
RC24271 (W0705-140) May 30, 2007
Computer Science

IBM Research Report

Scaling Summary Computation of Large Java Libraries

Mangala Gowri Nanda
 IBM India Research Laboratory

Satish Chandra
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Scaling Summary Computation of Large Java Libraries

Mangala Gowri Nanda
IBM India Research Laboratory

mgowri@in.ibm.com

Satish Chandra
IBM T. J. Watson Research Laboratory

satishchandra@us.ibm.com

ABSTRACT
We wish to pre-compute results of analyzing reachability of
error conditions in large libraries. Our analysis uses exhaus-
tive state-space exploration of an abstraction of the library
code to discover all its possible behaviors, and represent
them as method summaries. This exploration takes consid-
erable time and space when analyzing large libraries. We
present new techniques to speed up this exploration. Our
techniques are based on empirical observations from trying
to analyze large programs. Two of our techniques attempt
to reduce the number of different environments under which
a method must be explored, the first by identifying a domi-
nant predicate that renders the other predicates immaterial
to the outcome of a method, and the second by filtering out
infeasible initial environments. A third technique re-uses the
results of exploration of certain inner methods in a library
by representing state information in a parameteric way. To-
gether, these techniques enable us to compute reachability
summaries of libraries with hundreds of methods.

1. INTRODUCTION
We wish to pre-compute, or summarize the reachability

analysis of given error statements inside library code, in a
modular fashion, without client code being available. The
purpose of the analysis is to decide, conservatively, whether
under some initial conditions it is possible for the execution
to reach a given program point in library code. Answering
this question in a non-trivial way requires a path-sensitive
analysis—one that interprets conditionals depending on pro-
gram state as opposed to non-deterministically—otherwise
all program points in any reachable methods might appear
to be reachable, modulo dead code. It also requires an ab-
straction powerful enough for reasoning precisely about heap
references, because predicates on heap references could de-
termine the reachability of an error statement. The novelty
of our work is in doing summarization with this rich abstrac-
tion, and getting it to scale to real libraries.

.$

1 class File {
2 int state = CLOSED;
3 void open() {
4 if (state != CLOSED)
5 throw new Fail;
6 ...
7 state = OPEN;
8 }
9 void close() {

10 if (state != OPEN)
11 throw new Fail;
12 ...
13 state = CLOSED;
14 }
15 int read() {
16 if (state != OPEN)
17 throw new Fail;
18 ...
19 }
20 }

1 class ClientOfFile {
2 void main() {
3 File f =
4 new File("name.txt");
5 f.open();
6 f.close();
7 f.read(); // wrong
8 }
9 }

Figure 1: File class

Motivating Example Figure 1 presents the library code
for a typical resource management protocol, and a small
piece of client code. Suppose we are interested in the reach-
ability of the error statement in read(). We consider a path-
sensitive inter-procedural analysis starting from main(). At
the call f.read(), this analysis would track that the read of
state at line 16 is a read of O.state, where O is the object
allocated in the client. The definition that reaches this pro-
gram point is the definition at line 13, and the conditional
expression at line 16 evaluates to true.

The reachability summary of the methods in File can be
represented as a typestate specification for File, as shown in
Figure 2. A typestate specification of a type is an automa-
ton in which states correspond to some abstraction of the
run-time state of an object of that type, and edges corre-
spond to method invocations. For example, the automaton
states in Figure 2 contain the predicates (state == OPEN)

and (state == CLOSED) on a File object, which in this case
happens to be the entire program-level state of the object.

Now consider the class FileWrapper shown in Figure 3.
After line 5 of the client code shown, fw.f and fl are aliases.
The state of the File object pointed to by fw.f after line 6 is
closed, perhaps unintentionally so. The call fw.read() at line
7 will lead to an error. It is easy to see that the analysis here
needs to be both path-sensitive as well as sensitive to aliasing
conditions; furthermore, making the pessimistic assumption

state == CLOSED

state == OPEN

open() close()

read()

<init>

Error

read()

close()

open()

Figure 2: Typestates for File

in a summary that fw.f and fl are always aliases can be too
conservative.

Richer Summaries In previous work [10], we introduced
a generalization of single-object typestates to account for
inter-object references. The idea is to encapsulate in an
object’s typestate, predicates not just on that object, but
also on objects reachable by field dereferences (in an ap-
propriately finitized way.) Furthermore, the transition dia-
gram needs to account for aliasing behavior: different alias-
ing conditions cause different transitions to be taken out
of a state, and furthermore, the transitions might generate
aliasing conditions that a client verifier needs to keep track
of. Figure 4 shows some of the transitions in the typestate
specification for FileWrapper. Tracing through the code in
ClientOfFileWrapper in this figure indeed leads to the error
state.

Summary Creation We use systematic state-space ex-
ploration of the library to create summaries of this kind.
This approach uses the reachability criteria provided by
a user to discover relevant typestates—more precisely, the
predicates that constitute typestates and that need to be
handled relationally—and create a boolean abstraction [2]
of the library code. Since a pre-pass of conservative pointer
analysis is too imprecise for our purpose, we use a generaliza-
tion of boolean abstraction, one in which heap references, in-
cluding dynamic allocation, are modeled explicitly [10]. This
generalized boolean abstraction requires a non-standard ap-
proach to state-space exploration, because the state space
of the generalized boolean program is not bounded a pri-
ori. The summaries that we desire are the summaries of the
methods in this generalized boolean program, obtained as a

1 class FileWrapper {
2 private File f = null;
3

4 void setFile(File g) {
5 if (f != null)
6 f.close();
7 f = g;
8 }
9 void done() {

10 if (f != null)
11 f.close();
12 }
13 int read() {
14 if (f != null)
15 f.read();
16 }
17 }

1 class ClientOfFileWrapper {
2 void main() {
3 FileWrapper fw = ...;
4 File fl = ...;
5 fw.setFile(fl);
6 fw.setFile(fl);
7 fw.read(); // wrong!
8 }
9 }

Figure 3: FileWrapper class

f != null

f.state == OPEN

read()

setFile(g [g.state == OPEN])

Pre: this.f notalias g

Post: this.f alias g

f != null

f.state == CLOSED
done()

Error

setFile(g [g.state == OPEN])

Pre: this.f alias g

done()

read()

Figure 4: Some of the typestates of FileWrapper

result of the latter’s state-space exploration.
Goal The goal of this paper is to make this summary

computation scale to large Java packages that could con-
tain hundreds of methods. A prototype implementation of
the analysis presented in [10] works well for small libraries
with a handful of classes, but runs into scalability problems
very quickly because of combinatorial explosion in the state-
space exploration phase. To address this problem, we con-
sider techniques to improve the efficiency of the state-space
exploration. Our ideal is to perform precise analysis for the
given abstraction, so that no approximation is introduced
in the exploration phase—the use of a summary in place of
a whole-program analysis with the same abstraction should
give the same answer to a reachability question.

Techniques for Optimizing Exploration Our tech-
niques are based on empirical insights from large programs.
Our first technique is to recognize that for any given method,
not all predicates are equally important. It is often the case
that valuations of certain “dominant” predicates entirely de-
termine the outcome of a method in terms of whether it fails
or not. If we can identify the dominant predicates, this can
drastically reduce the exploration that needs to be carried
out. Our second technique recognizes that predicate genera-
tion over a large library often gathers mutually-inconsistent
predicates. When performing state-space exploration, sim-
ple satisfiability checks can be very effective in reducing the
number of independent contexts that each method needs
to be driven from. Our third technique is to leverage the
fact that library methods often call other library methods
in identical ways, and thus some computation can be cached
and re-used during inter-procedural exploration. This is
made possible by parameterizing the results of exploration
of a method in a way that is independent of any particular
calling context.

These techniques have enabled us in handling large Java
packages such as java.io. As can be expected, there are
scalability limits to relational analyses, and in some cases
in these libraries, the multiplicity of predicates eventually
forces us to coarsen the abstraction (the paper describes the
particular approximation that we fall back to). The value
of these techniques is in pushing the boundary of when that
happens, so that larger libraries can be analyzed with as
high a precision as possible. The design of good heuristics
to coarsen the abstraction is outside the scope of the paper.
Furthermore, prior knowledge of which classes in a library
are not going to be directly used by a client can be helpful
in regaining this lost precision.

Applications This work has several potential applica-
tions in software quality tools. (1) Precomputation of reach-
ability analysis of library methods can save work in subse-
quent analysis of client code. (2) This technique can be used
for static discovery, or “mining” of specifications of state-
ful objects. While scalable client code checkers have been
constructed [6], a real bottleneck is non-availability of spec-
ifications to check. (3) The machinery for reasoning about
preconditions for reachability of a particular program point
can be used for creating targeted test drivers. While it is
easy to create simple unit tests for methods, creating tests
for large libraries is hard in terms of being able to drive the
execution to specific program points.

Demonstration of these applications is outside the scope
of the paper. However, we show that the summaries that
we compute can be “consumed” in a client-code verifier.
The analysis also helps identify interesting stateful classes
in Java libraries, and their typestate specifications, although
the precision of these specifications is limited by the preci-
sion of the abstraction we use.

Contributions The main contributions of this paper are
as follows: (1) We present techniques for speeding up the
computation of reachability summaries of the kind described
above for large Java packages containing hundreds of meth-
ods. (2) We present an experimental evaluation of these
techniques by performing summary computation on several
large Java packages. (3) We also demonstrate the applica-
bility of this approach in client-code verification. While our
primary contribution has been in speeding up state-space
exploration, just creating boolean abstractions of large Java
library requires a significant engineering effort. In particu-
lar, we believe that flow- and context-sensitive pointer and
escape analysis have not been reported previously on pro-
grams of this size.

We have not solved the problem of computing summaries
for arbitrary static analysis problems; rather we have ad-
dressed this problem only for reachability analysis under a
specific program abstraction. The strengths and limitations
of this abstraction are discussed briefly in the paper. How-
ever, the focus on this paper is not on the power of the
abstraction we use, but on improving the ability to apply
it to larger libraries without losing precision relative to the
specific program abstraction as far as possible.

Outline The rest of the paper is organized as follows.
Section 2 discusses the most closely related work. Section 3
formalizes the problem of summary computation indepen-
dently of client code. Section 4 describes the abstraction
process as well as a base-line exploration algorithm. Sec-
tion 5 describes techniques for scaling the state-space explo-
ration. Section 6 describes our implementation and results
on several large Java packages. Section 7 concludes the pa-
per and discusses some future directions.

2. RELATED WORK
Sharir and Pnueli [16] describe a “functional” approach

to interprocedural analysis in which for each function they
compute a relation over input and output abstract states.
Almost all techniques for summarization can be thought of
as some realization of this general idea. The distinction
between various techniques comes from the richness of the
analysis domain, and from whether the summary is created
by on-the-fly caching, or modularly in a bottom up fashion.

It is well-understood how to compute summaries for sim-

ple abstract domains that fit the IFDS criteria [11], for ex-
ample as a graph reachability problem. This approach has
been shown to scale to large programs. For pure boolean
programs, scalable model checkers such as Bebop [3] have
been used for creating summaries. Our analysis domain is
different from either of these models, and so the above algo-
rithms are not directly applicable. (Since everything is even-
tually finitized, one could fit this in a pure boolean model,
but it would be needlessly large.)

Any path-sensitive analysis, modular or not, would need
to identify a suitably rich domain, and this has been done
in many ways, including heuristics [5], upfront predicate ab-
straction, like a single phase Blast [8] or SLAM [2], or iter-
ative abstraction refinement, also used in Blast and SLAM.
Identification of relational domain is an important problem
in its own right. In a way, our idea of finding a dominant
predicate already coarsens the abstraction in a local context.

Our work is also related to modular computation of sum-
maries of points-to analysis. Much prior work has looked at
computing modular pointer analysis; here we briefly men-
tion three. Vivien et al. [17] have presented a compositional
pointer and escape analysis, however they do not retain
strong update information in their summaries. The work by
Rountev et al. [14] generates summaries in the form of con-
straints. These summaries can take trigger iterative compu-
tation upon application. Our analysis goal is different, but
in our dependence analysis, we also had to resort to assume
a worst-case aliasing scenario, as it was not feasible to com-
pute an exhaustive list of different input aliasing scenarios
(though this does not effect eventual summary computa-
tion.) Chatterjee et al. [4] have presented a modular pointer
analysis in which summaries are conditioned on the incom-
ing aliasing context. Our technique borrows this idea from
their work, but our analysis is richer since it is path sensi-
tive, and also performs a richer analysis inside a procedure.

Our exploration strategy resembles the use of abstraction
predicates used in the TVLA system [15], though we handle
a far more restricted set of predicates compared to TVLA.
Summarization has been studied in the context of TVLA as
well [13]. Our goal is to be able to decide simpler properties,
but make our analysis scale to large libraries.

As we indicated in the introduction, summaries are related
to specifications of library code. With the recent success of
static program verifiers [2, 6, 5], there has been a lot of inter-
est in techniques to recover specifications from library code
via static analysis [1, 19, 7]. The Jist [1] tool is perhaps the
closest prior work related to our work. Jist uses a similar
“tool chain” of predicate abstraction followed by exploration
of boolean program; however their focus is on construction
of bounded-sized and therefore more readable interfaces. In
contrast, the focus of our work has been on efficiently con-
structing full interfaces for use mostly by tools, not humans.
The work by Henzinger et al. [7] focuses on trying to find
the right level of abstraction for the analysis of the library.
It starts with a coarse abstraction, and then uses counter-
example guided refinement to find a finer abstraction. We
plan to explore the route of abstraction refinement in our
future work as well. None of the static analysis-based previ-
ous works deals with inter-object references, and none deals
with extracting specifications from Java packages in a fully
automated way.

3. PROBLEM DEFINITION

We think of an application as consisting of the library
code and the “client” code that uses the library. We wish
to create summaries of the library code, so that the analysis
of the client code can just make use of the pre-computed
summaries.

The inputs to our analysis consists of the following: (1) C,
a set of library classes. We assume that this set of classes is
closed, in that it does not call any methods not in C. (This
excludes analysis of certain framework-oriented code, where
certain call-backs are bound later on.) (2) A ⊆ C, a set of
API classes. These are the classes that would be instantiated
in the client code. A could be same as C, but the analysis
scales better if a narrower set of classes is identified as API
classes. (3) E, a set of error statements whose reachability
is to be tested for. E can be given generically in the form of
all throw statements that raise a certain type of exception.

An execution—assumed to be sequential—of a Java pro-
gram starts from main() method in a client T . The client
interacts with the library in three ways: (1) It instantiates
objects of classes in A via new. (2) It calls methods of classes
in A, passing along arguments either of primitive types or of
other classes in A, and (3) It gets return values from meth-
ods in A, which again, are either primitive types, or classes
in A. Objects in A that are visible to the client code may
have fields that refer to other objects in C, perhaps allocated
internally inside the library. These objects are collectively
called library objects. Note that the library objects do not
contain pointers to objects not in C.

The dynamic state of library consists of the state of library
objects and references between them. The execution of a
method invocation depends on the initial library state, and
determines the next library state. If an invocation reaches
an statement in E, the post-invocation library state is a
special error state. A correct execution of a client is such
that it prevents the library from entering the error state. A
correct client exhibits only correct executions. The job of a
static verifier is to ensure that a client is correct, i.e. to flag
any library method invocation in the client code that might
possibly make the library enter its error state. A conserva-
tive approximation to this problem can be computed using
a path-sensitive interprocedural analysis of the client T and
the library C together.

Our problem statement is as follows: Given (C, A, E),
compute a summary S that satisfies the following require-
ments: (1) For any client T , a static verifier could check T

for correctness given just S, not A. (2) S should be con-
structed independent of any particular T .

One important issue here is the structure of S and the cost
of using it in client-code verification. In the extreme, S could
be just an intermediate representation of the code of C, e.g.
in the form of constraints; however, then considerable work
needs to be done in applying the effect of such a summary
at a call site. We wish to extract summaries whose cost of
application, ideally, is within a constant factor of the cost
of applying the transfer function of a single Java statement
during intra-procedural abstract interpretation.

4. BASELINE SUMMARY EXTRACTION

4.1 Overview of the analysis
Our analysis is driven by two key requirements: one, to

determine reachability in a path-sensitive manner, and two,
to perform analysis oblivious to any given client code (the

h1

h3

h2

h4

m1
m2

h5

m3

heap

boolean

methods

points-to and

escape analysis

predicate

discovery

boolean program

generator

needs

needs
produces

client

emulator

boolean method

interpreter

creates

invokes

executes

modifies

Figure 5: Overall process for summary computation

client code may not even be available at the time of this anal-
ysis.) For the first requirement, we need to identify which
predicates on instance variables of the library classes, or on
method parameters, are the ones we want to keep track of
in our static analysis. We do this using an upfront predicate
abstraction using iterative weakest precondition computa-
tion. Due to the second requirement mentioned above, we
need to simulate a synthetic client program that drives the
(abstraction of) library classes through all possible behav-
iors in a finite way. This synthetic client program explores
the state space of the library by running the library methods
systematically on various heap configurations. The results
of these explorations are recorded as summaries.

Figure 5 gives an overview of the approach. The various
phases of this approach are described in the subsections that
follow. Section 4.2 describes the left side of this figure, up
to the generation of boolean methods; Since a detailed and
formal description of this material is available in our pre-
vious paper [10], the treatment here is brief and informal.
Section 4.3 describes the right side of the figure; the interpre-
tation and client simulation described here are significantly
different from our previous version. Section 4.4 desribes how
to read off the summary from the client simulation.

4.2 Abstraction to Boolean Program

4.2.1 Dependence Analysis
The first phase of our analysis computes a combined pointer

and escape analysis for the library in a modular way, starting
bottom up in a call graph.1 For each method, it computes a
finite set of abstract heap locations to which each variable,
local, parameter, or field, in the method refers. We name
these abstract locations as follows: each reference param-
eter is assumed to point to a location Fi, which we call a
FormalIn. Each reference field of a FormalIn points to an
EscapeIn location, which we name as Ei; a reference field of
an EscapeIn can point to an additional EscapeIn. Objects
allocated at a new are named Oi, based on their allocation
site in the code. We use 1-limiting to bound the number
of locations that need to be created when traversing recur-
sive structures. As a result, some Ei’s and Oi’s represent
multiple concrete heap locations. Each variable is resolved
to a set of abstract locations that it may refer to. This is
done using a standard flow- and context-sensitive points-to
analysis.

The dependence analysis of a method needs to know which
FormalIn and EscapeIn locations may be aliased: rather
than analyzing a combinatorially large number of different
possibilities, we assume that all locations of the same type

1Analysis of mutually-recursive methods is done iteratively
over the strongly connected component in the call graph.

may be aliased. As we shall see later, the precision of this
dependence analysis does not cause a loss of precision in our
eventual outcome; though it does matter to the efficiency of
the analysis.

4.2.2 Predicate Discovery
The second phase discovers the predicates relevant for

reachability analysis, and prepares for boolean method gen-
eration. We start from a particular label l ∈ E, which is typ-
ically a throw, to begin predicate discovery. The reachability
of l depends on its immediately enclosing conditional, which
is given by l’s immediate ancestor in the control-dependence
tree. We perform an iterative weakest pre-condition com-
putation with respect to this seed conditional expression.
We use standard rules for weakest pre-conditions, based on
data dependence and substitution. Similarly to standard
backwards slicing [9], we traverse both data and control-
dependence edges when discovering more predicates of in-
terest; we refer to this as propagation. The predicate gener-
ation is pretty simplistic, and at this time it does not inter-
pret arithmetic expressions (for such statements, predicates
involving the l.h.s. variable are assigned a non-deterministic
value ∗).

Predicate generation is performed both intra-procedurally
and inter-procedurally. For the latter, inter-procedural link-
age computed in the earlier phase is used for propagation
in the standard way. Interestingly, we also carry out prop-
agation across methods that are not obviously related by a
caller-callee relation, because dependence can flow through
the (non-available) client space; we use type-based match-
ing to posit such potential flows. For example, suppose a
predicate T.x > 0 is read before being defined in a method
m, and some other method n defines T.x, where T is some
type. Then we have to propagate the predicate into n, be-
cause such flow might happen through the client. As we
shall see later, this can add significantly to the state space
that needs to be explored.

4.2.3 Boolean Methods
Once all relevant predicates have been identified, we ab-

stract the library methods to boolean methods that manip-
ulate these predicates instead of the original computation.
However, unlike traditional predicate abstraction, we avoid
hard-coding the results of the pointer analysis in the gener-
ated boolean code; the boolean code derived using a conser-
vative pointer analysis would make the resultant summaries
too conservative. Instead, we retain all reference copies in
the boolean program. To take advantage of this general-
ity, predicates in our boolean methods are parameterized
over abstract locations. A predicate L.f > 0 is written as
Pn(ti), where Pn is a 1-ary parametric predicate defined as
Pn(t : T) = (t.f > 0), and ti is a variable that refers to
location L. Predicates involving primitive variables in the
original program do not take a parameter: this x > 0 is
written as a 0-ary Pm() = (x > 0).

Boolean methods contain: (1) reference parameters and
boolean-valued parameters (corresponding to abstraction of
primitive parameters), (2) reference assignments, putfields,
getfields and allocation statements, (3) predicate assign-
ments of 1-ary and 0-ary predicates in terms of other predi-
cates or *, and (4) control flow of the original code, including
invokes (calls) and returns.2

2As noted earlier, our full boolean program model also has

1 setFile(f1: FileWrapper, f2: File, b1: boolean) {
2 if (P3(f1)) {
3 t = f1.f;
4 t.close();
5 }
6 f1.f = f2;
7 P3(f1) = b1;
8 }

P3(fw: FileWrapper): fw.f != NULL

Boolean b1 represents the condition f2 != null

Figure 6: Part of the boolean code for File and

FileWrapper

Figure 6 shows one of the boolean methods correspond-
ing to File and FileWrapper. This example does not have
an * assignment or 0-ary predicates as parameters, but an
interested reader can find examples of these features in [10].

4.2.4 Limitations and Strengths of the Abstraction
At this point it is useful to consider the limitations and

strengths of this abstraction. Among the major limitations
are: (1) Arithmetic Since we do not model arithmetic, our
predicates cannot track comparison between integer vari-
ables and constants (or between two variables). The out-
come of any such conditional is always taken to be *. (2)
Arrays Like most work on pointer analysis, we do not model
different slots of an array separately. This limits our ability
to say anything with respect to any data structure that uses
an array internally. (3) Recursive properties Since our heap
abstraction is 1-limited, we cannot reason precisely about
properties of recursive data structures. In all these cases,
the abstraction errs on the side of caution, that is to say, it
will say some statement is reachable even if a more precise
abstraction could have ruled out the reachability.

On the other hand, the abstraction is also quite powerful
in dealing with equality predicates, e.g. p.f == q on ref-
erences precisely, as well as on other primitive predicates,
e.g. flag == 0, that govern path sensitivity. It is worth
reiterating that this abstraction does not depend on a fixed,
conservative pointer analysis that we use for data depen-
dence. An interpretation over our abstraction can compute
a very precise path-sensitive alias analysis on the fly, be-
cause all heap operations are retained in the abstraction.
As shall be seen in the next subsection, the advantage of
this generalized boolean model is that the exploration can
dynamically create as many predicate instances as needed
to discover different behaviors, and only as many as needed
(compared to exploring a heap of some worst case size de-
termined a priori).

4.3 Interpretation and Client Simulation
In this phase we wish to drive the abstracted library classes

through all possible behaviors. We do this in two parts: first,
we describe how to compute all behaviors of a single method
that starts from a given concrete state, and second, we de-
scribe a way to emulate a client that exercises all behaviors
of the library.

4.3.1 Interpretation
The first part is an abstract interpretation problem, for

2-ary predicates, but we omit them for brevity.

csinit = initial concrete state based on parameter binding
WL = {(csinit, startnode)}
AS(startnode) = {α(csinit)}
AS(n 6= startnode) = {}
while (WL 6= {}) do

pick and delete (cs, pp) from WL
if (pp is exitnode) output cs and continue

case stmt at pp of

if (pred) pp-true pp-false:
if cs implies pred

add (cs, pp-true) to WL
else

add (cs, pp-false) to WL
if (*) pp-true pp-false:
add (cs, pp-true) to WL
add (cs, pp-false) to WL

throw e:
output error

default:
cs-next = execute s on cs
pp-next = next(stmt)
AS(pp-next) = AS(pp-next) ∪ α(cs-next)
if AS(pp-next) changed, add (cs-next, pp-next) to WL

end

Figure 7: Abstract Interpretation loop

which we need to design the abstract domain in a way that
guarantees termination. The concrete execution state of a
boolean method, at any program point in the method, con-
sists of the following: (1) valuations of 0-ref predicates; (2)
mapping of local reference variables to numbered heap ob-
jects, say H1, H2, etc. where each heap object also knows
which of the abstract locations it belongs to, such as F1, F2,
E1 etc.; and, (3) valuation of 1-ref predicates on each of the
heap objects, e.g. P1(H1), Q1(H1), P1(H2), etc. Execution
of a statement can impact valuation of predicates, and can
also add a new H . Because a boolean method can create
or traverse arbitrary heap data structures, its state space is
not bounded, and some abstraction needs to be performed.

We define an abstraction α of a concrete execution state
as follows. First, we define the typestate of an object as a
evaluation of an ordered list of predicates, in which, first,
there are the 1-ref predicates on that object, e.g. P1(this),
P2(this), followed by 1-ref predicates (if any) on the object
reachable by following each reference field of the object (if
any), e.g. P3(this.f), P4(this.g), followed by 1-ref predicates
on objects reachable by following two reference fields, e.g.
P3(this.f.h), and so on. We prevent unbounded lists by
ignoring objects reachable by paths in which field names
repeat, e.g. P3(this.f.f) is not considered; our abstraction is
not powerful enough to reason about shape properties. The
abstraction creates a mapping from finitely many abstract
locations to finitely many typestates: AbstractLocation 7→
Typestate.3 This mapping is the abstract execution state.

Figure 7 shows the iterative computation in abstract in-
terpretation. It accumulates a monotonically increasing set
AS of abstract execution states at each program point via
iteration; since there are only finitely many abstract execu-
tion states possible, the iteration terminates. We employ a
worklist WL in the iteration. Elements in WL are pairs of
concrete states and program points. This is a useful opti-

3As a matter of detail, the abstraction maps locations that
represent multiple concrete heap objects to a set of types-
tates.

mization, because in our setting it is expensive to reconsti-
tute concrete states from an abstract state, and statement
transformers work only on concrete states. The method out-
puts concrete states reachable at the exit node. The method
can also show a failing behavior from the given concrete ini-
tial state.

To handle procedure calls, we maintain a stack of work-
lists. When the interpreter enters a method, we push a new
worklist on the stack with the initial pair (cs, startnodep) in
it, where cs is the state at the point of the call, including the
parameter bindings. Upon return, we restore WL from the
stack, adding (cs, pp-next), where cs is the state at the end
at return, excluding the parameter bindings, and pp-next
is the statement following the call statement. This basic
scheme is unable to handle recursion. In future, we plan to
explore techniques such as the one proposed by Rinetzky [12]
to support recursion.

4.3.2 Client Emulation
The second part of this phase concerns client emulation.

The purpose of the client emulator is to execute each method
in all distinct initial states of interest, and produce the out-
put states. The emulator works as follows for each API
method m ∈ A (steps 2, 3, 4 have to be repeated for differ-
ent choices):
1. Let m have reference parameters p1, . . . , pn and boolean
parameters b1, . . . , bm

2. Choose a typestate for each pi

3. Choose true or false value for each bi

4. Choose an aliasing among abstract locations (Fi, Ei etc)
of m

5. Instantiate m’s formal parameters with a concrete state
conforming to choice made in steps 3, 4, and 5
6. Run the abstract interpretation loop on m (see Figure 7)
Not all typestates are necessarily reachable, so we iterate
over only the ones that are found so far in the output states.

We believe that this exploration procedure is a substantial
improvement over the one used in our previous work. In that
work, our idea was to explore a certain fixed-sized configura-
tion of heap objects fully, and then grow this configuration
to find more behaviors. It was tricky to argue when we had
explored all behaviors, and moreover, the implementation
of the abstract interpretation loop also had special cases be-
cause new() could not always return an fresh object because
of the upfront heap limitation. In the present scheme, the
finitization comes from the termination of the abstraction
we apply in the interpretation loop, rather than by upfront
finitization of heap.

4.3.3 Resorting to Approximations
Despite the optimizations we present in Section 5, the ex-

ploration may run out of resources for large enough libraries.
In such a situation, we need to resort to approximations
(this approximation is relative to a fully relational analy-
sis.) When we use approximations, the summaries that we
compute could be less precise than the whole-program anal-
ysis under the same abstraction.

One way to approximate is to reduce the number of dis-
tinct elements possible in AS. For this approximation, we
alter the definition of typestate computation to account for
predicates reachable in k steps. Since fewer distinct types-
tates are possible, this is a coarsening of the abstraction.

Sometimes the number of initial bindings that the em-

ulator must try for a certain method becomes too large,
typically because of a large number of typestates in more
than one reference parameter (even at k = 0). In this case,
we resort to approximating the results by binding a spe-
cial * typestate (meaning all constituent predicates are set
to *) for some of the formal parameters and * for boolean
parameters.

4.4 Extracting the Summary
Each run of the interpretation of a method is a transfor-

mation of an input state to possibly many output states.
For each output state produced by the interpretation, we
read off typestate changes of all the abstract locations of
that method, and we read off the pertinent reference field
changes from the output. Thus the format of a transition
for a method m is:4

(AbstractLocation 7→ Typestate,Aliasing)
m
−→

(AbstractLocation 7→ Typestate,Aliasing)

Here Aliasing is a partition on AbstractLocation, e.g., if E1

is defined as F1.f , and F2 and F1.f are aliases, then F2 and
E1 are in the same partition. The partition in the post-
condition of the method can obviously be different from the
one in the pre-condition. The set of all transitions of a
method is its summary.

5. OPTIMIZING THE EXPLORATION
We now describe three techniques for speeding up the ex-

ploration phase of our analysis. These techniques do not
introduce any approximation by themselves.

5.1 Hierarchical Exploration
Our base-line client emulation attempts to bind each ref-

erence parameter with each of the known typestates of the
respective type. This can, and often does lead to too many
combinations. We leverage the empirical observation that
in many methods there is a “dominant” conditional, which
when true, always causes a method to fail, irrespective of
the valuations of other predicates of that type. If so, then
there is little point in exploring the method with respect to
all possible different parameter bindings.

1 m(p1,...,pn,b1,...,bm) {
2 ...
3 if (P(pk))
4 throw e
5 ...
6 }

Depending on the valuation of P (pk), the other predicates
on pk do not matter, and neither do the typestates of the
other pi’s or values of bi’s, the boolean parameters. There-
fore, those typestate of pk that have the predicate P set to
true all lead to failure, regardless of other parameters of the
method, and in that situation, the emulator not need to try
exhaustive bindings of parameters of m.

The new client emulation works as follows. First we try
to identify such dominant predicates (steps 2 and 3 have to
be repeated for different choices):
1. Let m have reference parameters p1, . . . , pn and boolean
parameters b1, . . . , bm

4Again, as a matter of detail, some abstract locations may
represent multiple concrete objects; in that case, that loca-
tion maps to an (unordered) set of typestates.

2. Choose a pk as the object
3. Choose a typestate for pk

4. Assign * typestate for each pi, where i 6= k, and assign *
for each bi

5. Choose an aliasing among abstract locations (Fi, Ei etc)
of m

6. Instantiate m’s formal parameters with a concrete state
conforming to choice made in steps 2, 3, and 5
7. Run the abstract interpretation loop on m (see Figure 7)
8. If all outcomes for pk with the typestate selected in step
3 are failing, make that typestate for pk as ’dominant’

Next we run the original client emulation loop, except at
step 2 we skip the typestates already found to be dominant.
The additional insight used here is that not all predicates
of formal parameters appear in conditional expressions in a
method, so it is not the case that setting some of those pred-
icates to a * value would only merely defer trying out both
true and false cases during interpretation of the method.

One may ask why not detect these situations statically,
using dependence analysis. This is indeed possible in some
simple cases, but is harder to implement, compared to lever-
aging the interpreter that we need anyway, and is less general
compared to the “dynamic” analysis in the interpreter.

5.2 Feasibility Checks on Typestates
This optimization has to do with the way in which predi-

cates comprising a typestate are generated.
Recall from Section 4.2 that the predicate discovery phase

does a backwards traversal of the forest of call graphs and
generates predicates for each class. Since some classes are
instantiated in many different contexts, they club unrelated
predicates into the same class.5 For example, suppose the
class String has a integer variable count, and that code that
instantiates a String can get at its count via a get method.
This value could be used in a comparison—a predicate of
the form count relop c—at a number of unrelated contexts.
All of these predicates get associated with the class String.
It turns out that many of these predicates are mutually in-
consistent: e.g. count < 5 and count > 32.

At other times, since our predicate generation assumes a
possible flow of value via a unknown client based on type-
based matching, predicates get added to the class that would
not have otherwise been added had the whole program been
known; clearly these can give rise to unrelated predicates in
a single class, in the same manner as above.

Sometimes such redundancy could even appear inside a
single class: e.g. state == OPEN and state == CLOSED can-
not simultaneously be true if OPEN and CLOSED are unequal
literals.6

Effectively, there are a far fewer typestates of some types
that are actually possible, than a simple-minded indepen-
dent assignment of values to predicates would suggest. The
modified client emulator takes advantage of this observation
as follows: At the step in which it initializes each of its refer-
ence parameters to one of the known typestates of its type,
it considers only those typestates in which the constituent
predicates are mutually consistent. At this time, the fea-

5This situation is somewhat reminiscent the problem that
object sensitivity in pointer analysis addresses.
6We cannot say the same for state != OPEN and state !=
CLOSED unless we know state ranges over exactly those two
values.

sibility checks are implemented on the following predicate
families: integer comparisons, string comparions, and in-
stanceOf predicates.

While this was simple and extremely profitable optimiza-
tion, we did not realize its need until we examined the bool-
ean programs by hand to see why the client emulator was
running through so many different initial conditions for some
of the methods.

5.3 Parametric Exploration
Recall that at procedure calls in the exploration of bool-

ean methods, we simply stack the worklists and continue
exploration in the called method. It is desirable to be able
to re-use the results of exploration of a called method, if the
latter has been analyzed previously with similar initial con-
ditions. The main problem in achieving this re-use in the
base-line exploration algorithm is that our interpretation in
terms of concrete states; the abstract execution states were
used primarily as a device for ensuring termination during
the interpretation loop.

However, realize that the behavior of a method is still
“parametric” in which exact set of heap objects it works on,
modulo renaming of those objects.

Given the abstract locations Fi’s and Ei’s of a method
m, and given an aliasing partition on these abstract loca-
tions at an invocation consisting of n equivalence classes, we
come up with a labeling of distinct objects to positions num-
bered 1..n. Suppose a method is invoked with H1, . . . , Hn,
where Hi is the concrete object at position i, and suppose
there is another invocation with H ′

1, . . . , H
′

n where H ′

i is
the concrete object at position i. If it is the case that for
each i = 1..n, for each 1-ary predicate P defined on the
type of Hi, P (Hi) = P (H ′

i), then, the effect of invoking the
method on Hi’s and H ′

i’s would be identical, modulo renam-
ing. Therefore, the behavior of a method invocation can be
expressed parametrically in terms of positions: the effect of
invocation is in updating the predicates of these objects to
new values, and fields to different objects, which are referred
to by their original position.

Since objects can be allocated inside the method, the ef-
fect of an invocation needs to mention these objects as well;
these objects are assigned positions corresponding to loca-
tions Oi’s, using numbers n + 1 onwards. Note that the
position of an object is a constant for the duration of a
method.

The parametric behavior of a method, then, is of the
form, where the assignment of position implicitly accounts
for fields in the pre-condition.

Position 7→ {Predicates 7→ {⊤,⊥}} −→

Position 7→ {Predicates 7→ {⊤,⊥}, fields 7→ Position}

During exploration, we maintain a table of such input
to output mappings. When we arrive at an invocation,
we check if the pre-conditions of some entry in the table
matches—if so, we simply need to update the predicates
and fields of the corresponding concrete objects as dictated
by the post-condition in that entry. If not, we perform the
interpretation of the method and insert a new entry, or en-
tries, in the table. Maintaining such a table is the standard
function points approach to inter-procedural analysis [16].

At this point, it is tempting to think that we can perform
our entire analysis in a layered manner, first generating sum-
maries of the leaf classes in the call graph of a library, and

the using these summaries in the caller of those leaf classes.
The catch, though, is that the predicate discovery phase
might lead to additional predicates in the called classes be-
gin discovered during the analysis of caller classes. We need
to perform a “whole library” predicate discovery!

6. RESULTS
We have implemented our analysis using the WALA [18]

Java byte-code analysis infrastructure. Our implementation
on top of WALA consists of approximately 35,000 lines of
Java code.

We list some of the assumptions made in the implementa-
tion. We do not deal with control-flow through exceptions,
and instead consider throw statements as error statements.
Since library code might refer to some abstract classes, we
assume a certain concrete class for each case: assuming
all possible concrete classes everywhere renders the analysis
useless (though in practice one can customize the analysis
with respect to which concrete classes are provided.) The
analysis cannot deal with the case where no concrete class
corresponding to an abstract class exists in the library. For
the exploration phase, at some places the chain of dynamic
calls is so deep that we truncate methods that are beyond
a certain dynamic depth (> 7) from any API method (an
alternative would be to create a list of “ignore” methods
where the analysis bottoms out.)

6.1 Scaling of Summary Computation
In this section we briefly describe the characteristics of

some Java libraries that we tested our analysis on. We then
give the results of the analysis, though due to space limita-
tions we do not show the transition diagrams. We ran the
examples on an Intel based Linux machine (2.2 GHz, 2GB
RAM). We report the time to execute the analysis.

Sample APIs. We ran our analysis on java.io, which is a
standard, and fairly large library. We also ran our analy-
sis on four other comparatively small libraries, java.util.jar,
java.util.zip, java.awt.color and java.awt.font. The char-
acteristics of the APIs are given in Table 1. The column
labeled “totC” gives the total number of classes analyzed.
This includes classes from other libraries that are required
for the analysis. For example, java.util.jar uses many classes
from java.io. The column labeled “totM” gives the total
number of methods in the call graph; “nThrow” gives the
number of throw statements in the call graph which form the
basis for computing the slice; “slicedM” gives the number of
methods in the slice; “apiM” gives the number of public
methods in the API that are in the slice. These are the
methods that are accessible from a client program. The col-
umn labeled “nS” gives the total number of bytecodes that
have gone in to build the call graph. The column labeld
“tPrelim” gives the time in seconds to generate the boolean
methods.

Scalability Analysis. We explored three techniques for im-
proving the scalability and performance - hierarchical anal-
ysis, feasibility checking and parametric exploration. In
Table 2, the column labeled “Opt” has three possible en-
tries - “H” for hierarchical analysis, “H+F” for hierarchical
analysis along with feasibility checks and “H+F+P” for the
combination of hierarchical, feasibility and parametric ex-

Benchmark totC totM nThrow slicedM apiM nStmts tPrelim
java.io 163 2888 694 1887 851 516178 8.9
util.jar 26 1428 300 824 136 468913 1.2
util.zip 33 535 167 388 167 17663 0.5
awt.color 23 335 87 188 75 11359 0.7
awt.font 51 1512 221 911 268 55774 9.1

Table 1: API Characteristics

Opt time #trans Mtrans avePre maxPre #TS maxTS
java.io

H+F+P 2949 22569 12 1.8 25 2957 270
util.utiljar

H 93 3822 2 3.8 22 1144 325
H+F 339 1084 5 5.0 22 266 75
H+F+P 52 1084 5 5.0 22 266 75

util.utilzip
H 39 3745 3 1.3 9 814 748
H+F 68 10357 3 1.3 9 650 534
H+F+P 30 10357 3 1.3 9 650 534

awt.color
H 12 1832 4 6.9 16 69 13
H+F 21 2049 3 7.1 16 63 11
H+F+P 29 2049 3 7.1 16 63 11

awt.font
H 1782 6099 3 18.2 56 1036 258
H+F 978 15283 3 8.3 56 1426 420
H+F+P 721 15283 3 8.3 56 1426 420

Table 2: Sizes of summaries

ploration. The column “time” gives the time in seconds.
The column “#trans” gives the total number of transitions
and “Mtrans” gives the maximum number of transitions in
any one given method. The column “avePre” gives the aver-
age number of preconditions (boolean comparisons) for each
transition and “maxPre” gives the maximum number of pre-
conditions encountered in any transition. The significance
of the size of transitions is in the cost of selecting the tran-
sition to apply when in a client verification application (see
next subsection). The column “#TS” gives the total num-
ber of typestates computed across all classes and “maxTS”
gives the maximum number of typestates for any one class.

For java.io, the computation did not complete in a rea-
sonable amount of time except with all the optimizations (it
also needed a lowered threshold of 256 of maximum num-
ber of initial environments). As can be seen from the ta-
ble, with feasibility checking, the number of typestates and
transitions becomes much smaller as redundant states are
not generated. The time to analyze, however increases due
to the overheads of feasibility checking in the smaller ex-
amples; though the time to analyze significantly reduces in
java.font, as the computation overheads are compensated
by the smaller number of typestates and transitions. With
parametric exploration, there is no improvement in the pre-
cision, though there is upto 80% reduction in time to an-
alyze. The performance benefit of parametric exploration
is an indirect evidence that a client verifier would improve
performance by using summaries of library methods.

In order to control the number of combinations gener-
ated to seed a method, we perform hierarchical analysis.
Table 3 gives the result of hierarchical analysis. The col-

umn “#Hier” gives the number of times the hierarchical
optimization was applied (when the number of initial com-
binations was over a threshold of 512), “max#Combs(H)”
gives the worst case for the number of initial combinations.
Often the analysis succeeds in bringing the number of com-
binations to within a chosen threshold (512 in our exper-
iments). Column “post#Combs(H)” gives the number of
combinations when the hierarchical analysis succeeds. Note
that hierarchical analysis does not lead to any imprecision.

However, sometimes the hierarchical analysis does not re-
duce the number of combinations sufficiently and we are
forced to apply approximation, where some parameter types
are set to “*”. In Table 3, column “#approx” gives the num-
ber of times the analysis needed to resort to this approxi-
mation. Column “max#Combs”is the worst case result of
hierarchical analysis which is the input to the approxima-
tion analysis. Column “post#Combs” gives the number of
reduced combinations after the approximation. There is a
loss of precision incurred in this process. However, we ob-
served that the analysis resorted to this approximation less
than 3.5% of the time for java.io, and 0.5% of the time for
others.

As can be seen from the table, it is possible for the num-
ber of combinations to grow exponentially. To understand
the source of this explosion, notice that the maximum num-
ber of typestates a type can have was as high as 270 (in
java.io), although an overwhelming majority of types had
only 2 typestates. It takes a combination of only two or
three objects with many typestates and a string of predi-
cates takes the number of combinations close to the size of
a long integer!

Benchmark #Hier max#Comb(H) post#Combs(H) #approx max#Combs post#Combs
java.io 1771 512454202490880 252 693 1719744 52
util.jar 76 622592 90 3 622592 512
util.zip 87 2604 347 21 2232 6
awt.color 31 23191344 324 7 1756920 121
awt.font 578 1924327342080 250 58 63252 252

Table 3: Scaling

To get some idea about the quality of results, we also
measured the average number of post-conditions per pre-
condition of a method. We found that an overwhelming
number of times (close to 90%), there is a precise case of ex-
actly one post-condition for a given pre-condition. The max-
imum number of post conditions for a given pre-condition
is not larger than 12 for java.io, despite having to perform
conservative analysis for some methods. The java.awt and
java.util.jar have a maximum fanout of 5 and 4 respectively.

Localized Analysis. Our tool identifies the number of type-
states for an object and hence can be used to mine for ob-
jects that show stateful behavior and then analyze them in
isolation. Localized analysis optimistically assumes that the
client program does not instantiate other types of the API
in question, though the analyzed type may of course call
methods of other types. This can be very useful as a pro-
gram understanding tool. In Table 4, we give the results of
localized analysis for a few of the stateful objects we discov-
ered.

Since this is an exercise in program understanding rather
than generation of complete transition information, it is pos-
sible to start with a subset of the throw statements in the
slice. This shows the transitions that lead to a particular
throw (or subset of throw statements) and hence is very use-
ful; for example, for PipedReader and PipedWriter classes
we experimented with four different set of throw statements
that generated four different set of transitions.

In Table 4, we show the set of transitions that were gener-
ated by using all throw statements in the respective exam-
ple as the seed. The table gives the number of API classes
analyzed (“apiCl”), the number of API methods analyzed
(“apiMeth”), the time (in seconds) for the analysis, the num-
ber of transitions (“#trans”) and the number of TypeStates
discovered (“#TS”).

The smaller example (java.io.Piped* and java.io.Buffer*)
outputs are actually human-readable. However, due to lack
of space we do not give the output.

6.2 Using Summaries in a Client Verifier
We describe an extension of our tool for client-code verifi-

cation that makes use of the summaries created as described
earlier. The use of these summaries require co-operation
from the client-code verifier, and we did not have a suitable
existing verifier in which to add summary usage. Instead,
we leverage our boolean program interpreter to serve the
purpose of a client-code verifier as well.

First, we make our summary computation output transi-
tions of each method as a synthetic Java method that en-
codes the transitions in a stylized way; this is shown by the
example of setFile.7

7It is clear that this code can be smaller in size and more
efficient if generated in a nested style. This is being imple-

1 setFile(FileXX t2) {
2 FileWrapperXX t1 = this;
3 ...
4 else if((t1.__TS__==2) && (t2 == null)){
5 t1.__TS__=0;
6 t1.f.__TS__=1;
7 t1.f=null;
8 t2=null;
9 }

10 else if((t1.__TS__==2) && (t2.__TS__==0)
11 && (t1.f==t2)){
12 t1.__TS__=1;
13 t1.f.__TS__=1;
14 t1.f.__TS__=1;
15 }
16 else if((t1.__TS__==2) && (t2.__TS__==0)){
17 t1.f.__TS__=1;
18 t1.f=t2;
19 }
20 ...
21 }

Note that the type definitions FileXX and FileWrapperXX need
to be changed to track a typestate field.

The client code has to be modified in three ways: (1) it has
to instantiate the modified types instead of the real types,
(2) it has to invoke synthesized summary methods rather
than actual library method, and (3) it needs to apply a
type-specific “update” function to refresh typestates after a
method call on a reachable object. For example, if the client
modifies a FileXX object, it needs to call an typestate update
function on each FileWrapperXX object so that the latter’s
typestate is current. The update code for FileWrapperXX is
as shown here:

1 void __update__() {
2 ...
3 if(((f == null)==false) && ((f.__TS__==1))){
4 this.__TS__ = 1;
5 }
6 ...
7 }

We now apply the same tool chain of abstraction and in-
terpretation to this program to see if main() of the client code
has an error transition. There is no need for trying different
bindings of typestate for parameters, because we only need
to drive the execution from a main() method. The inter-
preter computes fix point in the same way as when creating
summaries, except it only needs to find an error transition,
and not output all transitions.

The format of these synthetic methods that describe tran-
sitions was designed so that the predicate abstraction phase
can recover the transitions losslessly. In other words, if we
create a summary of the above method, we would get back
the same method!

This verifier has been tested on small examples only. It is

mented; the code shown here is as currently generated.

Example #apiCl #apiMeth time #trans #TS
java/io/Buffer* 3 62 2.0 178 16
java/io/Piped* 4 34 2.3 656 51
java/io/*File* 10 255 119 4845 376

Table 4: Localized Analysis

designed only as a proof of consumability of our summaries.
In practice, a scalable client-code verifier would use much
more efficient abstractions in the client space and do just
enough book-keeping to use summaries.

7. CONCLUSION AND FUTURE WORK
The goal of this paper was to improve the scalability of the

state-space exploration, during summary creation of large
libraries. We presented three techniques towards this end.
The first two techniques reduced the number of different
starting configurations from which a method’s state space
needed to be explored. The third technique used a paramet-
ric representation of state to achieve reuse of computation
within summary creating. Together these technique helped
us to create summaries for libraries with hundreds of meth-
ods, as shown by our experimental results. We also showed
how to use our boolean program interpreter in a novel way
to create a client-code verifier that could use the kind of
summaries we create.

It is clear that for large libraries we need to resort to
approximations. We plan to explore better techniques for
predicate generation to try not to get too many predicates
in the typestates of library objects. We also plan to investi-
gate heuristics that work better than the simple-minded ap-
proximations that we fall back on at the moment. Finally,
we wish to explore using our summaries with a practical
client-code verifier.

8. REFERENCES
[1] R. Alur, P. Cerny, P. Madhusudan, and W. Nam.

Synthesis of interface specifications for java classes. In
POPL ’05: Proceedings of the 32nd ACM
SIGPLAN-SIGACT sysposium on Principles of
programming languages, pages 98–109. ACM Press,
2005.

[2] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. Lecture Notes
in Computer Science, 2057:103+, 2001.

[3] T. Ball and S. K. Rajamani. Bebop: a path-sensitive
interprocedural dataflow engine. In PASTE, pages
97–103, 2001.

[4] R. Chatterjee, B. G. Ryder, and W. A. Landi.
Relevant context inference. In POPL, pages 133–146,
New York, NY, USA, 1999. ACM Press.

[5] M. Das, S. Lerner, and M. Seigle. Path-sensitive
program verification in polynomial time. In
Proceedings of the ACM SIGPLAN 2002., 2002.

[6] S. Fink, E. Yahav, G. Ramalingam, N. Dor, and
E. Gaey. Effective typestate verification in the
presence of aliasing. In ISSTA, 2006.

[7] T. A. Henzinger, R. Jhala, and R. Majumdar.
Permissive interfaces. In Proceedings of ACM
Conference Foundations of Software Engineering,
2005.

[8] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Software verification with blast. In In Tenth
International Workshop on Model Checking of
Software (SPIN), volume 2648 of Lecture Notes in
Computer Science, pages 235–239. Springer-Verlag,
2003.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
Slicing Using Dependence Graphs. Proceedings of the
Sigplan ’88 Conference on Programming Language
Design and Implementation, 23(7):35–46, July 1988.
Atlanta, Georgia.

[10] M. G. Nanda, C. Grothoff, and S. Chandra. Deriving
object typestates in the presence of inter-object
references. In OOPSLA, pages 77–96, 2005.

[11] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In POPL, pages 49–61, 1995.

[12] N. Rinetzky and M. Sagiv. Interprocedural shape
analysis for recursive programs. Lecture Notes in
Computer Science, 2027:133–149, 2001.

[13] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural
shape analysis for cutpoint-free programs. In SAS,
pages 284–302, 2005.

[14] A. Rountev and B. G. Ryder. Points-to and side-effect
analyses for programs built with precompiled libraries.
Lecture Notes in Computer Science, 2027:20+, 2001.

[15] M. Sagiv, T. Reps, and R. Wilhelm. Solving
shape-analysis problems in languages with destructive
updating. ACM Transactions on Programming
Languages and Systems, 20(1):1–50, January 1998.

[16] M. Sharir and A. Pnueli. Two approaches to
interprocedural data flow analysis. In S.S.Muchnick
and N.D.Jones, editors, Program Flow Analysis:
Theory and Applications, pages 189–233.
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[17] F. Vivien and M. C. Rinard. Incrementalized pointer
and escape analysis. In SIGPLAN Conference on
Programming Language Design and Implementation,
pages 35–46, 2001.

[18] T. J. Watson Libraries for Analysis.
http://wala.sourceforge.net.

[19] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
extraction of object-oriented component interfaces. In
Proceedings of the International Symposium of
Software Testing and Analysis., 2002.

