as follows.
Section 2 extends the existing transaction reordering
method into a general transaction reordering
framework. Section 3 discusses our transaction
reordering method for exploiting synchronized scans.
Section 4 investigates the performance of the
transaction reordering method through an evaluation in
two commercial RDBMSs. We conclude in Section 5.

2. General Transaction Reordering
Framework

The transaction reordering method was originally

proposed in Luo et al. [LNE06]. That method uses lock
conflict analysis as the single reordering criterion and
only works for continuous data loading [Ter]. Actually,
transaction reordering is a general technique to
improve RDBMS performance. It can be applied to
multiple applications. In this section, we extend the
existing transaction reordering method in Luo et al.
[LNE06] into a general transaction reordering

framework. This framework can easily take different
factors into consideration as various reordering criteria.
In Section 3, we show how to use buffer pool analysis
as the reordering criterion to exploit synchronized
scans. In our discussion, we assume that the strict two-
phase locking protocol is used and all the transactions
have the same priority.

The basic concept of transaction reordering is
simple. In an RDBMS, generally, at any time there are
M1 transactions waiting in a FIFO transaction
admission queue Q to be admitted to the system for
execution, while another M2 transactions forming a set
Sr are currently running in the system. Such a
transaction admission queue Q is commonly used for
load control purpose [CKL90, FNS91].

Figure 1. The general transaction reordering
framework.

Those transactions in the transaction admission

queue Q are the candidates for reordering. That is, the
reorderer reorders the transactions waiting in Q so that
the expected throughput of the reordered transaction
sequence exceeds that of the original transaction
sequence. In its reordering decisions, the reorderer
exploits properties it deduces about the blocked
transactions in Q and the properties it knows about the
active transactions in Sr. The improvement in overall
system throughput is a function of (a) the number of
factors considered for reordering transactions, and (b)
the quality of the original transaction sequence. The
more factors considered, the better quality the
reordered transaction sequence has. However, the time
spent on reordering cannot be unlimited, as we need to
ensure that the reordering overhead is smaller than the
benefit we gain in throughput. Also, we need to ensure
acceptable transaction response time in the sense that
no transaction is subject to starvation. There are a wide
range of reordering algorithms that could be used. At
the extremes, we could:
(1) Do no analysis. Run all the transactions in the

order that they arrive at the RDBMS.
(2) Take a snapshot of the system. Analyze every

possible order of the transactions and record the
corresponding throughput. Pick the optimal order
to run all the transactions.

Q

Sr

move transaction from Q to Sr

transaction enters Q

transaction leaves Sr

…

…

 3

The first extreme may be undesirable if some amount
of reordering can improve the throughput. The second
extreme is obviously unrealistic due to the exponential
analysis overhead. Our goal is to find a good
compromise between these two extremes. That is,
under the constraint of acceptable transaction response
time, we want to maximize the difference between the
gain in throughput and the reordering overhead.

In the general transaction reordering framework, we
reorder transactions in the follow way:
(1) Operation 1: Suppose we want to schedule a

transaction for execution. We scan Q sequentially
until a desirable transaction T is found or we scan
all the transactions in Q. A desirable transaction T
is chosen according to some reordering criteria. If
such a transaction is found, it is moved from Q to
Sr and executed.

(2) Operation 2: Once a transaction is committed or
aborted, it leaves Sr.

When we search for the desirable transaction, we are
essentially looking for a transaction that is
“compatible” with the running transactions in Sr. That
is, we implicitly divide transactions into different types
and only concurrently execute the transactions that are
of “compatible” types. In Luo et al. [LNE06], this
criterion is that the desirable transaction has no lock
conflicts with the transactions in Sr. The idea of using
transaction types to improve database performance has
been investigated previously [BSR80, GM83].
However, those methods are mainly used for
concurrency control purpose rather than for reordering
transactions. Also, their classification methods are
different from ours:
(1) In [BSR80], two transactions are of the same type

if they have similar access patterns, conflict
heavily, and cannot be interleaved. Here, in our
classification, transactions of the same type ideally
do not conflict and can be interleaved.

(2) The purpose of the classification in [GM83] is to
allow non-serializable schedules which preserve
consistency and which are acceptable to the users.
In our transaction reordering method, we still
preserve serializability. This is because we assume
that the strict two-phase locking protocol is used
and transaction reordering is done outside of the
query execution engine.

During transaction reordering, we need to prevent
transactions from starvation. We refer the reader to
Luo et al. [LNE06] for a detailed discussion of the
starvation prevention algorithm and its impact on
transaction response time.

The above discussion assumes that transaction
reordering is implemented inside the RDBMS.
Transaction reordering can also be implemented
outside the RDBMS as an add-on module. These two

choices are shown in Figure 2, where the dotted
rectangle denotes the RDBMS. The inside-RDBMS
choice affords more opportunities for reordering, as the
reorderer is tightly integrated with the RDBMS and
can use detailed information about the current state of
the system. Also, certain reordering policy (such as the
one described in Section 3 for exploiting synchronized
scans) can only be implemented using the inside-
RDBMS choice if it requires support of other modules
in the RDBMS. The outside-RDBMS choice has the
advantage of not needing to change the database
engine and is especially suitable for database
application developers. However, putting the reorderer
outside the system means that it might have to treat the
system as a “black box” and certain opportunities for
reordering will be missed. It also requires an additional
parsing of each transaction (once in the reorderer, once
in the system). Section 4.2 gives an example of the
outside-RDBMS choice.

(1) reorderer resides inside the RDBMS

(2) reorderer resides outside the RDBMS

Figure 2. Transaction reordering architecture.

3. A Transaction Reordering Algorithm
for Exploiting Synchronized Scans

In this section, we show how buffer pool analysis

can be used as the reordering criterion. When we
mention a transaction T that does full table scan on
relation R, we mean that transaction T only reads
relation R and executes no other operations. We use
synchronized scan [ZDN98] as a concrete example to
illustrate our techniques. We first show in Section 3.1

parser & optimizer

reorderer

query execution engine

transaction

parser & optimizer

reorderer

query execution engine

transaction

 4

that the existing buffer management methods cannot
utilize the synchronized scan technique efficiently
when the RDBMS is heavily loaded. Then in Section
3.2, we provide a solution to this problem using
transaction reordering.

3.1 Synchronized Scans and Load
Management

In a typical data warehouse, there are a few very

large relations with multiple queries submitted against
them simultaneously. Some of these queries involve
expensive full table scans. Such full table scans are
unavoidable, as it is impossible to predict every
possible access path into these large relations and/or
afford the disk space and maintenance overhead to
create all the indices that might be needed [Slo92]. As
ad hoc querying of data warehouses is becoming more
common [PF00, LBM07], the number of full table
scans is greatly increased. Such a large number of
expensive full table scans will consume a large portion
of the disk I/O capability in the RDBMS and
significantly decrease the amount of disk I/O capability
available to the other transactions. To attack this
problem, people have developed the synchronized scan
technique that is available in at least four commercial
database systems: Teradata [ZDN98], Red Brick
[Fer94], Microsoft SQL Server [SQL07], and IBM
DB2 [LBM07]. The main idea of the synchronized
scan technique is that if two transactions are scanning
the same relation, then we can group them together so
that I/Os can be shared between them. This reduces the
cumulative number of I/Os required by the scans while
additionally saving CPU cycles that would otherwise
have been required to process the extra I/Os.

As discussed below, synchronized scans are
typically implemented in the following way (minor
differences in implementation details will not influence
our transaction reordering algorithm). Consider a
relation R containing K1 pages in total. When a
transaction T1 starts a full table scan on relation R, we
add some information recording this fact into an in-
memory data structure DS (this information is dropped
out of DS when transaction T1 finishes the scan). Also,
transaction T1 keeps K2 buffer pages (a predefined
number) as a cache to hold the most recent K2 pages
that it just accessed in relation R. When a second
transaction T2 starts a full table scan on relation R, we
first check the in-memory data structure DS to see
whether some transaction is currently scanning relation
R or not. If so, e.g., suppose transaction T1 is
processing the J-th page of relation R, then transaction
T2 starts scanning relation R from the J-th page. In this
way, transactions T1 and T2 can hopefully share the K1-

J+1 I/Os when they scan relation R. When transaction
T2 finishes processing the last page of relation R, it
goes back to the beginning of relation R to make up the
previously omitted first J-1 pages (other transactions
may do synchronized scan with transaction T2 for these
J-1 pages). Note transactions T1 and T2 are not always
“locked” together, but may drift apart if the required
processing time for the scans differ too much from
each other. For example, as long as the two scans are
separated by less than K2 pages, the K2 buffer pages are
used to save the intermediate blocks until the slower
scan catches up. However, if the divergence exceeds
K2 pages, the two scans are separated and run
independently, and no caching is performed. This
prevents us from experiencing large response times due
to a fast scan waiting for a slow scan to catch up.

From the above description, we can see that after
transaction T2 joins transaction T1 for synchronized
scan, transaction T2 does not consume many extra
buffer pages (except for a few buffer pages to
temporarily store the query results) unless sometime
later the two scans drift too far away from each other.
However, the latter situation does not occur frequently.
This is because the fast scan needs to be in charge of
doing the time-consuming operation of fetching pages
from disk into the buffer pool. During this period, the
slow scan can catch up, as all the pages that it is
currently working on reside in the buffer pool. Also,
Lang et al. [LBM07] proposed a few techniques to
reduce the likelihood that two scans drift too far away
from each other.

The state-of-the-art buffer management algorithms
cannot utilize the synchronized scan technique
efficiently when the RDBMS is heavily loaded. This is
because in a typical buffer management algorithm
[FNS91, JS94, CD85, SS82], after all the buffer pages
in the buffer pool are committed, no new transactions
are allowed to enter the RDBMS for execution. (In
fact, in a typical implementation, after a large percent
(not all ⎯ this is mainly for the purpose of safety) of
the buffer pages in the buffer pool are committed, no
new transactions are allowed to enter the RDBMS for
execution.) That is, after all the buffer pages are used
up, even if some transaction T1 is currently doing a full
table scan on relation R, a new transaction T2 scanning
relation R is not allowed to enter the system to join
transaction T1 for synchronized scan. However, in this
case, synchronized scan would be desirable (i.e., we
should push transaction T2 to enter the system for
execution), as it usually does not consume many extra
buffer pages (except for a few buffer pages to
temporarily store the query results). Later, when
transaction T2 is finally allowed to enter the system,
transaction T1 may have already finished execution so
that transaction T2 cannot utilize synchronized scan any

 5

more. Rather, transaction T2 needs to reread all the
pages of relation R from disk into the buffer pool. This
leads to the waste of a large number of disk I/Os and
CPU cycles.

3.2 Applying Transaction Reordering

To address the above problem, we use buffer pool

analysis as another reordering criterion. This is to
maximize the chance that the synchronized scan
technique can be utilized. In the discussion below, we
only apply synchronized scan to transactions (queries)
that do full table scan on a single relation. The case
with more complex transactions (e.g., queries including
joins) is left for future work.
(1) Technique 1: We maintain an in-memory hash

table HT that keeps track of all the full table scans
in the transaction admission queue Q, as shown in
Figure 3. Each element in HT is of the following
format: (relation name, list of transactions in Q
that does full table scan on this relation). Each
time we find a desirable transaction T in Q, if
transaction T does full table scan on relation R, we
move some (or all) of the transactions in Q that
does full table scan on relation R to Sr for
execution. Note we may not be able to move all
such transactions in Q to Sr for execution. For
example, the system may not have enough threads
to run all such transactions in Q. However, as long
as the system permits, we move as many such
transactions to Sr as possible.

(2) Technique 2: When a new transaction T that does
full table scan on relation R arrives, before it is
blocked in Q, we first check the data structure DS
to see whether some transaction in Sr is currently
doing a full table scan on relation R. If so, and if
we have threads available and the system is not on
the edge of thrashing due to a large number of lock
conflicts [CKL90], we run transaction T
immediately so that it does not get blocked in Q.
Note in this case, transaction T does not have
table-level lock conflict (on relation R) with any
transaction in Sr, otherwise it is impossible to have
a transaction in Sr that is currently doing a full
table scan on relation R.

Figure 3. Hash table HT.

Multiple scans in the same synchronized scan group

may occasionally get separated if their scanning speeds
differ too much from each other (as explained in
Section 3.1, such chance is very low). This would
cause synchronized scan to consume (possibly a large
number of) extra buffer pages so that the system may
be running out of buffer pages (in this case, the system
may abort some running transactions). If this happens,
or if the system is running out of threads or on the edge
of thrashing due to a large number of lock conflicts, we
stop using Technique 1 and Technique 2 until the
system returns to normal state.

In a typical scenario, most long-running transactions
in the RDBMS are I/O-bound rather than CPU-bound
[RDS02]. Our transaction reordering method for
exploiting synchronized scans requires a few CPU
cycles and can be regarded as a way to trade CPU
cycles for disk I/Os. It can greatly improve the
throughput of a targeted class of transactions that can
share synchronized scans and reduce the processing
load on the database engine, while it has only a minor
impact on the throughput of other classes of
transactions. This is because the “extra” transactions
that are scheduled to run by our transaction reordering
method use synchronized scans and basically do not
compete with existing transactions on I/Os.

4. Performance Evaluation

In this section, we describe experiments that were

performed in two commercial RDBMSs: Teradata and
another commercial RDBMS. In Teradata, we
investigated the performance of the transaction
reordering method when buffer pool analysis was
considered. In the other commercial RDBMS, we use
the transaction ordering method with lock conflict
analysis to address certain system dependent issue
without changing the database engine.

In the first case, we focus on the throughput of a
targeted class of transactions (i.e., transactions that
may share table scans). This is because in a mixed
workload environment, our method would greatly
improve the throughput of the targeted class of
transactions while the throughput of other classes of
transactions would remain much the same. Our
measurements were performed with the database client
application and server running on an Intel x86 Family
6 Model 5 Stepping 3 workstation with four 400MHz
processors, 1GB main memory, six 8GB disks, and
running the Microsoft Windows 2000 operating
system.

HT

…

…

relation id

relation id
transaction

id …
transaction

id

relation id

 6

Figure 4. Throughput achieved by the transaction

reordering method (with buffer pool analysis).

0

10

20

30

40

0 2 4 6 8 10
z

tr
an

sa
ct

io
n

 t
h

ro
u

g
h

p
u

t

L=4, y=1
L=4, y=2
L=4, y=4
L=8, y=1
L=8, y=2
L=8, y=4

4.1 Experiments in Teradata

We first conducted experiments in the commercial

parallel RDBMS Teradata Release V2R5. We allocated
a processor and a disk for each data server, so there
were at most four data servers on each workstation.

We created w relations Ri (1≤i≤w) and a set of other
relations St. All the relations Ri (1≤i≤w) are of the same
schema and contain the same number of tuples (and
thus are of the same size), as shown in Table 1. w is an
arbitrarily large number. Its specific value does not
matter, as we only focus on the transaction throughput
of the RDBMS.

Table 1. Test data set.
 number of tuples total size

Ri (1≤i≤w) 8.4M 408MB

There are two kinds of transactions that we used for

the testing:
(1) Ti (1≤i≤w): Perform a full table scan on relation

Ri. All the full table scans use the same query
(except for the relation name). Such kind of full
table scan queries are frequently encountered, as
adhoc querying of real-time data warehouses is
becoming increasingly common [Kla, PF00,
LBM07].

(2) U: Execute some query on the relations in St.
We evaluated the performance of the transaction

reordering method and the baseline method in the
following way:
(1) We tested the system configurations with four data

server nodes (L=4) and eight data server nodes
(L=8).

(2) We ran multiple long running U’s so that most
buffer pages in the buffer pool were committed.
The remaining free buffer pages in the buffer pool
only allowed the database to run y different Ti’s.

(3) For each i (1≤i≤w), we ran z Ti’s. That is, we ran
w×z Ti’s in total.

(4) In the baseline method, we sent all the w×z Ti’s to
the database simultaneously (so that the original
transaction sequence arriving at the RDBMS was
in a random order).

(5) In the transaction reordering method, we used a
centralized reorderer to reorder all the
transactions.

We measured the throughput of the w×z Ti’s. The
transaction throughput achieved by the transaction
reordering method is shown in Figure 4. As long as
w>>z, the transaction throughput of the baseline
method does not depend on the specific value of z and
is fairly close to that of the transaction reordering

method in the z=1 case. This is because in this case, no
matter how large z is, the probability that in the
baseline method, the database runs multiple Ti’s with
the same i value concurrently is low. That is, the
probability that the baseline method uses the
synchronized scan technique is low.

When z>1, the transaction reordering method

schedules the z Ti’s with the same i value to run
concurrently using the synchronized scan technique.
Hence, the throughput of the transaction reordering
method increases with z and becomes higher than that
of the baseline method. When z becomes large enough
(e.g., z=8), the CPU becomes the bottleneck. Because
of this, the CPU speed approximately bounds the
throughput achieved by the transaction reordering
method. In more detail, as z increases, the throughput
achieved by the transaction reordering method
approaches a constant, where all CPUs are fully
utilized. Since the 8-node configuration has twice the
number of data server nodes than the 4-node
configuration, and the sizes of the relation Ri’s remain
the same, the throughput of the transaction reordering
method in the 8-node configuration case is close to
twice that of the 4-node configuration.

The larger the y is, the more different Ti’s compete
for the disk I/O capability of Teradata. This will cause
the disk heads to continuously oscillate among the
different tracks where different Ri’s are located. The
effective disk I/O capability available for each Ti
decreases as y increases. Hence, before all CPUs are
fully utilized (i.e., when z is small), for a fixed z, the
throughput achieved by the transaction reordering
method decreases as y increases. However, when all
CPUs become fully utilized (i.e., when z is large
enough), the throughput achieved by the transaction
reordering method approaches a constant that is

 7

Figure 5. Throughput improvement gained by the

transaction reordering method (with buffer pool analysis).

100%

200%

300%

400%

500%

600%

700%

800%

0 2 4 6 8 10
z

tr
an

sa
ct

io
n

 t
h

ro
u

g
h

p
u

t
ra

ti
o L=4, y=1

L=4, y=2
L=4, y=4
L=8, y=1
L=8, y=2
L=8, y=4

independent of y, as that constant is almost solely
determined by the CPU speed.

We show the ratio of the transaction throughput of

the transaction reordering method to that of the
baseline method in Figure 5. As explained above,
(1) The throughput of the transaction reordering

method approaches a constant as z increases while
the throughput of the baseline method is almost
independent of z. Hence, the ratio approaches a
constant as z increases.

(2) The throughput of the transaction reordering
method (the baseline method) in the 8-node
configuration case is close to twice that of the 4-
node configuration. Hence, the ratio in the 8-node
configuration is close to the ratio in the 4-node
configuration.

(3) As z increases, the throughput achieved by the
transaction reordering method approaches a
constant that is independent of y. The throughput
of the baseline method (which is close to the
throughput achieved by the transaction reordering
method in the z=1 case) decreases as y increases.
Hence, as y increases, so does the constant that the
ratio approaches as z increases.

In our testing, we never observed that once joined
for synchronized scan, two scans drifted too far away
from each other and got separated. This confirms our
theory in Section 3.1.

4.2 Experiments in Another RDBMS

To demonstrate the wide applicability of the

transaction reordering method, we conducted
experiments in the latest version of another commercial
RDBMS from a major vendor. This RDBMS uses a
different concurrency control mechanism than
Teradata. In this system, if multiple transactions run
concurrently, each updating a base relation that has a
materialized view defined on it, only one transaction
can commit successfully while all the other

transactions are aborted. This holds true no matter
whether the base relations updated by these
transactions are the same or not. It would be desirable
to reorder transactions for this system so that at any
time, at most one such transaction runs in the database
updating a base relation that has a materialized view
defined on it.

We analyzed the performance of the transaction
reordering method in this RDBMS when lock conflicts
were considered (see Luo et al. [LNE06] for details of
the lock conflict analysis). We created a set of relations
S1 and another set of relations S2. Each relation in S1 is
a base relation of some materialized join view.
Different relations in S1 may have different
materialized join views defined on them. No
materialized view is defined on any relation in S2.
There are two kinds of transactions that we used for the
testing:
(1) T1: Insert multiple tuples into some relation in S1.
(2) T2: Execute some query/update on the relations in

S2. No T2 conflicts with either a T1 or another T2.
We evaluated the performance of the transaction

reordering method and the baseline method in the
following way:
(1) We used a uni-processor database configuration.

At any time, at most n transactions were allowed
to run concurrently in the database (n is a large
number whose specific value does not matter).

(2) We ran x transactions in total. x is an arbitrarily
large number. Its specific value does not matter, as
we only focus on the transaction throughput of the
RDBMS. u% of these x transactions are T1. The
remaining (100-u)% of these x transactions were
T2. If some transaction aborted, we automatically
re-executed it until it committed.

(3) In the baseline method, we sent all the transactions
to the database simultaneously (so that the original
transaction sequence arriving at the RDBMS was
in a random order). In this case, as multiple T1’s
may run concurrently in the database, some of
them were aborted and re-executed. This
decreased the transaction throughput of the
RDBMS.

(4) In the transaction reordering method, we used a
reorderer to reorder all the transactions so that at
any time, at most one T1 was running.

We show the ratio of the transaction throughput of
the transaction reordering method to that of the
baseline method in Figure 6. In the baseline method, if
multiple T1’s run concurrently, all but one of these T1’s
are aborted and re-executed. The probability that
multiple T1’s run concurrently increases with u. When
u is small, such probability is small. In this case,
almost no transaction is aborted. Even if a transaction
gets aborted, its first-time execution has already

 8

Figure 6. Throughput improvement gained by the

transaction reordering method in another RDBMS (with

lock conflict analysis) .

100%

150%

200%

250%

300%

350%

400%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

u%

tr
an

sa
ct

io
n

 t
h

ro
u

g
h

p
u

t
ra

ti
o

fetched the necessary pages into memory. Re-
executing the same transaction a second time is quick
[FRT92]. Hence, the throughput of the transaction
reordering method is the same as that of the baseline
method. However, when u becomes large, the
probability that multiple T1’s run concurrently also
becomes large. This will cause a substantial percentage
of the T1’s to get aborted and re-executed in the
baseline method. Some of those re-executed T1’s may
run concurrently with other (either first-time or re-
executed) T1’s and get aborted and re-executed again.
That is, in the baseline method, a T1 may be aborted
and re-executed multiple times before it is finally
committed. The average number of times that a T1 is
aborted and re-executed increases with u. Hence, when
u becomes large enough, the performance advantage of
the transaction reordering method, i.e., the throughput
ratio, becomes significant and keeps increasing with u.
In the extreme case, when u=100 (i.e., when all the
transactions are T1), the throughput of the transaction
reordering method is 3.85 times that of the baseline
method.

5. Conclusion

This paper proposes a general transaction reordering

framework to improve the performance of an RDBMS.
The basic idea underlying transaction reordering is that
by combining knowledge about the currently running
transactions and the transactions waiting to be run, a
system can improve performance by selecting for
running those transactions that “fit best” with those
that are already running. In this paper we explored two
different techniques, the first based upon increasing
buffer pool hit rates, the second upon reducing
concurrency control conflicts. Our experiments with
two commercial systems are promising, showing that
the transaction reordering method can significantly
improve throughput for certain workloads.

Developing and exploring ways to define and detect
which transactions “fit best” is a rich area for future
work. Such future work can either seek to exploit
intrinsic properties of sequences of transactions, or it
can seek to exploit performance problems that arise
due to idiosyncrasies of specific commercial systems.
Both approaches are interesting – as commercial
RDBMSs continue to grow in complexity, the
difficulty of making major changes to their
functionality also grows, to the point where it is
interesting in some cases to view them as artifacts to be
studied rather than as programs to be modified.
Transaction reordering research is one example of this
approach.

References

[AA01] A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau.
Information and Control in Gray-Box Systems. SOSP
2001: 43-56.
[BBA02] N.C. Burnett, J. Bent, and A.C. Arpaci-
Dusseau et al. Exploiting Gray-Box Knowledge of
Buffer-Cache Contents. USENIX 2002: 29-44.
[BSR80] P.A. Bernstein, D.W. Shipman, J.B. Rothnie.
Concurrency Control in a System for Distributed
Databases (SDD-1). TODS 5(1): 18-51, 1980.
[CD85] H. Chou, D.J. DeWitt. An Evaluation of
Buffer Management Strategies for Relational Database
Systems. VLDB 1985: 127-141.
[CKL90] M.J. Carey, S. Krishnamurthi, and M. Livny.
Load Control for Locking: The 'Half-and-Half'
Approach. PODS 1990: 72-84.
[Fer94] P.M. Fernandez. Red Brick Warehouse: A
Read-Mostly RDBMS for Open SMP Platforms.
SIGMOD Conf. 1994: 492.
[FNS91] C. Faloutsos, R.T. Ng, and T.K. Sellis.
Predictive Load Control for Flexible Buffer Allocation.
VLDB 1991: 265-274.
[FRT92] P.A. Franaszek, J.T. Robinson, and A.
Thomasian. Concurrency Control for High Contention
Environments. TODS 17(2): 304-345, 1992.
[GM83] H. Garcia-Molina. Using Semantic
Knowledge for Transaction Processing in Distributed
Database. TODS 8(2): 186-213, 1983.
[JS94] T. Johnson, D. Shasha. 2Q: A Low Overhead
High Performance Buffer Management Replacement
Algorithm. VLDB 1994: 439-450.
[Kla] G. Klaus. Real-time Data Warehousing and Data
Mining for E-Commerce. http://ids.csom.umn.edu
/faculty/wanninger/lectures/DataMining-
6204Sp00.html.
[LBM07] C. Lang, B. Bhattacharjee, and T. Malkemus
et al. Increasing Buffer-Locality for Multiple

 9

Relational Table Scans through Grouping and
Throttling. ICDE 2007: 1136-1145.
[LNE06] G. Luo, J.F. Naughton, and C.J. Ellmann et
al. Transaction Reordering and Grouping for
Continuous Data Loading. BIRTE 2006: 34-49.
Springer Lecture Notes in Computer Science 4365.
Full version available as IBM research report
RC24087.
[PF00] M. Poess, C. Floyd. New TPC Benchmarks for
Decision Support and Web Commerce. SIGMOD
Record 29(4): 64-71, 2000.
[RDS02] R. Ramamurthy, D.J. DeWitt, and Q. Su. A
Case for Fractured Mirrors. VLDB 2002.
[RSS00] P. Roy, S. Seshadri, and S. Sudarshan et al.
Efficient and Extensible Algorithms for Multi Query
Optimization. SIGMOD Conf. 2000: 249-260.
[Sel88] T.K. Sellis. Multiple-Query Optimization.
TODS 13(1): 23-52, 1988.
[Slo92] R.D. Sloan. A Practical Implementation of the
Data Base Machine-Teradata DBC/1012. Hawaii Int.
Conf. on System Sciences 1992: 320-327.
[SS82] G.M. Sacco, M. Schkolnick. A Mechanism for
Managing the Buffer Pool in a Relational Database
System Using the Hot Set Model. VLDB 1982: 257-
262.
[SQL07] SQL Server 2005 Books Online.
http://www.microsoft.com/technet/prodtechnol/sql/200
5/downloads/books.mspx, 2007.
[Ter] Teradata Parallel Data Pump Reference.
http://www.info.ncr.com/temp/3021-122A94552.pdf.
[ZDN98] Y. Zhao, P. Deshpande, and J.F. Naughton et
al. Simultaneous Optimization and Evaluation of
Multiple Dimensional Queries. SIGMOD Conf. 1998:
271-282.

