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Abstract 

Travel and Entertainment (T&E) expenses are under 
increasing scrutiny as one of the largest controllable 
indirect expenses in a firm. This involves internal audits 
and analysis by business controls personnel to identify 
fraud and misuse and to take appropriate corrective 
actions. We have developed a set of statistical models to 
identify suspicious behavior for further investigation. Our 
Behavioral Shift Models (BSM) leverage domain 
knowledge in the form of simple, generic templates that 
represent classes of fraud and abuse. The emphasis is on 
robustly detecting repeated, out-of-the-norm behaviors as 
opposed to single instance occurrences.  In this paper, we 
describe the application of these models and characterize 
their detection capabilities empirically. We also present 
validated results and insights generated by our approach 
when applied to production data from multiple firms for 
several T&E scenarios. 

Keywords:  Audits, business controls, fraud and abuse. 

1 Introduction 
 Travel and Entertainment (T&E) expenses are considered 
one of the largest controllable indirect expenses in a firm. 
The recent emphasis on business integrity and 
compliance in conjunction with a tight business 
environment and constant attention to the bottom line 
have led to a renewed focus on the implementation of 
effective management and controls for T&E.  This entails 
multiple dimensions, including improvement of internal 
controls and related business processes, expense 
monitoring and timely auditing, and improved vendor 
procurement and management.  
 
The problem we address in this paper is that of analyzing 
transaction data logged through a T&E system for the 
purpose of effective audit and business controls. The data 
consists of expense and approval records, but completely 
lacks historical information on the outcome of any 
subsequent actions. Unfortunately, it is rather common 
practice in the audit & business controls domain to 
process candidates deemed worthy of attention without 
documenting the results of the investigation within the 
original T&E environment. This poses an interesting set 
of challenges for the analysis of the data and considerably 
reduces the number of options among the techniques 
developed to date (see Section 2). The outcome of the  

                                                           

 

analysis may be directed towards audit or business 
controls and may be relevant at different granularity 
levels (in what follows, the elements of each such level, 
e.g.,  individuals, organizational subunits such as 
accounting centers and divisions are referred to as 
entities). 
 
The audit and business control functions serve different 
purposes.  Audit refers to checks that are performed to 
ascertain the validity and reliability of the T&E 
information.  For example, an audit could examine a 
specific subset of travel expenses claimed by an 
employee.  Such an audit could uncover fraud, error in 
the claims process (e.g., incorrect expense type used to 
categorize a claim), or misuse (e.g., bypassing the 
expense approval process by inappropriately splitting 
transactions into ones of smaller, less conspicuous 
amounts). Business controls encompass activities that 
examine and analyze data from expense claims and 
expense approval processes for excessive violations of 
relevant corporate policies and guidelines.  For example, 
excessive approval of violations of business class travel 
policy by an organization within a firm could trigger an 
investigation and potential action to improve compliance 
with business travel policy.  Currently, the internal audit 
and business controller roles are being emphasized in 
many organizations due to an increased focus on 
corporate business integrity.  A decision to audit is not 
simply viewed in terms of balancing the cost of the audit 
against the costs due to the abuse.  An audit is frequently 
pursued if there is adequate evidence and sometimes the 
investigation exposes the “tip-of-the-iceberg” where the 
same entities are involved in violations in other domains 
beyond T&E. 
 
 Detection of candidates for auditing and/or business 
control actions is a critical and challenging task.  A 
typical approach relies on the deep knowledge of domain 
experts (auditors and business controls personnel) to aim 
at specific scenarios that reveal potential mechanisms for 
fraud, errors and misuse of policy.  Clearly, such an 
approach makes for a highly non-uniform process of 
identifying candidates depending on the method and 
expertise of the individual domain expert. In the context 
of a T&E software system, this approach entails capturing 
and updating all possible scenarios describing 
mechanisms for fraud and misuse as they are discovered.  
At the opposite end of the spectrum, an ambitious 
approach is to try to detect entities for further 
investigation without explicit domain knowledge about 



fraud and abuse mechanisms. This approach is relatively 
new and has been less explored in the literature or in the 
commercial space.   
 
In our work we have adopted a middle path, by 
developing a set of Behavioral Shift Models (BSM), i.e., 
statistical models that identify suspicious behavior while 
relying only partially on domain knowledge. The latter is 
used solely to define a set of simple, generic templates 
that represent classes of fraud and abuse that may be of 
interest.  The parameters of our statistical models for any 
given template are learned from the data.  We contend 
that our models provide a balance between the amount of 
detailed domain knowledge required and the robustness 
of the insights generated (e.g., few false positives). 
 
 In this paper, we present two models that cover two 
classes of scenarios.  The first model is applicable to 
cases that involve positive real-valued variables (e.g., 
categorized expense amounts, time durations such as 
payment delays).  As an example, consider tip expenses 
of individual employees incurred during business travel.  
These expenses tend to be paid in cash and may not 
require receipts for reimbursement.  A typical analysis 
scenario would seek to detect those employees with 
significantly high tip claims. Section 3 describes our first 
model, its empirical characterization, and results from 
scenarios in this class (referred to as Expense Amount 
Scenarios) using production T&E data from multiple 
firms.  The second model is applicable to scenarios 
involving count data (referred to as Event Count 
Scenarios) for events like business rule exceptions.  For 
example, organizations typically have well-defined 
business rules regarding the class of air travel allowed for 
business trips.  They also have a business process for 
approving exceptions to this rule. From a business 
controls perspective, it is important to monitor and assess 
whether an organizational unit is lax in its business 
controls by excessively approving this type of exception. 
Section 4 describes the details of our second model and 
the corresponding results. The remainder of the paper is 
dedicated to the background for this work (Section 2), 
discussion (Section 5) and our conclusions (Section 6). 
 

2 Background 

Our work touches upon a multitude of aspects, some 
generic and some domain-specific. Broad topics like 
outlier identification, statistical inference, and hypothesis 
testing are examples in the former category. Analysis of 
transaction data in T&E systems for purposes such as 
reporting, monitoring, and compliance are representative 
of the latter. In this section we attempt to narrow down 
this rich field starting from the problem we are trying to 
solve and its desired (if not required) outcomes as 
described in the previous section. 

Outlier detection pertains to the detection of anomalous 
observations (outliers) in data sets. The abnormality is 
typically defined with respect to other samples within the 
same data set. A broad spectrum of techniques has been 
developed for different applications on a varied 
theoretical backdrop that includes Statistics, Machine 

Learning, Neural Networks, etc. A comprehensive 
overview of outlier detection is provided by Hodge and 
Austin (2004). Using the taxonomy proposed in that work 
as our reference, we note that methods that fall in the 
Type 1 (i.e., unsupervised clustering) or Type 2 (i.e., 
supervised classification) categories do not offer suitable 
solutions to our problem: an a priori proximity metric to 
be used for clustering would be difficult to conjecture and 
labeled data is unavailable.  The closest to our approach 
are the Type 3 methods (i.e., semi-supervised detection) 
that model normality and use it to pinpoint abnormal 
cases.  

There has been extensive research done on outlier 
detection methods to identify observations (or points) in 
n-dimensional space that deviate from other observations. 
For example, statistical and data mining methods for this 
task are compared by Williams et al (2002). Such 
methods do not address the problem of analyzing repeat 
behavior that is of interest in our domain. We are 
interested in identifying entities with outlying behavior 
and the data contains varying numbers of behavioral 
observations for each entity.   

A comprehensive review of statistical fraud detection is 
provided by Bolton and Hand (2002).  Their exposition 
on unsupervised methods is clearly relevant to the 
problem addressed in this paper.  The notion of using a 
statistical profile of the normal behavior has been used in 
earlier works.  The computer intrusion detection work by 
Denning (1987) is an example that uses this approach.  
One of the statistical models used by Denning for 
representing the normal profile consists of the 
summarization using the mean and standard deviation. 
Any single observation is tested and scored for deviation 
from this normal characterization.  The more recent work 
on peer group analysis by Bolton and Hand (2001) 
incorporates a key refinement by using local models in 
the form of peer groups that define normal behavior for 
any entity being analyzed for deviant behavior.  However, 
in both examples the normal profile is used to score the 
deviation of a single observation.   As mentioned earlier, 
our problem requires analyzing multiple observations for 
each entity to determine entities with repeated and 
significant outlying behavior.  

Formulations developed in the area of Scan Statistics 
(Kulldorff 1997, Glaz et al 2001, Huang et al 2007) are 
well-suited to the problem at hand.  The approach is to 
use hypothesis testing (Lehmann 1986) using the 
Likelihood Ratio Test (LRT) to scan for clusters of 
abnormality that stand out within the entire space of data 
considered.  The expanding body of work in this area 
includes development of models suited for various 
underlying distributions and applications to various 
domains.  Our work could be viewed as an adaptation of 
this approach to the problem of identifying suspicious 
behavior for audit and business controls purposes.  

Our resulting solution is novel in the T&E domain for at 
least two essential reasons: (a) it uses a robust scoring 
mechanism that considers the magnitude of abnormality 
without requiring specification of boundaries between 
normal and abnormal; (b) it emphasizes the repetition of 
abnormal behavior as an important metric in 



characterizing outliers. In T&E both aspects are crucial. 
For example, expenditure limits are set through policies 
and exceptions to these trigger alarms. However, there is 
considerable room for fraud under these limits which may 
not always be caught through additional thresholds (see 
Section 3). Capturing repetitiveness is also of essence: it 
corresponds to the amount of evidence to justify an audit 
and the cost of the corresponding follow-up investigation 
and it may reveal integrity gaps that may point to other 
problems.  The importance of gathering sufficient audit 
evidence has been highlighted in other financial areas by 
Beasley et al (2001). 

The importance of financial controls and policy 
adherence in the T&E domain is emphasized by the 
National Business Travel Association (NBTA).  NBTA is 
a leading forum in the business travel domain and a 
source for information about the domain, including 
commercial service and product providers in this space. 
Commercial packages typically provide reporting 
functions that summarize and sort the data based on 
domain knowledge of the important metrics in this space.  
However, to the best of our knowledge our model and 
method represents the first analysis in this domain that 
evaluates each entity based on the magnitude of deviation 
from normal and the repetitiveness of the behavior after 
appropriate normalization. 

3 Expense Amount Scenarios 

In this section we describe our method as it applies to 
scenarios that involve positive, real-valued variables.  
Consider the tip expenses scenario introduced in Section 
1.  A typical analysis scenario would seek to detect those 
employees with significantly high tip claims.  There are 
two important aspects we consider: (a) repetitiveness – 
we are interested in candidate entities (individual 
employees in this case) that exhibit a profile / pattern of 
repeated excessive tipping (in contrast with methods that 
focus on finding isolated outlier tip amounts); and (b) 
significance: to properly quantify excessiveness we 
incorporate domain knowledge that helps us normalize 
the range of our variables. For tips, the amount must be 
normalized by the location where the tip expense was 
incurred.  The template for this scenario would specify 
the expenses to be analyzed (tip expenses), the covariate 
structure for normalization (location where expense was 
incurred), and the target entities (employees). 

3.1 The Model 

To analyse expense amount scenarios, we apply 
hypothesis testing using the LRT formulation.  We 
compare the distribution of values for a given entity ξ  

with that of the baseline B of values computed from all 
the entities: 

(H0: null hypothesis)             E[ ξ ] = E[B] 

(H1: alternate hypothesis)      E[ ξ ] > E[B] 

where E[] denotes the expectation (mean) operator. As 
previously explained, the values considered in the LRT 
must be normalized by taking into consideration all the 
relevant factors (determined through domain knowledge).   

Through empirical analysis of many expense amount 
scenarios across datasets from multiple firms, we found 
that the exponential model developed in a recent work by 
Huang, Kulldorff and Gregario (2007) on a spatial scan 
statistic for survival data provides an excellent 
characterization for the majority of T&E baselines after 
proper normalization.  In addition, we observed that in 
practice it has good power for a broader class of 
distributions (e.g., Gamma) which is in line with the 
observations of Huang et al (2007).  

For each scenario we specify the entity space (e.g., 
employees, department, divisions, and business units) 
being targeted by the analysis.  We also specify the 
covariates according to domain knowledge.  Referring 
back to our tip example, the entities are individual 
employees and the location where the tip expense was 
incurred is the only covariate.  The target variable is the 
amount of tip expense claimed.  Categorical covariates 
are handled directly by determining a normalization 
factor F for each combination of covariate values. 
Typically, this factor F is the mean (or max) value for 
that combination of covariate values over all the entities. 
Normalization of an individual value simply becomes the 
ratio of the raw value and F.  For example, each tip 
expense can be normalized by dividing it by the mean tip 
value for the location where the expense was incurred. 
Consider an entity ξ  with M normalized values which 

sum up to S.  Let the total number of normalized values 
over all the entities be N and their sum be T.  The test 
statistic Y( ξ ) for the exponential model  is given by: 

( ) −
ξ = × + − × − ×

−
     
          

Y log ( ) log log .
M N M N

M N M N
S T S T

    

Following the methodology used with most scan statistics 
(Kulldorff 1997, Huang et al 2007), a p-value is 
computed by performing a number Z of Monte Carlo 
experiments. In each experiment, the entity values are 
determined by sampling from the baseline and the 
maximum test statistic achieved by any entity is 
computed. We use sampling with replacement instead of 
the permutation approach used by Huang et al (2007) 
since in our domain a small number of extreme values are 
deleted from the baseline.  The p-value for the entity ξ  is 

computed using the formula (L+1)/Z, where L is the 
number of Monte Carlo experiments with a maximum test 
statistic exceeding Y( ξ ). Entities with p-values that 

reject the null hypothesis at the prescribed α  level are 
considered candidates for further investigation and ranked 
in decreasing order of their test statistic values Y. 

3.2 Empirical Characterization 

We will analyse the power of our model empirically for a 
range of Gamma distributions that are based on our 
characterization of production T&E data.  Our 
experimental procedure for this empirical characterization 
is sketched in Figure 1. Specifically, we report on one set 
of experiments each of which simulates 1000 entities.  
Each entity has varying number of data items 
representing the expense claims submitted.  The number 
of data items for an entity is modeled by a Gamma 



distribution ( 1Γ ) with shape parameter 1.0 and scale 

parameter 16 (i.e., mean = 16).  The data values are 
characterized by various two-parameter Gamma 
distributions ( 2Γ ). In each case, without loss of 

generality, we choose the value distributions to have a 
mean 1.0 (the test statistic is invariant under 
multiplicative scaling).  The following values were 
considered for the Gamma shape parameter: {0.25, 0.5, 
1.0, 2.0, 3.0, 4.0, 5.0, and 6.0}.  In each experiment, a 
single target entity is chosen to have its values increased 
by a percentage δ  that is varied in the range [10, 400].  
Note that the test statistic Y is not sensitive to the 
distribution of the increase across individual values for 
the target entity since it is based only on the sum of all its 
values. 

This empirical analysis provides a characterization for the 
ability of our method to detect a target entity with inflated 
values at a given α  level for p-values.  Similarly, we also 
determine the number of non-target entities that are 
detected at the given α  level and we use the two resulting 
characterizations to quantify the performance of our 
model in terms of false negatives and false positives in 
this idealized experimental setup. 

Input: N� number of entities in the population 

            Nb number of baselines 

            Nexper number of simulation experiments for each baseline  

         �1{shape, scale}for the distribution of the number of expense  

                                      items across entities 

            �2{shape, scale}for the distribution of expense amounts 

                                      across entities the population (mean = 1) 

Output: statistics regarding successful identification of engineered increases 

Algorithm: 

Generate N� random numbers according to �1 distribution; these represent the 
number of expense items for each entity 

for each baseline 1.. Nb do 

   generate data for this baseline according to �2 distribution; this data   

   represents the amount of each expense for every entity 

   for each � amount of percentage increase do 

      for each experiment 1..Nexper do 

         select an entity �* to be engineered 

         apply a �% increase to each expense amount in �* 

         run BSM model and compute p-values and detection statistics 

         record entities with p-values below chosen � level & detection statistics 

      end for 

   end for 

end for 

Figure 1.  Experimental procedure to evaluate the 
detection capabilities of BSM. 

 

 For illustration, we use 0 01.α = .  First, we consider the 
experiments done with the Gamma shape parameter of 
1.0 for the value distribution.  We use a classification 
model (Duda, Hart and Stork 2001) to discriminate the 

class of experimental cases in which the target entity was 
detected by our method from those in which it was not. 
Figure 2 shows both these classes with the x-axis 
representing the number of data elements (φ) in the 

target entity and the y-axis representing the total excess 
added to the target’s values (λ ).  The points marked 
with a “+” are instances of the class where the target 
entity was detected at the given α  level. A linear 
classifier was generated using a training set composed of 
25% of the data using an SVM formulation (Christianini 
and Shawe-Taylor 2000). The accuracy on the test set 
(remaining 75% of the data) was 95% in this case 
indicating that this linear discriminator is a reasonable 
characterization of the target detection achieved by our 
method. The equation for the linear discriminant is 

0.513 13.26λ = × ϕ +  and it characterizes the amount of 

excess that is detectable by this model.  For example, a 
target entity with 40 data entries is detected only if, on 
average, its values are increased by 84% of the mean 
value.  In the limit, as the number of values in the target 
entity increases, the excess has to be 51% of the mean for 
it to be detected.  The relatively high value for the excess 
needed in this case is due in part to the skewed nature of 
the exponential distribution (i.e., Gamma shape parameter 
of 1.0).  The relatively long tail for values even under 
“normal” circumstances results in the need to have 
sizeable excess before it is deemed significant.  Our 
experience with production T&E data summarized in the 
next subsection shows that even with this conservative 
performance our model detects many interesting 
candidates for further investigation. 

 

Figure 2. Detection of target entity for Gamma shape 
parameter of 1.0 

Repeating the analysis by choosing other Gamma 
distributions for the baseline (i.e., choosing the Gamma 
shape parameter), we can characterize the detection 
ability of our model using the linear classifier learned for 
each Gamma distribution.  The linear discriminants for 
the various Gamma distributions are shown in Figures 3 
and 4.   The SVM accuracy is higher than 93% in all the 
cases confirming the validity of these characterizations.  
The skewed value distributions when the shape parameter 



is 1.0≤  result in larger excesses being required for 
detection (Figure 3).  The tighter distributions that result 
as the Gamma shape parameter is increased lead to 
detection with much smaller excess (Figure 4).  For 
example, when the shape parameter is 6.0, a target entity 
with 40 data entries is detected if, on average, its values 
are increased by as little as 25%. 

 

 

Figure 3. Linear classifier results for Gamma shape 
parameter values 0.25, 0.5, and 1.0. 

The previous characterization indicates the ability of the 
model to detect the target for a wide range of Gamma 
distributions for the baseline values though the magnitude 
of excess needed is quite high when the baseline 
distribution itself has a long tail. 

 

 

Figure 4. Linear classifier results for Gamma shape 
parameter values 2.0, 3.0, 4.0, 5.0, and 6.0.  

Next, we consider the detection of non-target entities 
which gives us an indication of the false positive rate.  At 

0 01.α = , non-target entities were not detected in any of 

the experiments.  The tradeoff between sensitivity and 
false positives can be illustrated if compare these results 
with those for 0.05α = .  The number of experiments 
(expressed as a percentage of the total number) in which 
non-target entities were detected is given for both α  
levels (0.01 and 0.05) in Table 1. At 0 05.α = non-target 
entities are detected when the baseline Gamma 
distribution has shape parameter values of 2.0 and 3.0.  In 
each instance, when a non-target entity was detected only 
one such entity was detected. The detection sensitivities 
for the two α  levels can be compared by considering the 
corresponding equations for the linear discriminants. For 
the value Gamma shape parameter value of 1.0 
considered earlier, the equation for the linear discriminant 
is 0.342 13.00λ = × ϕ +  at 0 05.α =  indicating the increase in 
sensitivity compared to the equation 0.513 13.26λ = × ϕ +  
we had for 0 01.α = .  The user can control this tradeoff 
between detection sensitivity and false positive rate by 
the choice of the  α  level.   

The empirical characterization with the idealized Gamma 
distribution for the baselines indicates the magnitude of 
excess that is detectable by our method while keeping the 
false alarms rate in check. We show the utility of our 
method in the next subsection with results obtained by 
applying our method to production T&E data. 

 

α -level =0.01 α -level =0.05 Gamma  

Shape 
Parameter 

Target 

detected 

Target 
not 

detected 

Target 
detected 

Target 
not 

detected 

0.25, 0.5, 

1.0 

0 0 0 0 

2.0 0 0 6.4% 6.7% 

3.0 0 0 9.0% 10.3% 

4.0, 5.0, 
6.0 

0 0 0 0 

Table 1. Percentage of instances with non-target entity 
detection 

3.3 Application to Production T&E Data 

We applied our model to production T&E data from 
multiple firms in an enterprise expense reporting 
environment (GERS) and we reviewed the results of 
various scenarios with audit and business control 
professionals.  The reviews were of a qualitative, not 
quantitative nature, i.e., they did not provide a 
quantitative assessment of false positive and false 
negative rates, but they did confirm the usefulness of our 
model. The top significant candidates detected by our 
technique in each scenario were found by the auditors to 
be interesting targets for further investigation.  
Interestingly, most of the candidates identified were not 
previously known to the domain experts as suspicious 
cases. In addition, we also did a few controlled 
experiments in which known cases were added to the data 
to confirm that BSM correctly detected them as 



candidates for further investigation.  In this section we 
present some of our analysis results. All these examples 
are based on data for one year. Other time periods of 
interest include calendar month and quarter. In all our 
analyses p-values were estimated using Z = 9999 Monte 
Carlo experiments.  

3.3.1 Receipt limits scenario 

This scenario focuses on employee behavior with respect 
to business rules that set limits for travel expenses.  
Specifically, we consider a rule that states that only the 
actual expenses should be claimed and that the limits 
should not be viewed as an entitlement. Under this rule, 
we explore expenses incurred that do not require receipts 
to be submitted since they are below the corresponding 
specified limits. We seek to detect individuals who are 
likely violating this business rule and, in particular, we 
are looking for those who are trying to exploit the receipt 
limits by claiming expenses just below them (i.e., “flying 
just under the radar” behavior).   Specifically, we will 
consider expense types that require a receipt above $25. 
Note that the converted US$ value will be presented in 
this paper even when the expense was incurred in another 
currency. We will also focus the analysis on expenses 
paid with cash (not by corporate credit card) over a one 
year time period. No covariates are used in this analysis. 
We present the results from two different firms {A, B} 
for this scenario. 

 

Figure 5. Histogram of expenses in firm A subject to 
$25 receipt limit and the corresponding Gamma fit 

In the first firm A, the receipt limit of $25 is applied to 
expense categories like employee meals, business meals, 
ground transportation, parking, tips and tolls. Our 
analysis was performed on 660K expenses of these types 
that were below the $25 receipt limit.  These expenses 
were claimed by 27K employees.  The histogram of these 
expenses is shown in Figure 5.  The maximum likelihood 
estimate for a Gamma distribution fit to these expenses 
has parameters {shape = 2.63, scale = 4.52} and the 
corresponding probability density function is also plotted 
in Figure 5.  The histogram shows an increase in the 
counts near the maximum value of $25.  It is important to 
note that the p-value computation described in Section 
3.1 samples actual expense amounts and hence factors in 
the increased counts at the limit that occur across the 
firm. While this phenomenon of increased counts at the 

limit across the population is intuitive, a disproportionate 
increase in counts near the limit for any particular 
employee would be worthy of detection.  Figure 6 shows 
the corresponding expenses for the top three employees in 
firm A identified by BSM in this scenario.  The 
disproportionate concentration of expenses near the limit 
value of $25 is clear for these three employees. 

 

Figure 6. Histogram of expenses for the top three 
employees (in firm A) identified by BSM  

Considering the second firm B, the receipt limit of $25 is 
applied to expense categories like employee meals, hotel, 
ground transportation, tolls/parking, tips and laundry.  
The data analyzed corresponds to a subset of the 
employees in the firm B.  The analysis considered 110K 
expenses that were submitted by 3.6K employees.  The 
histogram of these expenses is shown in Figure 7.  The 
maximum likelihood estimate for a Gamma distribution 
fit to these expenses has parameters {shape = 1.76, scale 
= 4.98} and the corresponding probability density 
function is also plotted in Figure 7. 

   

Figure 7. Histogram of expenses in firm B subject to 
$25 receipt limit and the corresponding Gamma fit 

Figure 8 shows the corresponding expenses for the top 
three employees in firm B identified by BSM in this 
scenario.  Again, the disproportionate excess 
concentration near the limit of $25 for these employees is 
clearly worthy of further investigation.  Interestingly, the 
top employee in this case also has a concentration of $1 
expenses (all corresponding to tips).  We have observed a 
variety of expense amount patterns for the entities 



identified by BSM. These would not be easily detected by 
simple filters considering disproportionate behavior in 
fixed expense amount windows below the limit. 

 

 

Figure 8. Histogram of expenses for the top three 
employees (in firm B) identified by BSM 

3.3.2 Procurement analysis scenario 

An important feature of our approach is the ability to do 
the analysis focusing on targets at different levels of 
granularity. Scenario 2 will utilize this capability by 
analyzing vendors, specifically hotel chains, to identify 
those that are significantly more expensive even after 
normalization for location is done.  The analysis was 
done by considering the hotel room rates paid during 
business travel over a period of one year.  The location 
(country, city) of the hotel was considered as a covariate 
for normalization.  The average hotel room rate paid in 
each location was used as the normalization factor F (i.e., 
a normalized expense of 1 implies that the corresponding 
location’s average room rate was paid). The analysis 
considered 523K expenses for hotel room nights that 
were paid to roughly 300 hotel vendors.  The top ranked 
hotel vendor identified by BSM had significant usage 
(39K room nights) and a total excess charge of 9.3% after 
normalization by location.  The second ranked hotel 
vendor identified by BSM had much less usage (around 
2K) but a significantly higher percentage excess of 28.4% 
compared to the location based normalization factors. 

The baseline of normalized room rates considering all the 
vendors and locations can be visualized using the 
cumulative distribution function (cdf) shown in Figure 9. 
The maximum likelihood estimate for a Gamma 
distribution fit for this baseline has parameters {shape = 
7.78, scale = 0.129}. Figure 9 also shows the cumulative 
distribution function for the top two hotel vendors 
discussed above.  Note that the ranking by BSM takes 
into account both the repetitiveness and the magnitude of 
excess compared to normal but the visualization in Figure 
9 only depicts the latter.   

In addition to the filtering of significant entities and their 
ranking, the BSM approach lends itself to providing 
diagnostic information that can help the user gain further 

insight on the identified entities.  We have found it to be 
very useful to break down an identified entity’s excessive 
deviation from the normal baseline by the covariate 
segments.  For example, a single location is responsible 
for almost all of the excess exhibited by the second 
ranked entity. An excess of around 30% was charged by 
this entity at this location based on the data from all the 
relevant hotel vendors. This kind of diagnostic 
information can help focus the further investigation and 
corrective action.  

 

 

Figure 9. Cumulative distribution function for 
normalized room rate (baseline and BSM ranked top 

two hotel vendors) 

3.3.3 Submission delay scenario 

This scenario illustrates the application of BSM to other 
types of positive real valued quantities besides dollar 
amounts, for example, delays in submitting expense 
claims for approval.  Organizations typically have a 
business rule specifying the maximum allowed time for 
submission after the expense was incurred.  However, the 
guidelines typically suggest making an effort towards 
prompt submissions.  Habitual delays in submission 
might indicate issues worthy of investigation even if the 
maximum delay limits are not always violated.  This 
scenario identifies employees with repetitive excessive 
claim submission delays.  The analysis was performed for 
firm B and focused on expenses charged to the corporate 
credit card.   

The analysis considered 414K individual expense 
submissions from 4K employees over a period of a year.  
The average delay in claiming expenses was around 10 
days for the baseline considering all 4K employees.  The 
claim submission delay distribution was characterized by 
a Gamma distribution with maximum likelihood 
parameters {shape = 1.25, scale = 7.82}.  The results for 
the top three employees ranked by BSM for having 
repetitive excessive delays are given in Table 2 and 
clearly show the repetitive deviation from the norm. 

 



BSM 
Rank 

Number of 
claims 

Average submission 
delay 

1 94 122 

2 74 128 

3 426 38 

Table 2. Expense claim submission delays for the top 
three employees in firm B identified by BSM 

4 Event Count Scenarios 

In this section we consider scenarios involving discrete 
occurrences of events such as approvals of exceptions to 
specific business rules.  A typical template would aim to 
determine if an entity has excessive (or insufficient) 
counts for a specified event type given the counts for the 
opportunities for the events.   For example, consider the 
scenario from Section 1 to identify organizational units 
with excessive approval of exceptions to the prescribed 
class of air travel.  Clearly, for this scenario we would 
need to consider, for each organizational unit, both the 
number of air travel expenses claimed and the number of 
air travel class exceptions that were approved.  It might 
seem intuitive to consider some attribute of the air travel 
as a covariate, e.g., international versus domestic travel.  
However, our experience is that business controls 
professionals do not make accommodations for such 
attributes (beyond any use of such attributes in the 
corresponding business rule) when assessing if an 
organizational unit is being lax.  There are other scenarios 
where the use of covariates is more appropriate.  One 
such example is the approval of exceptions to the 
business rule that defines when receipts have to be 
submitted for T&E expense claims.  There could be 
different reasons provided for why, on occasion, a receipt 
is missing (e.g., receipt lost, receipt not available). The 
rates of occurrence and approval of missing receipt 
exceptions clearly varies by expense type.  For example, 
it is typically the case that missing receipt exception rates 
for hotel room expenses are low.  On the other hand, 
missing receipt exception rates for ground transportation 
expenses like cab fares are much higher.  Therefore, the 
expense type is an appropriate covariate when we are 
trying to detect organizational units with excessive 
approvals of missing receipts exceptions. 

4.1 The Model 

Our approach to detect entities with excessive (or 
insufficient) counts for specific events is similar to the 
one for expense amount scenarios in the use of the LRT.  
The LRT based on a Poisson model is well suited to 
model event counts that are proportional to known 
opportunities with possible categorical covariates. The 
LRT using the Poisson model has been used extensively 
in various surveillance applications (especially in public 
health) following the work on the spatial scan statistic by 
Kulldorff 1997.   Indirect standardization was proposed in 
that work as one approach to handle categorical 
covariates.  Let ( , )O Fξ  and ( , )V Fξ  represent the count 
of opportunities and the count of target event occurrences 

for entity ξ  for the combination F of categorical values 
for the covariates, respectively. The expected number of 
target event occurrences ( )X ξ  for an entity ξ  is 
calculated using indirect standardization as: 

.'
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Following Kulldorff 1997, the test statistic W(�) for 
Poisson model is given by  

( ) ,
Y( ) U -Y( )
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where ( )Y ξ  represents the aggregate number of target 
event occurrences for entity ξ  over all combinations of 
categorical covariate values and U represents the total 
number of occurrences of target events over all the 
entities and the covariate value combinations. 

 The p-value is computed by performing a number Z of 
Monte Carlo experiments, where, in each experiment the 
target event counts for an entity ξ  are determined by 
sampling from a Poisson distribution with mean equal to 
the expected count X( ξ ).  As before, the p-value for the 
entity ξ  is computed using the formula (L+1)/Z, where L 
is the number of Monte Carlo experiments with a 
maximum test statistic exceeding W( ξ ).   Entities with p-
values that reject the null hypothesis at the prescribed α  
level are candidates for further investigation and are 
ranked in decreasing order of their test statistic values W.  
The behavior of the LRT model using the Poisson model 
has been well-studied given its wide usage in domains 
like public health and epidemiology. In the next 
subsection we present results on production T&E data 
that demonstrate its applicability to this domain. 

4.2 Application to Production T&E Data 

As described earlier in Section 3.3, we applied our model 
for event count scenarios to production T&E data from 
multiple firms in an enterprise expense reporting 
environment (GERS) and reviewed the results of various 
scenarios with audit and business control professionals.  
In this section we will present results from two of these 
scenarios.  The chosen scenarios will also illustrate the 
ability of our approach to do the analysis at different 
organizational levels.  This is important feature since 
business controls are typically exercised by monitoring 
expenses for organizational units that are more suitable 
for expense management and policy guidance.   

4.2.1 Hotel limit exceptions scenario 

This scenario is related to the business rule that specifies 
upper limits by location on hotel room rates and requires 
management approval of exceptions to this rule.  The goal 
of the analysis is to identify organizational units that are 
approving exceptions to this rule excessively.  The 
analysis was done for firm B targeting 15 organizational 
units.  In the time period of the year considered, there 



were 4.6K exception approvals (events) for 43K 
underlying hotel expenses (opportunities) implying a 
baseline event rate of 10.7%.   The top three 
organizational units identified by BSM as having 
significantly excessive ( 0.01α = ) exception approvals are 
listed in Table 3.  Clearly, the counts of approval events 
and opportunities indicate patterns of excessive approvals 
in these three organizational units that warrant further 
investigation.  

 

BSM 
Rank 

Number 

 of  hotel  

expenses 

Number of hotel  

limit exception 
approvals 

(expected number) 

Poisson 

test 

statistic W 

1 777 235 (83.2) 99.75 

2 609 144 (65.2) 35.96 

3 1371 247 (146.8) 29.43 

Table 3. Results for the top three organizational units 
identified by BSM as having excessive hotel limit 

exception approvals 

4.2.2 Missing receipt exceptions scenario 

This scenario addresses the business rule that requires 
submission of receipts based on the expense category and 
amount.  The goal of the analysis is to identify approvers 
who are approving exceptions to this rule excessively.  As 
discussed earlier, the rates of occurrence and approval of 
missing receipt exceptions across the firm clearly varies 
from one expense category to another.  Therefore, the 
expense category is an appropriate covariate for this 
analysis. 

 

BSM 

Rank 

Number of 

exception 

opportunities 

Number of   

exception 
approvals  

(expected 
number from 
indirect 
standardization) 

Poisson 
test 
statistic  

W 

1 403 245 (22.4) 363.5 

2 1255 375 (72.5) 314.7 

3 624 234 (25.7) 309.1 

Table 4. Results for the top three approvers identified 
by BSM as having excessive missing receipt approvals 

 

The analysis was done for firm A considering the 
exception approvals over a one year period.  The analysis 
considered 18K exception approvals by 12K approvers 
that resulted from 159K opportunities for this exception.  
Table 4 shows the results for the top three approvers 
identified by BSM as having excessive approval rates 

after normalization by expense categories.  Table 4 
clearly indicates the repeated approvals by these 
approvers and its excessiveness when compared to 
expected numbers based on behavior across all approvers.  
Examining the diagnostic information for the top ranked 
approver in Table 4 led to the actionable insight that the 
dominant expense categories for the corresponding 
exceptions were employee lunch and dinner and also that 
one employee was the main contributor.    

5 Discussion 

The diversity of the application areas for fraud detection 
has been pointed out by Bolton and Hand (2002).  Bolton 
and Hand also stress that operational and data 
characteristics of the application domain determine 
suitable fraud detection methods and tools.  Analysis of 
expense claims for audit and business controls purposes is 
an application domain with specific characteristics and 
requirements.  The models and methods presented in this 
paper address the following needs in this domain: 

•  Conservative analysis that identifies entities for 
further investigation when significant evidence 
is available.  

•  Entities analyzed at various levels of granularity 
in the firm based on the scenario and the 
corrective action that will follow. 

•  Analysis that can handle the data and operational 
characteristics like lack of labeled data, 
significant tails in the value distributions, impact 
of business rules (e.g., limits), and the need for 
normalization considering one or more 
covariates. 

•  Provide detailed evidence for the entities 
identified to help audit and business controls 
professionals determine if an investigation is 
warranted and to bootstrap it if the investigation 
is pursued. 

Our simple and intuitive template structure has been used 
to create over 50 specific scenarios for the analysis of 
T&E data in an enterprise expense reporting environment. 
Our scenarios utilize only the structured data logged in 
the expense claim process.  Unstructured data for the 
entities identified like explanations for triggering 
exceptions are presented as part of the evidence used for 
further investigation.  Including the unstructured data in 
the automated analysis is unlikely to be useful due to its 
unreliable nature (inconsistent and possibly inaccurate or 
even misrepresented information).   

Future work also includes utilizing the BSM scoring of 
entities based on their outlying behavior to impact the 
controls and management actions for selected entities 
within the travel expense management system.   

The BSM model has also been applied to other domains 
like procurement (one such scenario was illustrated in 
Section 3.3.2).  Our ongoing work in other domains 
suggests that BSM can be a valuable part of a toolkit for 
identifying entities with outlying behavior in various 
domains. 



6 Conclusion 

We have described a set of Behavioral Shift Models 
developed in the context of Travel and Entertainment 
(T&E) expense management for efficient auditing and 
business controls. Our models combine recent advances 
in unsupervised statistical analyses with T&E domain 
knowledge to profile and rank entities in a firm based on 
the deviation of their travel spending behavior from that 
of the general population. The focus is on repeated 
suspicious behavior as opposed to a one-time outlying 
case, in line with the domain practice of conservative 
filtering that takes into account the amount of evidence 
available. We have modeled two broad classes of data: 
one for continuous, real-valued variables and one for 
discrete, Poisson-type variables covering a large number 
of scenarios in the T&E domain. We characterized the 
discriminating power of our method using a systematic 
simulation approach that evaluates the detection 
capability of the BSM for different data distributions with 
different amounts of engineered deviations from the 
population norm.  Lastly, we have presented several 
example scenarios with validated results of our analyses 
of T&E data from several firms.   
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