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Abstract

Inexpensive portable storage devices that are available
in the market today have made it easier for users to carry
data and programs with them and borrow computing plat-
forms when needed. While this model of computing is very
attractive, it is promiscuous and thus protection is needed
both for the borrower and owner of the computing plat-
form. In this paper, we focus on a subset of this comput-
ing model, called portable storage based personalization-
where the user boots the borrowed PC from her portable
storage device, i.e. pocket hard drive. We analyze the se-
curity implications of this model and present a scheme to
protect the pocket hard drive from the untrusted platform.
The protection scheme includes running tests stored on the
pocket hard drive to assess the integrity of the borrowed
platform and ensuring that these tests actually get executed
untampered.

1. Introduction

Affordable storage media are now available in varying
form-factors and in a wide range of capacities and can be
accessed almost from any PC. The most popular PC in-
terface is USB, which offers data transfer rates as high as
480Mbits/s (ver. 2.0) and provide enough power to operate
storage devices such as 2.5” hard-disk drives. The Firewire
interface offers similar capabilities. Hitherto, USB drives
and CD-ROMs were mostly used for the purpose of car-
rying limited amount of personal data. New usage models
have emerged. A few vendors offer software that enables
users to synchronize their email and folders with USB stor-
age so that users can access these data items from several
different computers. The U3 industry consortium promotes
a model that enables users to run programs, such as a Fire-
fox web browser, directly from the USB storage device, so
that users have access to these applications even on PCs that
do not have these applications pre-installed. Similarly, live
CDs, which are commonly used, allow a PC to be booted
from an OS resident on the CD. Figure 1 shows a 100GB
Seagate Hard Drive next to an 80GB Western Digital Hard
Drive and a 2GB Micro SD card (which can be plugged in
via USB connector).

Figure 1. Top: 2GB Micro SD card. Bottom:
100GB Seagate Hard Drive next to an 80 GB
Western Digital Hard Drive

IBM Research presented a prototype called SoulPad [6],
which enables users to carry their complete computing en-
vironment, including the suspended runtime state of all ap-
plications, on a USB storage media. When a computer is
encountered, a user can personalize it by booting from the
USB storage media. This system is an example of a new
form of mobile computing called: portable storage based
personalization. In this model, user’s portable storage de-
vice acts as a pocket hard drives that carries user’s oper-
ating system, applications and sessions. Any machine can
be reincarnated into user’s PC by plugging the pocket hard
drive into it.

Though safer than the normal USB usage model (where
the USB is inserted into a computer running its own OS),
some security issues could still arise when a public PC is
booted from the pocket hard drive. For example, a com-
promised BIOS could corrupt or copy the personal data of
the user stored on the pocket hard drive. Or a virtual ma-
chine running on the computer could emulate bare hardware
and steal the secrets necessary for decrypting personal data



stored on the pocket hard drive. In order to counter such
attacks, the pocket hard drive needs to verify the integrity
of the untrusted platform. Since the PC is booted from the
pocket hard drive, there is no need to verify the kernel (or
any other software layer above the kernel) on the untrusted
machine.

One way to accomplish this is to use a hardware-based
security mechanism such as Trusted Computing [3]. The
main idea behind such an approach is to establish a chain
of trust starting from a trusted hardware component all the
way up to the operating system. Each layer in the software
stack attests the layer above it based on the hash of its bi-
nary. The hashes are stored inside the trusted hardware com-
ponent and can be retrieved via a trusted interface. A chal-
lenger can determine aspects of the software running on a
remote machine by querying for the hashes stored inside
the trusted hardware component of that machine [10]. It can
then decide for itself whether or not to trust that machine
by inspecting the hashes. Pocket hard drives can potentially
exploit this mechanism to verify integrity of the host ma-
chine. However, this would require the host machine to have
hardware-support for Trusted Computing (such as TPM [3]
or Copilot [11]) and an ecosystem would have to be in
place for specifying, collecting and storing ”good” software
hashes. Also, providing attestation capability requires alter-
ation to each layer of the software stack, including BIOS,
boot-loader and the kernel. Besides, the pocket hard drive
would require a CPU to establish a trusted channel with the
host machine and verify the hashes. This solution, therefore,
assumes the existence of a central repository of ”good” soft-
ware hashes, specialized hardware and software support on
the host machine and a CPU on the pocket hard drive. This
undermines the main strength of USB-storage-based com-
puting, which is its ability to ”fit in” with the currently ex-
isting ecosystem.

The challenge is to verify the integrity of the host ma-
chine using software mechanisms without requiring any ad-
ditional infrastructure. Systems security is an arms race be-
tween the attacker and the defender. The one that occupies
the lower layer in the system has an upper hand, because
lower layers implement the abstractions upon which upper
layers are built. In our case, the attacker could occupy the
lower layer (i.e., firmware), on top of which the software
resident on pocket hard drive runs. We would like to raise
the bar for the attacker as much as we can without increas-
ing the cost of the portable device or requiring elaborate in-
frastructure support. Our goal is to install a very-low-cost
but difficult-to-break lock on the door so that breaking into
the house requires more time and effort. Also, pocket hard
drives are a security threat to borrowed PCs. While this as-
pect is not the focus of this paper, we address this issue in
future work.

With this in mind, we identify and classify the set of at-
tacks that can be launched by a malicious host-machine on
the pocket hard drive. We describe a set of software secu-
rity mechanisms that can be used by the pocket hard drive to
verify the integrity of the host machine. Finally, we present
some preliminary evaluation results of an early prototype.

Figure 2. Pocket Hard Drive Usage Model

2. Attack Model

In our scenario, the pocket hard drive is assumed to carry
a base OS which is loaded up at boot-up time and an en-
crypted partition containing user’s data, which is decrypted
by the base OS (after the user enters a passphrase) to restore
user’s session on the borrowed computer (as shown in Fig-
ure 2). The integrity of the borrowed platform has to be es-
tablished before the sensitive partition is decrypted. We fo-
cus on attacks that can be launched on the pocket hard drive
from compromised firmware. We ignore attacks that may
result from compromised hardware such as CPU, physical
memory or peripheral devices (e.g., a keystroke logger).

2.1. BIOS-based Attacks

John Heasman, principal security consultant for Next
Generation Security Software, noted in January 2006 that
BIOS based rootkits are possible to implement and will
showcase the next generation of threats to systems secu-
rity [2]. Here we try to capture some ways in which a mali-
cious BIOS can breach security:

1. BIOS injects malicious code into the base OS of the
pocket hard drive before it boots. The code corrupts
the base OS so that after it boots up, it corrupts/deletes
the sensitive partition or copies the sensitive partition
to the native hard-disk drive.

2. Instead of booting the base OS on the pocket hard
drive, the BIOS boots up its own OS which emu-
lates the behavior of the base OS and bypasses any
security checks that it may have before the user is
prompted to enter the passphrase for decrypting the
partition. (The malicious OS could be created offline
by procuring a copy of the pocket hard drive base OS
in advance.) Once the user enters the passphrase, it
steals the passphrase to decrypt the sensitive partition,



which it may have copied earlier or may copy in fu-
ture. In general, once the passphrase is stolen, security
is breached, as the encrypted partition is comparatively
easier to obtain and distribute.

3. BIOS inspects and analyzes the code/data of the base
OS on the pocket hard drive, copies some of it, mixes it
with the code of its own OS on-the-fly and boots from
there. The mixed code bypasses any security checks
that the base OS may have without user’s knowledge
and steals the passphrase after the user keys it in.

4. Before booting the base OS from the pocket hard drive,
the BIOS starts a covert process capable of intercept-
ing instructions (in much the same way as a virtual ma-
chine monitor).

Since the BIOS eventually yields control to the OS, the at-
tacks it can launch are limited to code it executes before
the OS is booted. Once the OS boots up and verifies the in-
tegrity of the BIOS, it is no longer vulnerable to the BIOS
modules that may get invoked later. For launching attack 1,
the adversary would need write-access to the pocket hard
drive. Note that launching attack 3 requires significantly
more effort than attack 2. In attack 2, all the work is done be-
fore the user walks over to the machine. In other words, the
malicious OS to be booted is created off-line. We call such
attacks static attacks. While attack 3 involves inspection of
the base OS code after the user attaches the pocket hard
drive. Therefore, the OS to be booted is created after the
user has inserted the pocket hard drive. We call such attacks
dynamic attacks. Similarly, attack 4 requires much more ef-
fort than attack 3 as it involves carrying out malicious op-
erations (such as intercepting the instructions) while the OS
is executing. We call such attacks runtime attacks.

2.2. Virtual Machine based Attacks

Virtual Machine based attacks represent another impor-
tant threat to pocket hard drives. If there is a virtual machine
running on the public PC, when the user tries to reboot the
machine she may end up rebooting the virtual machine or
not even so. The base OS would then get booted up on top
of the virtual machine and thereafter the virtual machine
would have complete control over the operations of the OS
and the data that gets loaded in memory. We dont list the
different kinds of attacks that a virtual machine can launch
against the OS running on top of it, as theoretically it has
complete control. See Chen et al [13] for a recent overview
of this topic and for a description of virtual-machine based
rootkits.

3. Solution Sketch

Our solution strives to detect the presence of a malicious
BIOS or virtual machine before the OS boots up completely.
This is done by invoking a validation program and ensuring
that it executes untampered. Although accomplishing this in
software is hard, we have made an attempt at raising the bar
for the adversary. Here we outline our scheme:

• A validation program is invoked during the first stage
boot of the base OS before the user is prompted for the
passphrase for decrypting the sensitive partition.

• The validation program runs a battery of tests to verify
the BIOS and the absence of virtual machine.

• The validation program prints a user identifiable mes-
sage during execution which ensures that it has been
dispatched for execution. The message should appear
within a certain time interval, otherwise the user un-
plugs and leaves. The message is a secret shared be-
tween the user and the program and it changes each
time the validation program is executed.

• Code and address obfuscation [7, 5] is employed to
make it hard for the platform to retrieve the secret
string or hijack the execution of the program after it
has been dispatched for execution. It also makes it hard
for the platform to reverse engineer the code using
static analysis and modify it. Address obfuscation [5]
is a program transformation technique in which pro-
gram’s code is modified so that each time the trans-
formed code is executed, the absolute locations of all
code and data objects (including statically linked li-
braries), as well as their relative distances are random-
ized. This makes it hard for the platform to overwrite
a return address on the stack with the return address of
hijack code.

• If an integrity test fails, booting is aborted, otherwise
the user is prompted for the secret passphrase and the
sensitive partition is decrypted.

• The validation program is recompiled and re-
obfuscated after each successful execution; its source
code, along with the obfuscator, is stored in the en-
crypted partition of the pocket hard drive. Only the ob-
ject code of the validation program is stored in the
open.

Write-protection is needed to defend against data
corruption attacks. For this, we resort to hardware
support on the pocket hard drives. USB hard-disk
drives with write-protect switch are already available
in the market. Security savvy users would have to use
such USB HDDs for write-protection, which should be
manually disabled after the secret passphrase is en-
tered. Our current scheme is able to defend against
static and dynamic attacks, leaving the adversary with
the option of formulating runtime attacks which are
comparatively harder to launch.

4. Current Implementation

4.1. Untampered Code Execution

In order to make it hard for the adversary to tamper the
execution of the validation program, we apply three levels
of randomization.

A simple attack is to not execute the validation program
at all and simply print the success message, tricking the
user into believing that the system is secure. We address



Table 1. Increase in boot-up and shutdown time due to execution of the validation program

Machine Avg. increase in boot-up time Avg. increase in shutdown time
IBM ThinkPad R51 54 msec 2.2 sec
HP Compaq nx6110 51 msec 1.8 sec
Dell Optiplex GX60 52 msec 2.5 sec

this attack by printing a user-identifiable string from the
executable, while the integrity checks are carried out. The
string is a shared secret between the user and the executable,
which changes with every session. This is a user-in-the-
loop approach. In our current implementation, the one-time
session-dependent string is regenerated at the end of a ses-
sion after the encrypted filesystem containing the guest OS
has been unmounted. The user is prompted to enter a text
string that will be presented during the next session. In ad-
dition to this string, the system adds information such as
the date, time and the make of the PC on which the exe-
cutable is built. We are able to defend against static attacks,
using this first level of randomization.

Since the shared secret has to be stored on the pocket
hard drive, it is possible for the platform to inspect the code
and data of the base OS and retrieve the secret string. As
mentioned before, this is a dynamic attack and is signifi-
cantly more complex to implement and launch. In order to
counter this attack, we apply code obfuscation [7]. The se-
cret string is stored in the executable along with several sim-
ilar strings and the executable is obfuscated. This makes it
hard for the platform to carry out a binary analysis of the ex-
ecutable at runtime and retrieve the secret string. Code ob-
fuscation also makes reverse engineering and modification
of the executable hard.

It is also possible for the platform to hijack execution of
the executable by analyzing the code and data segments as-
signed to the executable at runtime, after the shared secret
has been printed. This is an example of a runtime attack. In
order to counter this attack we apply a third level of random-
ization: Address Obfuscation [5], in which program’s code
is modified so that each time the transformed code is ex-
ecuted, the absolute locations of all code and data objects
(including statically linked libraries), as well as their rela-
tive distances are randomized.

4.2. Platform integrity checks

4.2.1. Virtual machine detection: As much as it is hard
to detect the presence of a virtual machine, it is hard to
achieve perfect virtualization. Garfinkel et al [9] argue that
building a transparent VMM (and thus avoiding detection)
is fundamentally infeasible. We exploit weaknesses of cur-
rently existing virtual machine monitors (VMMs) for de-
tecting their presence from a program running inside them.
We do not explicitly detect instruction emulators or soft-
ware interpreters since the overhead imposed by these are
easily detected by timing analysis and sometimes humanly
noticeable.

There are certain instructions in the x86 architecture
which are extremely hard to virtualize, namely SGDT, SIDT

and SLDT [14]. These instructions are sensitive, unprivi-
leged instructions, which means that they can be executed in
non-privileged mode to get the contents of a sensitive reg-
ister, without causing a trap to the VMM. All three of these
instructions store a special register value into some loca-
tion. For example, the SGDT instructions stores the con-
tents of the GDTR (Global Descriptor Table Register) in a
6-byte memory location. Since the x86 architecture only has
one GDTR, LDTR and IDTR, a VMM must provide each
VM with its own virtual set of IDTR, LDTR and GDTR
registers. The contents of these virtualized registers differ
from that of the actual registers. By executing the SGDT
instruction from within an assembly program and compar-
ing the returned value with the expected value, we can de-
tect VMMs. We were able to detect the three well-known
VMMs: VMWare, VirtualPC and Qemu, using this test.
Since our validation program is obfuscated, it is hard for
the VMM to put software checkpoints on these instructions.
However, with advances in virtualization, new tests would
have to be devised.

We also included tests for detecting VMWare and Vir-
tualPC specifically. These tests exploit the special instruc-
tions that VMWare and VirtualPC use in order to establish
an interface between the virtual machine and the VMM soft-
ware. It is possible for a determined attacker to build a cus-
tomized virtual machine in order to pass all our tests suc-
cessfully. As part of future work, we plan to add a test to
our validation program that detects the presence of a vir-
tual machine based on timing differences [8].

4.2.2. BIOS verification: Several years ago there was a
case of a BIOS virus called the CIH Virus that hid on the
hard-drive and overwrote the BIOS. Once the BIOS was
overwritten the machine generally became non-bootable. To
our knowledge there has not been a widespread outbreak of
a BIOS virus. However, BIOS based rootkits are gaining
popularity [2].

In order to counter BIOS-based attacks, we need to en-
sure that the BIOS has not been compromised. We borrow
the idea of authenticating software based on the hash of its
binary from the Trusted Computing paradigm. In our solu-
tion, the part of the Read Only Memory (ROM) that con-
tains the BIOS is dumped and hashed (using MD5). The
hash of the BIOS is matched against the hashes of known
BIOSes. The test fails in the event of no match. The BIOS
hashes are stored in an encrypted file and the decryption key
is hidden as a static variable in the obfuscated executable.

Collecting a set of good BIOS hashes is a challenge. To
some extent, this challenge is common with trusted comput-
ing which assumes a database of good hashes for all soft-
ware including BIOS, OS and applications. However, un-



like OS and applications, BIOS updates are infrequent and,
therefore, collecting and maintaining good BIOS hashes
should not be as hard. At the same time, in order to have
a database of good BIOS hashes, some support is needed
from the BIOS manufacturers. This is because the BIOS
binary also contains machine specific information, which
needs to be filtered out for collecting a set of acceptable
BIOS hashes. On-going initiatives to improve BIOS qual-
ity, such as EFI [1], could be leveraged to support this fea-
ture in the future.

In our current implementation, we build a database of
firmware hashes on the pocket hard drive gradually over
time. Subsequently when the pocket hard drive comes back
to the same machine, the hash comparison approach can
detect whether the firmware (i.e., BIOS) has changed in
the interim. This can go a long way in restricting BIOS-
tampering.

5. Preliminary Evaluation

We modified the first-stage boot sequence to invoke our
validation program written in C and assembly. We modi-
fied the shut-down sequence to invoke scripts for recompi-
lation, obfuscation and insertion of the secret string. Table 1
shows the execution time of the validation program dur-
ing boot-up, and the time for recompilation and obfuscation
during shutdown, for three different machines. The average
increase in boot-up time is around fifty milliseconds while
the average increase in shutdown time is around two sec-
onds, which is tolerable. We were able to detect VMWare,
VirtualPC as well as Qemu. We constructed a database of
”good” BIOS hashes and were able to detect a BIOS whose
hash was not in the database. The current evaluation does
not quantify or measure the ”amount of security” provided
by our solution.

6. Related Work

The problem of authenticating an untrusted host from a
passive portable storage device using software-mechanisms
is unexplored to the best of our knowledge. Gariss et al [10]
presented a mechanism for authenticating an untrusted ma-
chine using a CPU-enabled mobile device (e.g. mobile
phone) by using trusted computing. This solution, though
effective, would work with only TPM-enabled machines.

The remainder of this section describes work related to
the underlying mechanisms and abstractions used in our so-
lution.

The idea of verifying BIOS by verifying the hash of its
executable has been inspired by the idea of attestation used
in trusted computing. The key difference is that, in trusted
computing, the operation of hashing is carried out by the
bootloader which is already attested, while in our case the
operation of hashing and verification is carried out from an
OS loaded by the BIOS which needs to be verified. As a re-
sult, software mechanisms for ensuring untampered execu-
tion of the verification code are needed.

Verifiable code execution is an open research prob-
lem. Several hardware and software based solutions have
been proposed, but none of them provide provable se-
curity. Among the popular hardware-based solutions are
TPM [3], Aegis [4] and Copilot [11]. A few software-based
solutions for verifiable code execution also exist: Gen-
uinity [12], SWATT [16] and Pioneer [15]. All the three
approaches assume the presence of an external veri-
fier which can execute code for verification.

In our case, if we assume that the pocket hard drive has a
CPU and can thus act as an external verifier, one of these ap-
proaches (e.g. Pioneer) can be adopted to solve the problem
of verifying untampered execution of the validation pro-
gram. We have attempted to solve this problem without re-
quiring extra infrastructure (i.e., no CPU on the pocket hard
drive). Besides, Pioneer (and similar approaches) assume
that the hardware and software configuration of the machine
is known apriori, which may be hard to enforce in this case.

User-in-the-loop based authentication mechanism
is used in several websites (e.g., Yahoo) where a dis-
torted string is displayed and the user is asked to reenter it.
This makes it hard to launch automated attacks.

7. Conclusions and Future Work

This paper explores security issues related with a new
form of mobile computing, namely portable storage based
personalization. We identify the set of attacks that can be
launched by an untrusted platform on the pocket hard drive
carried by the user. We identify the subproblems that need
to be solved in order to solve the problem of platform au-
thentication, without hardware support. We present a pre-
liminary security mechanism that combines known software
mechanisms, namely BIOS verification, virtualization tests,
and randomization, to authenticate the untrusted platform
before personal data is loaded. The challenge is to ensure
the untampered execution of this validation program with-
out hardware support, which is partially accomplished by:
(1) using the trusted OS on the pocket hard drive to in-
voke the validation program, (2) increasing the complex-
ity of tampering execution of the validation program using
randomization techniques, namely code obfuscation and ad-
dress obfuscation, and (3) involving the user to help in the
verification of the execution of the validation program by
verifying the messages displayed on the screen.

Solving this problem completely using only software
mechanisms is hard. Each of the subproblems addressed in
the paper is an open problem (including BIOS verification,
virtual machine detection and untampered code execution).
We assembled a set of preliminary techniques to address
these problems. Our near future goal is to come up with
better and more robust platform validation tests. In partic-
ular, tests that detect timing differences [8] in the presence
of malicious code hold great promise. By making it com-
putationally hard for the adversary to attack the validation
program and detecting the difference in execution time, bet-
ter security guarantees can be obtained.



Also, pocket hard drives are a security threat to borrowed
PCs. A possible workaround for this problem is to modify
BIOSes to include a setting that disables access to the na-
tive hard-disk drive at a hardware level when the BIOS de-
tects that the computer is being booted from external me-
dia. Some older PCs have had physical locks and keys to
prevent visitors from opening up the PC. Such mechanisms
can also be conceivably extended to control access to phys-
ical components on the PC- similar to an ignition key that
can be in multiple positions in a car.
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