
RC24266 (W0705-115) May 23, 2007
Computer Science

IBM Research Report

BPEL4Job:
A Fault-handling Design for Job Flow Management

Wei Tan, Liana Fong, Norman Bobroff
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

BPEL4Job: a Fault-handling Design for Job Flow Management

Wei Tan, Liana Fong and Norman Bobroff

IBM T. J. Watson Research Center, Hawthorne, NY 10532, USA
{weitan, llfong, bobroff}@us.ibm.com

Abstract. Workflow technology is an emerging paradigm for systematic modeling and orchestration of
job flow for enterprise and scientific applications. This paper introduces BPEL4Job, a BPEL-based
design for fault handling of job flow in a distributed computing environment. The features of the
proposed design include: a two-stage approach for job flow modeling that separates base flow structure
from fault-handling policy, a generic job proxy that isolates the interaction complexity between the
flow engine and the job scheduler, and a method for migrating flow instances between different flow
engines for fault handling in a distributed system. An implementation of the design based on a set of
industrial products from IBM is presented and validated using a Montage application.

1 Introduction

Originating from the people-oriented business process area, the applicability of workflow technology today
is increasingly broad, extending to inter and intra organizational business-to-business interactions, totally
automatic (without human involvement) transactional flow, etc [1]. With the advent of web services as a
new application-building paradigm in a loosely-coupled, platform-independent and standardized manner, the
use of workflow to orchestrate the invocation of web services is gaining importance. The Web Service
Business Process Execution Language [2] (WS-BPEL or BPEL for short), proposed by OASIS as a
standard for workflow orchestration, will enhance the inter-operability of workflow in distributed and
heterogeneous systems. Although many custom workflow systems have been developed by the scientific
application community [3-5], the inter-operability of BPEL workflow systems has attracted many
researchers [1, 6-10] to experiment with BPEL for applications in distributed environments such as grid.

We argue that BPEL-based workflow systems are especially relevant in orchestrating batch jobs for
enterprise applications, as job flow is an integral part of the business operation. There are obvious
advantages of standardizing on a common flow language for both business process and batch jobs.
Although some workflow systems are used for enterprise applications [11, 12], these workflow systems use
proprietary flow languages.

The use of BPEL for job flow is not without technical challenges, as BPEL was not designed with job
flow requirements in mind. Some of the challenges include defining a job1 entity within BPEL, expressing
data dependency (usually implicitly expressed in the job definition), and passing of large data between jobs.
Another key challenge is how to incorporate the predominately asynchronous interaction between the
BPEL engine and the job scheduling partners. Finally, incorporating fault tolerance and recovery strategy
in job flow is important due to the long-running nature of jobs, as well as the interaction of grid services
with dynamic resources [13]. In this paper, we address the issues of asynchronous interactions and fault
handling in job flow by proposing a design, called BPEL4Job. BPEL4Job includes three unique features.
Firstly, a two-stage approach for job flow modeling is presented. The first stage models the flow structure
and fault-handling policy separately. The second stage combines and transforms the flow model and policy
into an expanded flow that is then orchestrated by a BPEL-compliant engine. Secondly, a generic job proxy
is introduced between the BPEL engine and the job scheduler to facilitate job submission and job status
notification, including fault events. Finally, for flow-level fault handling, we propose a novel method for
instance migration among different flow engines in distributed system environment.

The design and implementation work in this paper is based on the IBM BPEL-complaint workflow
modeler and execution engine, as well as the service oriented job scheduler.

1 The terms of “job” and “job step”, “job flow” and “flow” are used interchangeably in this paper. A job flow consists

of one or more jobs.

The following section introduces BPEL4Job, the overall design approach to incorporating fault handing
features into the BPEL design and execution process. Section 3 discusses integrating fault policies at the
flow’s design stage. Section 4 presents the fault handling scheme and especially, the flow instance
migration technique for flow re-submission. Section 5 introduces our prototype system, and demonstrates
our fault handling method using the Montage application [14]. Section 6 surveys related work and Section
7 concludes the paper and suggests future directions.

2 BPEL4Job: a fault-handling design for job flow management

In this section, we introduce our overall design, BPEL4Job, which facilitates the advanced fault handing in
BPEL both the flow modeling tools and execution environments. More specifically, BPEP4Job has the
following unique features:

• Adds a flexible fault handling approach based on policies. These policies can express a range of actions

from simple job retry, to how and at what point in the flow to restart for a particular type of execution
failure. The policies allow options to clean or retain the state of the jobs flow in the flow engine
database.

• Introduces a functional element called a ‘job proxy’ that connects and integrates the high level BPEL
engine with the lower level job scheduler that accepts and executes jobs. The proxy captures the job
status notifications from the scheduler and relays them to the BPEL engine. The proxy serves as an
arbiter and filter of asynchronous events between the BPEL engine and the job scheduler.

• Supports migration of the persisted state of a BPEL job flow to another engine. This capability provides
fault tolerance by allowing a flow that has failed, for example, because of resource exhaustion in one
environment to continue execution in another environment.

The design of BPEL4Job consists of three layers: the flow modeling layer, the flow execution layer and

the job scheduling layer, as shown in Fig. 1. First, we describe the flow modeling layer. The flow modeling
in BPEL4Job takes a two-stage approach in modeling job flow. In the first stage, the base flow, the job
definitions, and the fault-handling policies are defined. The base flow is a BPEL expression of the control
flow of jobs for a process or an application. Each job definition describes a unit of work (e.g. an executable
file together with parameters and resource requirements) to be submitted to scheduler and is expressed by a
markup language such as Job Submission Description Language (JSDL) [15]. The fault-handling policies
define the actions to be taken in case of job failures and can be described using the web service policy
language WS-Policy [16]. In the second stage, the base flow, job definitions, and fault-handling policies are
transformed into an expanded flow that is an executable BPEL process. This two-stage modeling approach
allows the process or application designer to separate the modeling of job flow function from fault
handling. More details and examples are given in Section 3.

The flow execution layer consists of three major components: the flow engine, the job proxy, and the
fault-handling service. The flow engine executes the expanded BPEL originating in the flow modeling
layer. For each job step in the expanded flow, the job proxy is invoked by the flow engine. The job proxy
submits the job definition to the scheduler, listens for job status notification, and reports job success or
failure to the flow engine. In the case of job failure, the flow engine invokes the fault-handling service if
necessary. Otherwise, if successful, the flow engine proceeds to the next job step. The fault-handling
service is discussed in detail in section 4.

The job-scheduling layer accepts jobs, returns a unique end-point reference (EPR) for each job, and sends
notification on job status changes. It is important to note that our design assumes that the schedulers are
responsible for finding the resources to execute the submitted jobs and managing the execution of the jobs
as specified by the job definitions (e.g. JSDL). Some schedulers also implement failure recovery techniques
such as re-try. In BPEL4Job, we supplement this capability with a set of fault-handling techniques at the
flow execution layer including re-try from another job step, and flow migration, which will be discussed
later.

. . .

fault
handler

fault
handlers

compensation
handler

termination
handler

event
handlers

. . .

. . .

. . .

. . .

correlation
sets

partner
links

scope

variables

! ! !! ! !

Fig. 1. BPEL4Job: a fault-handling design for job flow management

3 Integrating fault-handling policies with job flow modeling

Yu et al. [5] and Hwang et al. [17] classified the fault-handling methods of grid workflow into two levels:
task level and flow level. From their work, we observe that, re-try and re-submit are the most elementary
methods in these two levels respectively, and other fault-handling methods (e.g., using an alternative
resource or task) are more or less based on them. Second, while several approaches [5, 18] have been
proposed to deal with the task level re-try, the issue of flow level re-submit is still challenging. In this
section, we provide a comprehensive scheme to address both of the two issues and, more emphasis will be
put on flow level fault handling.

BPEL4Job design considers three kinds of policies: cleanup policy, re-try policy and re-submit policy.
These policies leverage the persistent flow states storage in most of the BPEL engines. Cleanup policy
refers to generate fault report and delete the instance data in flow engine. Re-try technique refers to
execute the same task again in case of failure. Re-submit technique refers to, in case of failure, the state of
flow instance is exported from the flow engine, and restored to the same or a different engine, such that the
flow can resume from the failed job without re-execution of completed steps.

As described in Section 2, our design of BPEL4Job has a two-stage approach for job flow modeling. The
first stage models the flow structure and fault-handling policy separately. The second stage combines and
transforms the flow model and policy into an expanded flow that is then orchestrated by an existing BPEL
engine in the flow execution layer. We now explain how the fault-handling policies are defined and
integrated with the base flow to produce the expanded BPEL flow. Fig. 2 shows two exemplary fault-
handling policies and a BPEL skeleton of a base flow. The first policy, named retry-policy, specifies that
when job failure occurs, the flow will re-try from the current job step (by setting the value of element
RetryEntry to self), and after an interval of 300 seconds (by setting the value of element RetryTimes to
Unlimited, and RetryInterval to 300s). The second policy, named resubmit-policy, specifies that when job
failure occurs, the flow will resume at another flow engine if desired. When it resumes, it restarts from the
previous step of the failed job (by setting the value of element RescueEntry to previous-step. The base flow
consists of two sequential job steps, SubmitJob1 and SubmitJob2. In the base flow, the retry-policy is
linked to SubmitJob1 (<bpws:invoke name="SubmitJob1" faultHandling:policy="retry-policy" />), and
resubmit-policy linked to SubmitJob2 (<bpws:invoke name="SubmitJob2"
faultHandling:policy="resubmit-policy" />).

The re-try policy of SubmitJob1 is realized by transforming the base flow to the expanded flow as shown
in Fig. 3, and described as follows:

 Add a variable RETRY to indicate whether the job should be retried and set its value to TRUE
before the job.

 Add an assign activity after the job to set variable RETRY to FALSE.
 Add a scope enclosing the job and succeeding assign activity.
 Add a While loop on top of the newly-added scope, and set the condition for the While loop to

(RETRY == TRUE).
 Add a fault handler for the newly added scope to catch the fault. Advanced re-try schemes,

including re-try for a given times, re-try after a given time of period, and re-try from a previous
job, could all be implemented in this fault-handler block.

In case of job failure, the control flow goes to the fault handler (the Catch All block in Fig. 3), and when
the fault-handling block completes, the control flow proceeds to the beginning of the While loop. Because
the newly added scope does not complete successfully when failure occurs, the value of variable RETRY is
still TRUE, so the flow will continue at the beginning of the While loop (Submit Job1 in Fig. 2), by this
means the re-try policy is realized.

Fig. 2. The re-try and re-submit policy, and the base flow embedded with these policies

Fig. 3. The transformation to implement the re-try policy of Job1

<?xml version="1.0" encoding="UTF-8" ?>
<bpws:process xmlns:bpws="..." xmlns:faultHandling="...">
 <bpws:partnerLinks>...</bpws:partnerLinks>
 <bpws:variables>...</bpws:variables>
 <bpws:sequence name="HiddenSequence">
 <bpws:receive createInstance="yes" name="ReceiveJobRequest" />
 <bpws:invoke name="SubmitJob1" faultHandling:policy="retry-policy" />
 <bpws:invoke name="SubmitJob2" faultHandling:policy="resubmit-policy" />
 <bpws:reply name="Reply" />

</bpws:sequence>
</bpws:process>

<?xml version="1.0" encoding="UTF-8" ?>
<wsp:Policy xmlns:wsp="..." xmlns:jobFlow="..."
 name="resubmit-policy">

 <jobFlow:Rescue wsp:Usage="wsp:Required">
 <jobFlow:RescueEntry>previous-step
 </jobFlow:RescueEntry>

</jobFlow:Rescue>
</wsp:Policy>

<?xml version="1.0" encoding="UTF-8" ?>
 <wsp:Policy xmlns:wsp="..." xmlns:jobFlow="..."
 name="retry-policy">
 <jobFlow:Retry wsp:Usage="wsp:Required">
 <jobFlow:RetryEntry>self</jobFlow:RetryEntry>
 <jobFlow:RetryTimes>Unlimited</jobFlow:RetryTimes>
 <jobFlow:RetryInterval>300s</jobFlow:RetryInterval>
 </jobFlow:Retry>
 </wsp:Policy>

4 Fault-handling at the flow execution layer in BPEL4Job

Job execution may fail due to a variety of reasons, such as resource and data unavailability, application
failure, scheduler or human input error, etc. The fault handling at flow execution layer needs two
mechanisms: the capability to recognize various job failures, and the capability to handle the failures
according to the policies defined at flow modeling layer.

In BPEL, faults can be raised by an invoked service and be caught by the invoking service. BPEL also
provides a Java-style support for fault handling, using constructs like Catch, Catch All, Throw, Rethrow,
etc. A BPEL fault handler catches faults and can handle them by, for example, calling a suitable fault-
handling service. In addition, most of BPEL engines store persistent states of the flow and the use of states
can support resumption of flow execution from a failed task. The design of fault handling in BPEL4Job
would leverage the BPEL basic fault-handling features and enhance specific capabilities to recognize job
failures and to handle faults according to defined policies. The following section addresses both aspects by
introducing: i) the generic job proxy for job submission and job status notification (especially for fault
recognition), and ii) the fault-handling schemes for various policies at the task level and flow level.

4.1 The generic job proxy

The generic job proxy connects and integrates the higher-level BPEL workflow engine with the lower-level
job scheduler. For each job submission invocation, the proxy submits jobs, captures the job status
notifications from the scheduler, and returns the job failure/success result in a synchronous manner. It
serves as an arbiter and filter of asynchronous notification events of jobs. When a job fails, the job proxy
raises a fault to the workflow engine. Then, the workflow engine would invoke fault-handling service after
catching the fault.

Fig. 4 shows the control flow of a generic job proxy. The explanation is as follows:
1. Receives a job submission request.
2. Forwards the job request to a scheduler, and start to listen for the job state notification from it. The

state notifications from different schedulers may vary, but usually they include Submitted,
Waiting_For_Resources, Resource_Allocation_Received, Resource_Allocation_Failed, Executing,
Failed_Execution, Succeeded_Execution, etc.

3. When state notifications come, filters the states. For states indicating the success/failure of job
comes, forwards this information to flow engine and returns, otherwise continue listening for the
notification.

The job proxy provides a compact job-submission interface to the flow engine, so that for each job the
flow engine does not need to use two separate activities to submit job and query job status respectively. The
function of job proxy dose not limited to fault handling, and it is actually a single entrance for job
schedulers and can handle the complexity stemmed from the heterogeneity of different schedulers.

Fig. 4. Control flow of the generic job proxy

4.2 Fault-handling schemes in BPEL4Job

The fault-handling schemes of BPEL4Job are illustrated in Fig. 5, though the design does not limit to
these policy schemes. When a job step is in state Ready, the flow engine submits it (Submit Job) and listens
for the notification from the job proxy (submittted). If the job succeeds, flow engine navigates to next job
and the flow proceeds. If the job fails, flow engine reacts according to the fault-handling policy for that job.
If the policy is cleanup, the fault report is generated and flow instance is deleted in flow engine database.
If the policy is re-try, the engine find the re-try entry (the re-try entry is the point to re-try a single job step,
it can be at current failed job step, or at some previous step which has already completed.) and submit the
job to the scheduler. If the policy is re-submit, flow engine suspends the current flow instance, export the
instance data to a permanent storage (for example, to a XML document), and delete the instance data in
current flow engine database. The exported flow instance can be re-submitted to the original engine when
the source of the fault has been fixed, or be re-submitted to another flow engine to resume. After the flow
instance is imported to the flow engine (either the original one or a new one), the flow instance is resumed
at the re-submit entry (similar to the re-try entry, the re-submit entry is the point to re-start a job flow, it can
be at the failed job step, or at some previous step which has already completed.)

Which
implemented

policy

Instance
suspended

[re-submit]

[re-try]

Export instance
data & delete it

Instance
deleted

Re-submit

Find retry
entry

Suspend
instance

Instance
resumed

Find
re-submit

entry

Generate report
& delete
instance

Instance
deleted

[cleanup]

Submit Job

What
completion

status

Ready

submitted

success failure

Navigate to
next job

[failure][success]

Fig. 5. The fault-handling scheme in BPEL4Job

4.2.1 Cleanup
Cleanup policy is used when the flow execution does not have any side effect resulted from failure, the user
may just want to get the failure report and terminate the flow. Therefore, after the failure report is
generated, the flow instance can be deleted (cleanup) from the flow engine database.

4.2.2 Task level re-try
We have shown the realization of a re-try policy as an example in section 3 where we explain how to
integrate policy with job flow. The re-try policy is accomplished by adding a scope, a While loop and other
additional constructs. Re-try policy can be extended to more advanced schemes, for example, to alter input
parameters for the re-try job such as instructing the job proxy to use alternative schedulers or resources.

4.2.3 Flow re-submit and instance migration
Now we investigate BPEL’s capability to continue un-executed job steps without re-execution of successful
job steps of a flow in the event of a fault. Many other job flow systems support restarting of a flow
regardless if they use persistent storage for job states. Here are two of the exemplary systems:

1. DAGMan [3] is the flow manager of Condor [19] jobs. While executing, DAGMan keeps in
memory a list of job steps of the flow, their parent-child relationships, and their current states.

When a flow fails, it produces a Rescue DAG file for re-submission with a list of the job steps
along their states and reasons of failures. The Rescue DAG can then be submitted later to continue
execution.

2. Platform LSF [20] supports job dependency and flow restarting with the “requeue” feature. In
LSF, job steps are executed sequentially unless they have a conditional statement on the success of
failure or preceding steps. If “requeue” is specified for a job flow, for example
“REQUEUE_EXIT_VALUES = 99 100”, the flow will be requeued if the return code of a step
matches the requeue_exit criteria and the requeued job flow will restart from this particular step.

BPEL4Job supports re-submit and facilitates instance migration if desire. The motivation to do job flow
re-submission and instance migration is two-fold. The first reason is the performance issue. For long-
running job flows, flow instance data is stored in the flow engine’s database. This instance data include
instance state information, the navigated activities, the value of messages/variables, etc. Depending on the
flow definition and the run-time data used in the instance, a relatively large amount of data can be created
with each instance. Unlike business processes, scientists may submit job flows in very large numbers and
may not return to handle the flows immediately. A strategy for removing the failed flow instance out of the
database is desirable to lessen the burden on the data storage or database.

The second reason is for job flow re-submission to different engine. When a job flow instance f fails
during the execution, the flow user or administrator may find that resource needed for f to proceed is
unavailable in current resource domain. Thus, an alternative is to export and delete f in current flow engine,
choose another resource domain in grid environments, re-submit f to the flow engine in that domain and
resume it. (See Fig. 6 for an example.)

In order to realize flow re-submission, we introduce the concept of instance migration. Instance
migration refers to the technique to export job flow instance data in one flow engine, and import it into
anther one so that the flow instance can resume in it. When we do instance migration, the challenge is to
collect sufficient data from the source flow engine, so that the target engine could re-build the status of the
on-going job flow. The job flow instance database schemas vary with the different implementation, and in
Fig. 7 we give a conceptual and high-level flow instance data model. Next section presents our
implementation based on IBM Webshpere Process Server [21]..

Flow engine 1

DB 1

Flow engine 2

DB 2

1. Job2 fails due
to resource
unavailability

3. Instance data
exported to XML, and
instance deleted in
DB1

4. Instance data
imported to DB2

5.Instance
resumed in
engine 2

2. Suspend
instance in
engine 1

3 4

Fig. 6. An illustration of instance migration and flow re-submission

In Fig. 7, a process instance (or flow instance) has an attribute named ProcessInstanceID, and an
attribute ProcessTemplateID to refer to the process template it belongs. A process instance can consist of
multiple activity instances, task instances, correlation set instances, scope instances, partnerlink instances,
variable instances, etc. Each of these instances has an attribute ProcessInstanceID to refer to the process
instance it belongs.

-ProcessInstanceID : string(idl)
-ProcessTemplateID : string(idl)
-Name : string(idl)
-State : string(idl)

ProcessInstance
-ScopeInstanceID : string(idl)
-ProcessInstanceID : string(idl)
-ScopeTemplateID : string(idl)

ScopeInstance

1
*

-ActivityInstanceID : string(idl)
-ProcessInstanceID : string(idl)
-ActivityTemplateID : string(idl)

ActivityInstance

1

*

-VariableInstanceID : string(idl)
-ProcessInstanceID : string(idl)
-VariableTemplateID : string(idl)
-Data : object(idl)

VariableInstance

1
*

1..*
*

0..1

0..*

-PartnerLinkInstanceID : string(idl)
-ProcessInstanceID : string(idl)
-PartnerLinkTemplateID : string(idl)
-Name : object(idl)

PartnerLinkInstance
1*

-CorrelationSetInstanceID : string(idl)
-ProcessInstanceID : string(idl)
-CorrelationSetTemplateID : object(idl)
-CorrelateSetData : object(idl)

CorrelationSetInstance

1

*

-TaskInstanceID : string(idl)
-ProcessInstanceID : string(idl)
-TaskTemplateID : string(idl)
-Name : object(idl)

TaskInstance

1

*

0..1 0..1

-ProcessTemplateID : string(idl)
-Name : string(idl)

ProcessTemplate

1
0..*

Fig. 7. Class diagram of flow instance data model

5 System implementation and case study

A system is developed to validate the design of BPEL4Job. In our implementation, IBM Websphere
Integration Developer (WID) [22] is used as BPEL modeling tool, IBM Websphere Process Server (WPS)
[21] as BPEL engine, and IBM Tivoli Dynamic Workload Broker (ITDWB) [23] as job scheduler. In flow
modeling layer, a WID plug-in is developed to facilitate the use of JSDL for job step definition and the use
of WS-Policy for policy definition. In flow execution layer, a generic job proxy is devised, and a fault-
handling service is developed to implement the fault-handling schemes proposed in Section 4. For the job
scheduling layer, we use ITDWB which provide job management web service API including job
submission and job status notification.

We take an example from Montage astronomy mosaic generation application [14], named m101 Mosaic,
to demonstrate the implementation of BPEL4Job. This example application takes several raw images (we
use four images in our exemplary job flow), reprojects them and then combines them into a mosaic. We
model the procedure of this application into a BPEL-based job flow (Fig. 8(a)). The first job, mImgtbl,
generates an image metadata table describing the content of all the four raw images. Followed are four
parallel jobs (mProject1, mProject2, mProject3, and mProject4), each of which reprojects one image. After
all the images have been reprojected, a new metadata table is generated by job mImgtbl1, then job mAdd1
generates a mosaic from the reprojected images, and finally job mJPEG transforms the mosaic into jpeg
format.

Then we define fault-handling policies for job mProject2 and mAdd1, respectively. The policy for job
mProject2 is to re-try after 10 seconds in case of failure; for job mAdd1, the policy is to re-submit the flow
to another engine and re-start from its preceding job mImgtbl1. It is more logical to apply the re-submit
policy on the flow scope such that re-submit will be triggered in any failed job step. But, we believe these
two scenarios here are illustrative enough to demonstrate our different fault handling policies.
In Fig, 8, we show that the base flow plus the two policies are transformed into an expanded flow with
JSDL and fault handling capability (Fig. 8 (b)). For space limit consideration, here we only give the JSDL
definition of job mAdd1 (Fig. 8(c)).

 (a) (b)

(c)

Fig. 8. Sample Montage application: (a) base flow (b) expanded flow (c) JSDL description of job mAdd1

We will demonstrate the effects in migrating instance between two WPS servers, i.e., from server
saba10 to server weitan. The Montage job flow is instantiated at saba10, and when mAdd1 fails, the flow
instance is migrated to weitan. We use Business Process Choreographer (BPC) explorer [24] to monitor the
orchestration of the Montage flow. The Montage flow is initiated with the name Montage_saga10. When
job mProject2 fails, the flow will automatically re-try it after 10 seconds (as discussed in Section 3). When
job mAdd1 fails, the fault-handling service suspends the flow instance at saba10 (Fig. 9 (a)), and the flow
instance data is exported into a XML file named rescue.xml (the size is about 560KB). When the user

 <?xml version="1.0" encoding="UTF-8" ?>
- <jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"

xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" name="mAdd1">
- <jsdl:application name="executable">
- <jsdle:executable path="/opt/Montage_v3.0/bin/mAdd">
- <jsdle:arguments>
 <jsdle:value>-p</jsdle:value>
 <jsdle:value>/opt/m101/projdir</jsdle:value>
 <jsdle:value>/opt/m101/images.tbl</jsdle:value>
 <jsdle:value>/opt/m101/template.hdr</jsdle:value>
 <jsdle:value>/opt/m101/final/m101.fits</jsdle:value>
 </jsdle:arguments>
 </jsdle:executable>

 </jsdl:application>
 </jsdl:jobDefinition>

decides that Montage_saga10 should be re-submit to server weitan, the fault-handling service imports
rescue.xml to weitan (see Fig. 9 (b) for the BPC explorer at weitan, please be noted that the flow instance is
restored from saba10 to weitan). Then Montage_saga10 will resume in weitan following the policy, that is,
to restart from job mImgtbl1 (Fig. 9 (c)). If we compare Fig. 9 (a) and (c), we could find jobs mImgtbl1 and
mAdd1 are activated (submitted) at different time on two servers (for example, job mImgtbl1 is activated on
saba10 at 5/8/07 4:26:28 PM and on weitan at 5/8/07 10:36:40 PM), this shows that when Montage_saga10
is resumed at weitan, jobs mAdd1 and mImgtbl1 are executed for a second time (and the BPC explorer only
show the latest execution time of them). That is to say, when Montage_saga10 is resumed on weitan, the
flow is re-started from the preceding job of mAdd1, i.e., mImgtbl1.

(a) Montage_saba10 initiated at saba10

(b) Montage_saba10 re-submitted to weitan

(c) Montage_saba10 re-started and completed at weitan

Fig. 9. The BPC explorer to illustrate flow instance migration between saba10 and weitan

6 Related works

Most works on using BPEL for job flow can be classified into two categories. The first approach [8]
extends BPEL model elements, which make the flow model intuitive and simple. However, the workflow
engine needs to be modified accordingly to deal with the model extension. The second approach [7, 25, 26]

uses standard BPEL activity, so that the models are less intuitive and sometimes verbose to meet the needs
of job flow. However, these models adhere to the standard BPEL and thus portable among BPEL-compliant
flow engines. Our work falls into the second category of approach, however, the two-stage modeling
approach gracefully hides the complexity to deal with jobs submission and fault-handling, while keep the
advantage of using existing BPEL engine.

Sedna [10] is a BPEL-based environment for visual scientific workflow modeling. Domain specific
abstraction layers are added in Sedna to increase the expressiveness of BPEL for scientific workflows.
This method is similar to our two-stage approach. However, fault-handling issue is not addressed in that
work.

TRAP/BPEL [18] is a framework that adds autonomic behavior into existing BPEL processes. By
introducing a generic proxy between BPEL and partner web services, a BPEL could change its invocation
partner dynamically at run-time. GridSam [27] provided a set of generic web services for job submission
and monitoring. Our generic job proxy takes inspiration from both works. Moreover, in our job proxy, job
submission and job status query are combined into a single synchronous job invocation, with which the
failure/success information is returned. This approach provides a more compact job-submission interface to
the flow engine, so that for each job submission the flow engine does not need to use two separate activities
to submit job and query job status respectively.

DAGMan used in Condor is popular in many grid job management systems to manage job flow. The
fault handling mechanism in DAGMan is re-try and rescue workflow (a kind of re-submit). Our idea of
flow re-submission is similar to rescue DAG. Unlike DAGMan, our approach is policy-based and needs to
consider the persistent states of job flows in BPEL-compliant engines.

7 Conclusion and future work

In this paper, we address two important and challenging issues in using WS-BPEL for job flow
orchestration: the predominantly asynchronous interactions with job execution on dynamic resources, and
the fault handling in job flow. We propose a design, called BPEL4Job, to illustrate our approach.
BPEL4Job has three unique features: a two-stage approach for job flow modeling with integration with
fault-handling policies, a generic job proxy to facilitate the asynchronous nature of job submission and job
status notification, and a rich set of fault handling schemes including a novel method for instance migration
between different flow engines in distributed system environment.

One direction of our future work would be providing support for more complicated fault-handling
schemes based on the proposed re-try and re-submit technique. Moreover, to realize the full potential of
instance migration, we need to address additional challenges such as the routing of incoming messages
targeted at the original instance to the migrated one. At the same time, we believe our solution to instance
migration could be extended to other related scenarios such as load balance between flow engines and
version support for long-running processes. For the version support for long-running BPEL processes, if a
template of a long-running BPEL process changes during the execution of many instances, the process
instances that conform to the old template may need to be migrated to conform to the new one. We believe
our instance migration technique presented in this paper is a good starting point to tackle this problem.

Reference

1. Leymann, F., Choreography for the Grid: towards fitting BPEL to the resource framework.
Concurrency and Computation-Practice & Experience, 2006. 18(10): p. 1201-1217.

2. Jordan, D., et al. Web Services Business Process Execution Language Version 2.0. 2007 [cited;
Available from: http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf.

3. Couvares, P., et al., Workflow Management in Condor, in Workflows for e-Science, I.J. Taylor, et
al., Editors. 2007, Springer Press.

4. Oinn, T., et al., Taverna/myGrid: Aligning a Workflow System with the Life Sciences Community,
in Workflows for e-Science, I.J. Taylor, et al., Editors. 2007, Springer Press. p. 300-319.

5. Yu, J. and R. Buyya, A taxonomy of scientific workflow systems for grid computing. Journal of
Grid Computing, 2006. 34(3): p. 44-49.

6. Slominski, A., Adapting BPEL to Scientific Workflows, in Workflows for e-Science, I.J. Taylor, et
al., Editors. 2007, Springer Press. p. 212-230.

7. Amnuaykanjanasin, P. and N. Nupairoj. The BPEL orchestrating framework for secured grid
services. in International Conference on Information Technology: Coding and Computing (ITCC
2005). 2005.

8. Dörnemann, T., et al., Grid Workflow Modelling Using Grid-Specific BPEL Extensions, in
German e-Science Conference 2007. 2007: Baden-Baden.

9. Emmerich, W., et al., Grid Service Orchestration using the Business Process Execution Language
(BPEL), in UCL-CS Research Note RN/05/07. 2005, University College London, UK. .

10. Wassermann, B., et al., Sedna: A BPEL-Based Environment for Visual Scientific Workflow
Modeling, in Workflows for e-Science, I.J. Taylor, et al., Editors. 2007, Springer Press. p. 428-449.

11. Gucer, V., M.A. Lowry, and F.B. Knudsen, End-to-End Scheduling with IBM Tivoli Workload
Scheduler Version 8.2. 2004: IBM Press. 33-34.

12. BMCSoftware. Meet Your Business Needs Successfully With CONTROL-M For z/OS. [cited;
Available from:
http://www.bmc.com/USA/Promotions/attachments/controlm_for_os390_and_zOS.pdf.

13. Slomiski, A., On using BPEL extensibility to implement OGSI and WSRF Grid workflows.
Concurrency and Computation: Practice & Experience 2006. 18(10): p. 1229 - 1241.

14. Montage Tutorial: m101 Mosaic. 2007 [cited; Available from:
http://montage.ipac.caltech.edu/docs/m101tutorial.html.

15. Anjomshoaa, A., et al. Job Submission Description Language (JSDL) Specification v1.0. Proposed
Recommendation from the JSDL Working Group 2005 [cited; Available from:
http://www.gridforum.org/documents/GFD.56.pdf.

16. W3C. Web Services Policy 1.2 - Framework (WS-Policy). 2006 [cited; Available from:
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/

17. Soonwook, H. and C. Kesselman. Grid workflow: a flexible failure handling framework for the
grid. in 12th IEEE International Symposium on High Performance Distributed Computing
(HPDC'03). 2003. Seattle, WA USA.

18. Ezenwoye, O. and S.M. Sadjadi, TRAP/BPEL: A Framework for Dynamic Adaptation of
Composite Services in International Conference on Web Information Systems and Technologies
(WEBIST-2007). 2007: Barcelona, Spain.

19. Condor. [cited; Available from: http://www.cs.wisc.edu/condor/.
20. Platform LSF [cited; Available from: http://www-cecpv.u-

strasbg.fr/Documentations/lsf/html/lsf6.1_admin/E_jobrequeue.html.
21. IBM Websphere Process Server. [cited; Available from: http://www-

306.ibm.com/software/integration/wps/.
22. IBM Websphere Integration Developer. [cited; Available from: http://www-

306.ibm.com/software/integration/wid/.
23. IBM Tivoli Dynamic Workload Broker. [cited; Available from: http://www-

306.ibm.com/software/tivoli/products/dynamic-workload-broker/index.html.
24. Starting to use the Business Process Choreographer Explorer. 2007 [cited; Available from:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.ins.d
oc/doc/bpc/t7stwcl.html.

25. Kuo-Ming, C., et al. Analysis of grid service composition with BPEL4WS. in 18th International
Conference on Advanced Information Networking and Applications. 2004.

26. Tan, K.L.L. and K.J. Turner. Orchestrating Grid Services using BPEL and Globus Toolkit 4. in
7th PGNet Symposium. 2006.

27. GridSAM - Grid Job Submission and Monitoring Web Service. 2007 [cited; Available from:
http://gridsam.sourceforge.net/2.0.1/index.html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

