RC24282 (W0706-053) June 12, 2007
Computer Science

|BM Resear ch Report

Towards Formal Analysis of
Artifact-Centric Business Process M odels

Kamal Bhattacharya!, Cagdas Gerede?, Richard Hull3, Rong Liu?, Jianwen Su?
'IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Y orktown Heights, NY 10598
2University of Californiaat Santa Barbara

3Bell Labs, Alcatel-L ucent

—=—=—=—=2= Research Division
£ S= 555 Almaden- Austin - Beijing - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

1

Towards Formal Analysis of
Artifact-Centric Business Process Models

Kamal Bhattacharya Cagdas GeredeRichard Hul?, Rong Liu', Jianwen S#~

1 IBM T.J. Watson Research Center 3 Bell Labs, Alcatel-Lucent
2 University of California at Santa Barbara

Abstract. Business process (BP) modeling is a building block for desigd manage-
ment of business processes. Two fundamental aspects of Bielingp are: a formal
framework that well integrates bottontrol flowanddata and a set of tools to assist all
aspects of a BP life cycle. A typical BP life cycle includedeatst a design phase where
the key concerns are around “correct” realization of bussniegic in a resource con-
strained environment, and an operational phase where aohgintive is to optimize and
improve the realization during the execution (operatidr)is paper is an initial attempt
to address both aspects of BP modeling. We view our invdgtigas a precursor to the
development of a framework and tools that enable automatestiuction of processes,
along the lines of techniques developed around OWL-S andaBeécWeb Services.

Over the last decade, the idea of coupling control and dagmifartifact-centric”
approach emerged in the practice of business process désigrkey focus is on the
“moving” data as they are manipulated throughout a procBss.idea works well with
many applications, typical examples include customermgudecessing, insurance claim
handling, etc. Based on this idea, we formulate a theoleticalel for artifact-centric
business processes and develop complexity results cangestatic analysis of three
problems of immediate practical concerns. The problemsgamn the ability to complete
an execution, existence of an execution “deadend”, anchaghcy. It is shown that the
problems are undecidable in the general case; and undeusarestrictions they are
decidable but complete inSPACE coNP, andNP; and in some cases decidable in linear
time.

Introduction

In recent years, competitive business environment hagfocompanies to be opera-
tionally innovative in order to outperform their competid7]. This challenge requires
business process models not only to ensure work to be donesaedi but also to en-

able operational innovations. In general, a process mastadrtbes activities conducted

in order to achieve business goals, informational stréctidra business, and organiza-

tional resources. Workflows, as a typical process modelppgg@ach, often emphasize
the sequencing of activities (i.e., control flows), but igsthe informational perspec-
tive or treat it only within the context of single activitied/ithout a complete view of

the informational context, business actors often focus batwhould be done instead

of what can be done, hindering operational innovations][7, 1

The goal of this paper is to develop and investigate a new fimgd&amework

centered around “business artifacts”. Business artif@etsimply artifacts) are the in-
formation entities that capture process goals and allovefatuating how thoroughly

* Contact author, su@cs.ucsb.edu

these goals are achieved. Business “services” (or taskepatifacts and then modify
artifacts based on business rules. A fundamental thesigsypaper is that business ser-
vices are typically less frequently changed; a technicallehge is to properly “chain”
the services together or “evolve” the current workflow of Hegvices to adapt for new
business requirements. In our framework, “business ridestsed to assemble the ser-
vices together; they are specified in declarative languagdsare easy to modify. A
process model thus consists of business artifacts, servacel rules. Based on this
framework, we study properties of process models that aonoeth information per-
spective and control flows. In particular, we develop comipyeesults on the following
problems: Can a process complete, i.e., an artifact candmessfully processed? Does
a dead-end path exist in a process? Are there redundantrdattifacts or redundant
services?

This paper makes the following contributions.

1. The development of a formal artifact-based business trarttka declarative se-
mantics based on the use of business rules which can beasalenodified sep-
arately from the artifacts.

2. A preliminary set of technical results concerning stticanalysing the semantics
of a specified artifact-based business process model. Ehégeange from
(a) undecidability for the general case,

(b) pspacecomplete when no new artifacts are created during the éxegu

(c) intractable (canp- or NP-complete) under various restrictions including “mono-
tonic” services, and

(d) linear time under more limited restrictions.

Organization: §2 provides a motivating example for business artifacts and-m
eling. A formal artifact-centric process model is introédcin §3. In §4, we present
technical results on static analysis of process modelsifsgian our framework §5
discusses related work6 concludes this paper with a brief discussion on future work

2 A Motivating Example

Consider an IT service provider aimed to provide IT servit®esin enterprise com-
prising a large number of geographically distributed “shs#tes”. Provided services
include IT provisioning, installation, and maintenancena$ as general support. Typ-
ical examples for small sites are individual hotels part darger chain or fast food
restaurants that are part of a franchise. The service peo¥jgically signs a contract
with the franchise corporation, which determines the senlevel agreements for each
order of a given IT service. For example, a hotel corporatight sign a contract with
a service provider that allows the provider to execute amg lof IT systems related
services at individual hotel sites. The service provideeiees a request for service
from a hotel site and creates an order. Fig. 1 illustrateifk level business process
for a particular corporation. Typically, after initiatirthe accounting (e.g. performing a
credit check and filing the invoice) a schedule for executiregrequested services will
be planned (e.g. performing an update on all cash registdéheihotel and an upgrade
of the main reservation terminals). Insufficient funds mead to a termination of the
order (before the schedule is created). After the hotel@@tpon approves the install

for the hotel site, the IT services can execute the plannkddide and complete the
order.
Cancel
Order
Create Initiate Plan] (Approve) gomplete
. ustomer
Order Accounting| ScheduIeJ L Install J Acce
pt

Fig. 1. An IT Service Provider's Process Model

The high-level process model describes the sequence sftiestiexecuted by the
service provider to reach the business goal of completiadtservices delivery. Each
task in the process model describes business intent. Inaniext it is convenient to
consider each task as a service which requires an inputypesdan output, may have
pre-conditions and have an effect on an external systenis (3Bimilar in spirit to se-
mantic web services, e.g., [4,12].) In recent years, sontigecdiuthors have investigated
a different approach to modeling business operations. Hifac-centered approach
has been documented in various papers [3,15, 11, 6], anddwasdpplied in various
both internal and external IBM client engagements. The Kegiis to shift the focus
of business modeling from the actions taken to the entitiasare acted upon. These
entities (business artifacts or simply artifacts), suclam®©rder, a Request, a Plan, or
an Invoice are information entities used by enterpriseseepkirack of their business
operations. Not every information entity in a business isisiftiess artifact. The focus
for artifact-centric modeling is on business entities tf@tare records used to store
information pertinent to a given business context, (b) hawdstinct life-cycle from
creation to completion, and (c) have a unique identifier #flaivs identification of an
artifact across the enterprise. Business artifacts arebatieaction to focus businesses
on not just any information but on the core information eesithat are most significant
from a perspective of accountability. The artifact is aromfation record that allows
for measuring whether or not the business is on track to geltiesir business goals. [3,
15, 11] provides more information on the methodology to tdgtusiness artifacts.

In the previous example, the key business artifact is theOfthe Order stores dif-
ferent aspects such as the date created, the result of ttieaheck, planned execution
date, etc. The Order exists in different states or stagdsasi®ending Order, Planning,
Live Order and Completed. The services will interact with #rtifacts by (a) instanti-
ating an artifact instance, (b) updating an artifact, andr{ggering state transitions on
artifacts. We require that each service will at least updatsor many business artifacts,
or change the state of at least one artifact. The reasonimgdéhe update requirement
is the intent to model for accountability; hence, a business should be empowered
to measure what has been done in each step of a given pro@ps® E illustrates the
artifact-centric modeling approach using the servicevéeji example.

The Create Order service creates an instance of the Ordfacarupdates the arti-
fact (update dateCreated) and triggers the transition femding Order into Planning.
The Initiate Accounting service interacts with the Invoastfact, which captures infor-
mation pertinent to accounting. The result of this intamcts (typically) a validation
of a sufficient credit. Business rules are used to eitherelahe order or instantiate the

nstantiatel L, . > Order Artifact
Create | >
Order update
. Pending
D R A 79 Order
s Initiate | g4, N
catt Accounting « orderld
—/ - currentState
Cancel lesesvasne]onnnn. « dateCreated
ARSI B IR
)
Tasks Artifact
an

«invoiceld
« creditCheckApproved

Pl "
= "| Schedule

« planid
—

.

Invoice Artifact

o3
S
@

« installApproved
« installApprovedDate
« installCompletedDate

4
A

L

«planid
=« state

)
)
U

Approve
Install < >

(
L

0 .
ot Completed
Complete o
Customer 33

Accept

Fig. 2. An artifact-based view of the same workflow

Plan Schedule service. The Initiate Accounting will updhee Order artifact with the
appropriate decision (update creditCheckApproved withegitrue or false). The Plan
Schedule service will create an execution plan by intevactiith the Tasks artifact.
Neither the Initiate Accounting service nor the Plan Schedervices trigger a state
transition but both update the Order artifact.

The three artifacts shown in Fig. 2 are related to each ofterinformation content
of the Order artifact references both the Invoice artifawtl ghe Tasks artifact. This
implies traceability of Tasks and Invoices from an Ordeifact. There are different
models for artifact relationships. In the context of thippawe omit details about
the different models, but assume for simplicity that eadtieat in the given business
context is associated to other artifacts in the same bustwgext.

The abstraction of artifacts and services that act upofaatsi facilitate customiza-
tion of services flows. In an engagement scenario, identfyrtifacts of a business
precedes the definition of the services flows that will exetiw operations on artifacts.
The sequence of services can be exchanged unless someodagirevent it, e.g., be-
cause of a data dependency between services. To illustratersization, suppose that
for Hotel Corporation A the contract between the servicevigler and A requires to
perform a credit check before the plan execution as the aotitequires each hotel site
to provide their own budget for maintenance services. FdeHBorporation B, which
centrally budgets maintenance, planning the executioadide is the only action re-
quired, hence, Initiate Accounting can be skipped altogre#is accounting is covered
in the overall contract. Finally, for Hotel Corporation C ynlae charged by the service
provider on a per-site and per-service level. Thus, CotjpmmaC expects a quote before
each transaction, and the schedule is planned prior to atioguWe believe that the
challenges one typically encounters for building systemas allow for on-demand cus-

tomization can be overcome with a shift of focus from a attifor verb)-centric to an
artifact (or noun)-centric perspective.

Recent articles [3, 15, 11] on artifact-centric modelingédndescribed various tech-
niques and experiences to support business transforntatimngh the design of artifact-
based operation models, and some [15, 11] have laid out h@safthically represent
business operations using artifacts. The artifact-cemstpiproach has been applied in
various client engagements at IBM and has been used bothugiméss analysis and
business-driven development engagements. Our goal ipdpuer is to define a more
generic formal model that provides us with the tools to readmout some very practical
problems encountered in real world engagements.

In order to help lay the groundwork for the formal study of #méifact-based ap-
proach to business processes, we study three fundamentesis this paper.

Issue 1:As with any other business process modeling techniqudaeiritentric op-
eration models can get quite complex, especially when & latgmber of artifacts are
involved to describe a business scenario. In this case @il to perform a reachabil-
ity analysis to support the needs of both business and salatchitects. A reachability
analysis will allow to determine if an artifact is procesgedperly through its life-cylce
from creation to completion.

Issue 2:An artifact can reach a valid state, which is a dead-endaifimal state which
is not the completed state. Most of the times, these deag&thg exist by design, as
e.g. in Figure 2 where the canceled state is introduced hignleBechniques to detect
non-intended dead-end situations are valuable espediatye can provide guidance
how to resolve the situation.

Issue 3:Any process modeling engagement is iterative. The artlfasied approach
can be a valuable tool in business transformation, becaadlews a business to make
the key data in their processes visible. In practice, howélere is a tendency to keep
all of the data used by the legacy processes in the artifisatsey are designed. This
however may lead to the design of services that act upon @npally redundant data.
In this case it is useful to have tools that reason about tra@psign of the business arti-
fact, to reduce redundancy and to re-organize the serviows fo remove unnecessary
attributes and tasks/services.

3 Formal Model for Artifact-centric Business Processes

In this section we introduce the formal model for businesxpsses. The key notions
include, artifacts, schemas, services, and business fihese are brought together by
the notion of “artifact system”.

3.1: Artifacts and schemas.To begin with, we assume the existence of the following
pairwise disjoint countably infinite setg;, of primitive typesC of (artifact) classes
(names).A of attributes (names)kTates of artifactstates andip o of (artifact) identi-
fiersfor each clasg’ € C. A typeis an element in the unioh = 7, U C.

The domainof each typet in 7, denoted asom(t), is defined as follows: (1) if
t € 7, is a primitive type, the domainom(t) is some known set ofalues(integers,
strings, etc.); (2) it € C is an artifact typepom(t) = p;.

Definition. An (artifact) classis a tuple(C, A, 7, Q, s, F) whereC € C is a class name,
A C Ais afinite set of attributes; : A — 7 is a total mappingg) C statesis a finite
set of states, andle @, F C @ areinitial, final states (resp.).

An artifact (object)of class(C, A, T, Q, s, F) is a triple (o, i, ¢) whereo € ib¢ is
an identifier, is a partial mapping that assigns each attribitie A an element in its
domainbom(7(A)), andg € Q is the current state. An artifact objeet, 11, ¢) is initial
if ¢ = s (initial state) and. is undefined for every attribute, afidal if ¢ € F.

ARTIFACT CLASS ORDER AN ORDEROBJECT

STATES:! ATTRIBUTES. DI 1d927461

Pendi ngOrder (initial) invoice: Invoice STATE! LiveOrder

Pl anni ng task: Task ATTRIBUTES:

Cancel ed dateCreated : String i nvoi ce: id1317231

Li veOr der credi CheckApproved : bool task: id540343

Compl eted (final) currentCredit: int dat eCr eat ed: “2 April 2007”

instal |l Aprroved: bool credi t CheckApproved: true
o current Credit: undefined
i nstal | Approved: undefined

Fig. 3. Order Artifact and an Order Object

Example 3.1 Fig. 3 illustrates the Order artifact class from the exangil&ection 2,
along with an object of this class. As defined by that classpraler has a record of
important business information such as the date the ora@ee#&ed, and has references
to the related artifacts such as Invoice and Task. The classrightion also contains
possible states an order can be in such as “Pending Orderartifact of the Order
class has three partaD” maps to a unique identifier for the artifacts tATE” maps to
one of the states defined by the Order class; and each attrifmps to eithemndefined
or a value in the domain of the attribute’s type. |

When the context is clear, we may denote an artifact gl@sa\, , Q, s, F') simply
as(C, A), or evenC. A classCs is referenced byanother clas€’; if an attribute of
C1 has typeC’;. Similarly, an identifiew is referenced iran artifacto if o occurs as an
attribute value ob.

An artifacto’ extendsanother artifaco if (1) they have the same identifier and (2)
the partial mapping ob’ extends that 0d’ (i.e. if an attribute is defined in, then it is
also defined i’ and has the same value asin

Note that an artifact may have some of its attributes undefine

Definition. A schemads a finite setl” of artifact classes with distinct names such that
every class referenced ifi also occurs in’".

For technical convenience, we may assume that classes hremachave pairwise
disjoint sets of states. Note that distinct classes hayeidisets of identifiers.

Let S be a set of artifacts of classes in a schefd is valid if artifacts in S have
distinct identifiers;S is completdf every identifier of typeC referenced in an artifact
in S is an identifier of another artifact if.

Definition. Let I" be a schema. Amstanceof I" is a mapping that assigns each class
C'in I' afinite, valid, and complete set of artifacts of cl&ssLet inst(I") denote the

set of all instances af. An instancel € inst(I") is initial, final (resp.) if every artifact
in I is initial, final (resp.).

Notation. Let J be a collection of artifacts anelan identifier of an artifact in/. We
denote byJ (o) the artifacto = (o, i, s) in J; and by.J(0).A or o0.A the valueu(A),
whereA is an attribute ob.

Example 3.2 Consider a schema consists dartifacts: Order, Task, and Invoice, as
in Section 2. An instancé of this schema id(Order) = {01,092}, I(Task) =
{03}, I(Invoice) = {04}, whereo, is an order artifact illustrated in Fig. 3 such that
“o1.task” holds the ID obs, and ‘o;.invoice” holds the ID ofo4; whereas, &-.task”
and “o,.invoice” are undefined. |

3.2: Services and their semantics/Ve now proceed to modeling “services”. These are
essentially existing software modules used to act on attifand serve as the compo-
nents from which business models are assembled. We assaregistence of pairwise
disjoint countably infinite sets of variables for classeg irA variable of typeC € C
may hold an identifier im¢.

Definition. The set of(typed) terms ovea schemd" includes the following.
— Variables of aclas€’ in I, and

— x.A, wherez is a term of some class (in I") and A an attribute inC'. (Note that
x.A has the same type ak)

Roughly, a “service” is described by input variables, a pretition, and conditional
effect. This can be viewed as a variation on the spirit of O®/[4, 12], where services
have input, output, precondition, and conditional effettsthe case of OWL-S, the
precondition and effects may refer to the inputs and outfand also to some under-
lying “real world”. In our context, the artifacts correspbto the OWL-S “real world”,
and the conditional effects typically write new values ithie artifacts (or change their
state) — it is for this reason that we don't explicitly spgdifie outputs of services. The
preconditions and conditional effects are defined usingcddormula characterizing
properties of the artifacts before and after the serviceatxen. In the present paper,
we focus on the static analysis of artifacts and their assediprocessing flow, and
thus do not model repositories explicitly. Reference [Gdgemts a model that models
and studies the artifact repositories in a much more refinaadnar.

We now define the notions of “atoms” and “conditions”, whick ased to specify
the preconditions and conditional effects..

Definition. An atom overa schemd’ is one of the following:
1. ty, = t9, Wheretq, to are terms of clas€’ in I,
2. DEFINED(t, A), wheret is a term of clas€’ and A an attribute inC,
3. NEW(t, A), wheret is a term of clas€’ and A an artifact typed attribute i, and
4. s(t) (astateatom), where is a term of clas€’ ands a state oiC.
A negated atonis of form “—¢” wherec is an atom. Acondition overl” is a conjunction
of atoms and negated atoms. A conditiostistelessf it contains no state atoms.

Let I be an instance of a schema An assignment (resp. faf) is a mapping from
variables to IDs (resp. occurring if) such that a variable of clags is mapped to
an ID inib¢. Under a given instancé and a given assignmentfor I, all variables

are assigned (identifiers of) artifacts, tieth valueof a condition is defined naturally
(details omitted) with the following exceptions: @EFINED(¢, A) is true if the attribute
A of the artifactt has a value, and (Rew(t, A) is true if the attributed of the artifact
t holds an identifier not il. If v is an assignment for an instanéewe denote by
I = ¢[v] if under the assignment, the artifacts in/ satisfies a conditiop. Let V
denote the set of all assignments.

Following the spirit of OWL-S, we provide a mechanism to shethe “effect” of
executing a service. In our case, the effect will be desdribéerms of how it impacts
whether artifact attributes become defined or undefined ydrether new artifacts are
created. We follow the spirit of OWL-S in allowing non-det@nism in the model —
execution of a service might result in one of several poesififiects — this corresponds
to the intuition that our model is fairly abstract, and doesencompass many relevant
details about the underlying artifacts.

LetV be a set of variables of classes in a schémA (conditiona) effectoverV is
afinite sett = {¢1, ..., 1, } of stateless conditions ov&. In this context we call each
1, apotential effecof E. Intuitively, if a services with conditional effect® is applied
to an instancd, then the resulting instance will satisfy, for somep € [1..q]. We
also incorporate a condition based on the notion of circuipison [16] to capture the
intuition that “nothing is changed in the input instanceeptthings required to satisfy
¥p”". (This contrasts with the approach taken by OWL-S, in witiud effect portion of
a conditional effect is interpreted using the conventidogic semantics rather than one
based on circumscription.)

We can now describe services and their semantics. We as$eexistence of a
disjoint infinite sefS of service names

Definition. A serviceover a schemd” is tuple (n,V,.,V,,, P, E), wheren € Sis a
service namey/., V,, finite sets of variables of classeslii) P a stateless condition over
V that does not contaiRew, andE a conditional effect.

Intuitively, V.., V,, are artifacts to be read, modified (resp.) by a service. (@ hesy
overlap). Note, however, that if € V,., then terms such as A.B can be used, for
some artifact-valued attributé, to read attribute values associated with artifacts lying
outside of the image df,. under an assignment The analogous observation holds for
V. Itis possible to prevent this through syntactic restoict.

SERVICE UPDATECREDIT SERVICE PLAN SCHEDULE
Wk TE: {x: Or der } WkI TE: {x: Or der }
ReAD: {y: Credi t Report } ReAD: {x: Order, s:Supplier, c:Site}
PRe: — DEFI NED(x, creditCheckApproved) PRrRE: — DEFI NED(x.task)
and — DEFINED(x, currentCredit) EFFECTS:
EFFECTS: - NEWx, task) and
- DEFI NED(x, credit CheckApproved) DEFI NED(x. t ask, expectedStartDate) and
- DEFI NED(x, creditCheckApproved) and DEFI NED(x. t ask, expect edEndDate) and
DEFI NED(x, currentCredit) DEFI NED(x. t ask, supplier) and

DEFI NED(x. t ask, site) and
x.task.supplier = s and x.task.site = ¢

Fig. 4. Example Services

Example 3.3 Fig. 4 illustrates two services. Service UpdateCredit t@slan order’'s
creditinformation according to the credit report. In sorases, when the credit check is
approved, the credit amount is not known at the time of theatgydn those cases, only

the credit check approved field is defined. This is modeleti wib possible effects.
Service PlanSchedule creates a task for an order and defiribatas of the task such
as expectedStartDate and supplier. 1

Definition. Let 0 = (n,V,, V., P, E) be a service over a schenfa The (ircum-

scribed semanticof o is a set[o] C V x inst(I") x inst(I") such that for each

I € inst(I") and assignment for I overV, UV,

(1) There is at least oné with (v, I, J) € [o] iff I = P[v] (i.e., I satisfies the pre-
condition P under assignment), and

(2) if (v,I,J) € [o] then there is some potential effegte E for which there exist
setsK e and K., Of artifacts over schema’ having disjoint sets of distinct
artifact IDs such that:

(@) K = Kprev U Kpey is aninstance of .

(b) The collections of artifacts ih and in K., have the same set of identifiers.
(This implies that’ is an assignment fak’.)

(c) For each artifact I occuring in/, the artifact class and state ®in K., is
identical to the artifact class and stateodh I.

(d) Foreach atom im of form NEW(t, A) there is a distinct artifact ID in K,cq,
such that/(t.A) = o. Further, each artifact ID in K,,.,, corresponds to some
atom of formNEW(¢, A) occurring ingy.

(e) Foreach artifact € ib¢ in K., 0 is in the start state far'.

(f) (“satisfaction”)(K U L) = ¥[v].

(g) (“Circumscription”) Suppose that € b occurs inK, and letA be an at-
tribute of C'. Suppose that # t[v] for any term¢ which occurs in an atom of
1 that has any of the following forms:

(i) t.A=1t'.Bort'.B =t.Afor some attributeB;
(i) DEFINED(¢, A) occuring iny;
(i) NEW(t, A)
Then we have the following
(a) If o occursini, theno.A is defined inK iff 0.A is defined inl.
(B) If o occursinK .., theno.A is undefined ink.

Intuitively, the seti,,..,, in the above definition captures the way that existing arti-
facts inI are changed by potential effegt and the seK .., corresponds to new arti-
facts that are created hy. The circumscription condition ensures thatif I, J) € [o],
then an attribute value is changedironly if this is required in order to satisfy.

Concrete business services will assign specific valuedfidbates, or might inval-
idate an existing value, with the result of making it undefirgain. In our abstract
model, we focus only on whether the service gives a definegevia an attribute, or
makes the attribute undefined again. It is useful to consderices that are “mono-
tonic”, by which is meant that each attribute can be writtemast once (and not re-
assigned nor moved back to the undefined condition). Attfelsemas with monotonic
services enjoy certain decidability and complexity prajest Further, in many real sit-
uations the underlying business artifacts are in fact mamot due to the need for
historical logging. (Typically, some attributes of theifatt schemas in those situations
are set- or list-valued, so that multiple “draft” values for attribute can be assigned

before a final value is committed to. An analysis of the immddhcluding such value
types in the model is beyond the scope of the current paper.)

Definition. Let I andJ be instances of an artifact schethaThenJ extends! if for
each artifact IDv in I, o occurs inJ and.J (o) extends/ (o).

Definition. A serviceo is monotonidf .J extendd for each(v, I, J) € [o] .

For the technical development, it is useful to work with $eeg which affect just
one attribute value.
Definition. The servicer = (n, V;, V., P, E) is atomicif it is monotonic,V,, = {z} is
a singleton set, and for ea¢h, I, J) € [o], I andJ differ only in the following ways:
(a) For at most one artifact ID and one attributed of o, I(0).A is undefined and
J(0).A is defined.
(b) Ifin (a) the type ofA is artifact clasg”, thenJ has one artifact ID that does not,
namly J(o).A.
(c) The set of artifact IDs iif is contained in the set of artifact IDs ih
The services is scalar atomidf the attribute changed is of a primitive type#j.

3.3: Business rulesBased on an artifact schema and a set of available senaces,
business model is then formulated by “business rules”, wtifine the business logic.
Roughly, business rules can specify what services are tadaged on which artifacts
and when.

Technically, we assume some fixed enumeration of all veeglilo is a service, we
will use the notatiorv(x1, ..., x¢; y1, ..., yx) to mean thatey, ..., z, iS an enumeration
of variables in the modify set and, ..., yx an enumeration of read only variables (i.e.,
in the read set but not the modify set).

Definition. Given a schemd’ and a set of serviceS, abusiness rulés an expression
with one of the following two forms:

— “if pinvokeo(x1,...,xe;y1, ..., Yx)", OF

— "“if ¢ change state ta)”".
whereyp is a condition over variables, ..., z¢, y1, ..., yx (¢, k > 0), o a service inS
suchthatry, ..., z, are all artifact variables to be modified and ..., v, are all read only
variables ofr, andy a condition consisting of only positive state atoms ovgr..., z.

I f Pendi ngOrder (x) and DEFI NED(x, creditCheckApproved)
i nvoke I nitiateAccounting(x;)
| f DEFI NED(x. t ask. expect edStart Date) and
DEFI NED(x. t ask. expect edEndDat e) and
DEFI NED(x, i nstal | Approved)
change state to LiveOrder(x) and Pendi ngTask(x. task)

Fig. 5. Example Business Rules

Example 3.4 Fig. 5 illustrates two business rules. The first rule saysiibeder is in
PendingOrder state and the credit check is approved, tleesetivice InitiateAccounting
is invoked. The second rule says if for an order, the expestatidate and the expected
end date of the associated task are defined, and the installatapproved, then the
order moves to LiveOrder state, while the associated taslesim PendingTask stale.

We now briefly describe the semantics of business rules.worgiven instances
1, J of aschemd’, and a given assignmente V, a business rule, we say!l derives
J usingr andv, denoted ag — J, if one of the following holds.

10

— I E=plv]and(v,1,J) € [o], if ris the rule if p invoke o(z1, ..., xe; Y1,y -y Yi)™
— I = ¢[v] andJ is identical tol except that eacti(v(z;)) has the state according
to v, if r is the rule if ¢ change state ta)”.

3.4: Artifact systems and their semanticsA business model is then captured as an
“artifact system”.

Definition. An artifact systenis a tripleW = (I, S, R) whereI" is a schema$ is a
family of services overl”, andR is a family of business rules with respectificandS.

In the next section, we shall also include, as a fourth corepgra setC of con-
straints; in these cases we shall indicate the class ofrantst from whichC' is drawn.

We now sketch the semantics of artifact systems, in padicudlefine the notion
focused path for an artifact, which will be the basis for mo€the technical investiga-
tion.

Definition. Let W = (I', S, R) be an artifact system and a class in/". A pathin W
is a finite sequence = Iy, I, ..., I,, of instances of . The path isvalid if

(i) Foreachj € [1..n], I, is the result of applying one business rulef R to I;_1,

el 5% 1, for some assignmemte V.

For an artifact I1Do, the pathr is o-relevantif

(i) n>1,
(iii) o does not occur idy, and
(iv) odoes occuriny.

(Intuitively, this means that artifact 1D is created in the transition frory to I;.) If
the path iso-relevant, then it is-successfulf I,,(o) is in a final state. It i9-dead-
endif o is not in a final state foc' and there is no sequendg, 1, ..., I, such that
Io, Iy, ooy Iy Iy, -, Iy is @ valid,o-successful path. Finally, a valid pati I, ..., I,,
is o-focusedf it is o-relevant and

(v) odoes occur irf; for eachj € [1..n]

(vi) for eachj € [2..n], we havel;(o) # I;_1(o) (i.e., o has changed state or some
attribute value ob has changed).

(vii) for eachyj € [2..n], and for each’ # o, we havel;(0’) = I;_1(0') (i.e., o’ does
not change state and no attribute value’dias changed).

We close this section by introducing a formalism that chiémes “redundant at-
tributes”. For an attributed of a classC, let p4(C) represent the class identical €
but without A. For a schemd”, let pc.4(I") be the schem&™ — {C}) U {pa(C)}.

If S is a set of services, lIfc 4 be the sef{o | o € S ando referencesA of C}.
Similarly, for a setR of business rules, IR 4 be the se{r | » € R andr references
C.A, orrinvokes aservice ¥ 4 }. LetW = (I, S, R) be an artifact system. Define
pc.A(W) as the artifact systeifpc. 4 ("), S— Sc.4, R— Rc.4). Intuitively, pc a4 (W)

is an artifact system similar td” but with attributeA of classC' completely removed.
This removal operatiop 4 ¢ is natually extended to instances, and to paths. For the
latter, if the result op 4. on a consecutive block of instances in the path yield idahtic
instances, then all but one of the indentical instancesaam®ved in the resulting path.
Definition. For an identifiep of classC, we say an attributé of a clasg”' isredundant
on an [o-focused andb-successful path in W if pc a(7) is an p-focused andp-
successful path ipc 4 (W). An attribute A of a classC' is redundant iniV [for C-
focused paths] ifd is redundant on everyffocused andb-successful path ihl.

11

4 Technical Results

We believe that the artifact model can provide the backbonthe automated construc-
tion of workflow schemas, or more specifically the automatastruction of artifact
schemas. The section studies some basic decision probbemassthemas, and obtains
complexity characterizations for them. The problems stddire chosen based on our
interest in testing whether automatically generated setsesatisfy key reachability and
minimality properties.

Due to space limitations, we do not include the proofs of gdufihical results here.

We now provide formal counterparts to the intuitive deaisproblems introduced
in Section 2. Each of these is of fundamental importance wdwerstructing artifact-
based workflows (either manually or automatically). SugpbatiV = (IS, R) is
an artifact system (possibly with constraints), &né an artifact class id".

Q1: (Successful completion f@r.) Is there ano¢ o and a valid o-successful path in

w?

Q2: (Dead-end path fo€”.) Is there ap¢ o and a validp-dead-end path i/ ? Given

W with dead-end paths, is there a way to construct an artifatem W’ which

(a) is “equivalent” tol (according to a definition given below) and (b) has no

dead-end paths far'?

Q3: (Attribute redundancy fo€). Is an attributed of C' redundant i ?

Intuitively, Q1 is focused on whether clagsin W is “satisfiable”. The existance
of at least one successful completion @1is a minimum test on whethé#” is well-
formed.

Q2 is based on a more refined notion of well-formed. Supposelfhatoes have
a valid, dead-endy-focused path. This suggests that an execution of the wavrldém
reach a point in which the artifactcannot be further extended to completion. In other
words, the workflow would need to perform a “roll-back” foighartifact. To avoid this
undesirable situation, it might be possible to construcew artifact systeni¥’ from
W which supports all of the same successful path&adut which has no dead-end
paths. (This might be acheived, for example, by adding caims tolV/, which for any
successful, non-dead-end pdgh..., I;, prevent moves into an instan€g ; for which
Iy, ..., I, I;41 is valid but dead-end. See Theorem 4.5 below.)

Q3 can be used to assist in optimizing an artifact systenmiVlhas a redundant
attribute, then this attribute, all business rules andisesweferring to this attribute can
be removed from?” which reduces the complexity of the design specification.

We first note that all three questions are undecidable indh&xt of general artifact
systems.

Theorem 4.1 LetW = (I, S, R) be an artifact system. Then each@f, Q2, andQ3
for classC is undecidable. Whel’” does not contain predicakew, Q1, Q2, andQ3
are inPSPACE and furthermore, they are completerisPACEfor o-focused paths.

We now look at some restricted forms of artifact systems fhiclv the questions
are either tractible oxpP-complete.

To obtain various decidability results, we focus herafteraatifact systems that are
monotonic. Also, to simplify the discussion, we assume @flartifact systems under
consideration are atomic.

12

Our first result yields tractable decidability f@1. For this result, we use a slight
variation on the conditions used elsewhere in the papealRéat an atom over schema
I may have the form(t) wheret is an artifact term of some clag$ands is a state of
cinl.

Definition. A previous-or-current-statatom has the fornfprev_curr]s(t). Letv be a
variable assignment an, I, ..., I, av(t)-relevant path. Theprev_curr]s(t) is true
underv for I, in the context ofly, I, ..., I, if I;(v(¢)) is in states for somej € [1..n],
(i.e., if v(¢) isin states in I,,, or was in state in some preceding instance of the path).

Theorem 4.2 LetW = (I, S, R) be a monotonic artifact system. Assume that
(i) Each serviceS in S is deterministi¢ i.e., it has exactly one conditional effect,

whose antecedant is “true”.

(i) The pre-condition for each service is positive (i.e,megated atoms), has no atoms
of the forms(¢) for a states, but may have atoms of the forfprev_curr]s(t).

(ili) The antecedant of each rule iR is positive, has no atoms of the fora(t) for a
states, but may have atoms of the forfprev_curr|s(t).

Let A be an attribute of a clagsin I, ando aib . Then there are linear-time algorithms

to decide the following.

(a) Foran attributel of C, whether there is an-focusedp-successful pathy, . . ., I,
in W such that/,,(0).A is defined.
(b) Whether there is an-focusedp-successful patth, . .., I, in W.

Our next result shows that slight relaxation of most of thaditions in the above
theorem yieldsvpP-completeness fa@1.

Theorem 4.3 Let W = (I, S, R) be a monotonic artifact system. In connection with

monotonic,o-successful paths (which have no artifact invention butclldre not re-

quired to beo-focused), Questio®1 is NP-complete for the following cases. (Here

conditions (i) through (iii) refer to the conditions of Theon 4.2

(a) Conditions (ii), (iii) are satisfied bi#” but condition (i) is not. Furthermore, each
service can be applied at most once to a given artifact.

(b) Conditions (i), (ii), (iii) are satisfied by¥/, except that negation is permitted in the
pre-conditions of services.

(c) Conditions (i), (ii), (iii) are satisfied by}, except that negation is permitted in the
antecedents of business rules.

(d) Instead of using previous-or-current-state atoms the pre-conditions and con-
ndional effect antecedants may use atoms of the fgtm All other conditions of
Theorem 4.2 apply.

These are alNP-hard even in the case offocused paths.

While the various decision problems just mentioned arsrdtomplete in the worst
case, we expect that heuristics can be developed to de@se finoblems in commonly
arising cases.

In an artifact syster®” = (I, S, R), the business ruleR provide the mechanism
for a workflow execution to “make forward progress”. In son@ses it may also be
convenient to specify constraints on the execution, whashsuccinctly prevent certain
rules from executing. A simple form of constraint is now oduced.

13

Definition. Let I" be an artifact schema arddan artifact class id". Theundefined-att-
state-blockingonstraint for a seA = A4, ..., A,, of attributes forC' and states for C
is the expressionDEFINEDA; A ... A “DEFINEDA,, — blockchange state tas. A
short-hand for this i&¥NDEFINEDA — blocks.

We extend the notion of artifact system to include such cairgs.

Definition. An artifact system ith undefined-att-state-blocking constrainis a 4-
tupleW = (I, S, R,C) where(I, S, R) is an artifact system as defined before &hd
is a family of undefined-att-state-blocking constrainterdv. Each pathr = Iy, ..., I,
for W' = (I, S, R) is also a path fo#//. This path isvalid for W if it is valid for
W’ and for eachy € [1..n] and each constraimtNDEFINEDA — blocks in C, if the
transition fromI; to ;44 includes moving an artifact into classs, thenI;(o).A is
defined for somel € A.

As it turns out, a system with blocking constraints can bédaegd by an “equiva-
lent” system without constraints. but there there may bexporential blow-up in the
size of the system.

Definition. LetW = (I, S, R,C) andW’ = (I"", §’, R, C") be two artifact systems.
ThenW andW’ have thesame basiff I" = I". In this case]¥/ andWW' arepath-wise
equivalentf the set ofI¥/-valid paths is equivalent to the set1df’-valid pathsW and
W' arefunctionally equivalentver artifact clas€” if the set ofo-successful paths for
W is equal to the set af-successful paths fdi’’. They arefunctionally equivalent
for C-focused paths$or artifact classC if for eacho € bg, the set ofo-focusedo-
successful paths fd# is equal to the set af-focused p-successful paths fdi#’’

(Obviously, if W andW’ are path-wise equivalent, then they are functionally equiv
alent for each class§'.)

Theorem 4.4 LetW = (I, S, R, C) be a monotonic artifact system aftlan artifact
class inI". Then it isIT-complete whether there is a dead-end path(fon 1. This
remains true under the various restrictions describederstatement of Theorem 4.3.

We now provide a construction that can be used to eliminade-@ad paths.

Theorem4.5LetW = (I, S, R, C) be a monotonic artifact system afitdan artifact
class inI", andC a class inI". Then there is an artifact systeWi’ = (I, S, R,C U
C'"), with C’ a family of undefined-att-state-blocking constraints,ehis functionally
equivalent forC-focused paths té¥, and for eactv € ibe, W’ has noo-focused
dead-end paths. Further, the sizd®f is no greater than exponential in the size&Bf

A similar result can be obtained that starts with an artifactem with no con-
straints, and produces a functionally equivalent artifgstem with no constraints and
no dead-end paths.

Turning toQ3, we show that this problem is decidable under the samectshs.

Theorem4.6 Let W = (I, S, R) be an artifact system. The problem of deciding
whether an attributel of a classC' € I" is redundant is coNP-complete for all cases (a,
b, ¢, d, e) of Theorem 4.3.

Finally, we briefly outline an extension of the positive résu

14

Definition. Let I" be a schema anfl J two instances of . J link-extenddl, I <y, J,
if for each clasg”, eachp ¢ o, and each attributel of C' whose type is artifact ID, (1)
there is an artifact if with ID o implies that there an artifact i with 1D o, and (2)
J(0).A = I(0).A.

Definition. Let W = (I, S, R) be an artifact system, arid> 0. A path Iy, I, ..., I,
is ak-fixed-link structurdf (1) for eachj € [0..k], I; has at most artifacts for each
class, and (2) for eache [1..n], I;_1 <r, I;.

Paths for the Order artifact of Section 2 hav 4-fixed-linkisture.

Theorem 4.7 For eachk, Theorems 4.2, 4.3, 4.5, and 4.6 hold fefixed-link structure
paths.

5 Related work

The concept of business artifacts is introduced in [15] amtthé&r studied in [3, 11, 6]. In
[3], the authors lay out the methodology in the context of lglddriven Business Trans-
formation and describes the positive feedback receivedldhworld engagements. [11]
presents nine patterns emerging in artifact-centric geoeodels and develops a com-
putational model based on Petri Nets. [6] uses a differerdehand develops static
analysis techniques for artifact-centric model propsrsech as arrival, persistence,
and uniqueness.

Many tools and techniques proposed for the developmentsihbas process mod-
els using workflows (e.g., [9, 14, 10]). These approaches fadlowed a process-centric
approach focused on the control and coordination of tagk3 fe importance of a data-
centric view of processes is also advocated in [2] and [8]2]nthe authors encourage
an “object view” of scientific workflows where the data gertedeand used is the central
focus; while [8] investigates “attribute-centric” workfle where attributes and modules
have states. [13] proposes a mixed approach which can expogks control and data
flow. Compared to these approaches, our work favors a daticeiew.

Another thread of related work is the new paradigm of workfi@search which
concerns both control flows and data flows. The Product-dieese handling approach
[1] addresses many concerns of traditional workflows egigcvith respect to the
treatment of process context or data. Wang and Kumar [2@geed document-driven
workflow systems where data dependencies, in addition toraidtows, are introduced
into process design in order to make more efficient procesigdeln their framework,
business tasks are defined using input and output docuneawtdias other constraints,
like business rules and policies, imposed on the documkentsmparison, our artifact-
centric model re-organizes documents into structurednassi artifacts, which signifi-
cantly reduces complexity of modeling data-control flovenaictions.

Process verification has been studied extensively in th&flear community, with
activity sequencing in Patri nets [19], in graphs [17], dd¢@endencies [18]. (See [6]
for additional references.)

15

6 Conclusions

The artifact-based approach uses key business data, imtmedf “artifacts”, as the
driving force in the design of business processes. It esabkeparation of data man-
agement concerns from process flow concerns, and can supgoftexibility in the
creation and evolution of business processes. In partjdhla artifact-based approach
holds the promise of enabling automatic creation of newriass processes from exist-
ing ones, or from initial specifications of the artifacts drasic services for operating on
them. This paper lays the foundation for a formal study ofattéact-based approach
and its use as the basis for automated workflow creation.

The focus of this paper is on basic decision problems, rél@teeachability, avoid-
ing dead-ends, and redundancy. While providing key insigaxtensions and refine-
ments of these results will be useful, that take into accaatital data values, and struc-
tural properties of the artifacts and their state diagravttee broadly, we are interested
to develop tools and techniques for automatic construatfdousiness processes, in the
spirit of the Semantic Web Services community.

Acknowledgments: Work by Gerede, Hull, and Su is supported in part by NSF grists
0415195 and CNS-0613998.

References

1. W.M.P. Aalst, M. Weske, and D. Grnbauer. Case handlingeva paradigm for business
process supporData and Knowledge Engineerin§3:129-162, 2005.

2. A. Ailamaki, Y. loannidis, and M. Livny. Scientific workflo management by database
management. IRroc. Int. Conf. on Statistical and Scientific Database Mgaraent1998.

3. K. Bhattacharya, R. Guttman, K. Lymann, F. F. Heath llIK8maran, P. Nandi, F. Wu,
P. Athma, C. Freiberg, L. Johannsen, and A. Staudt. A modeti approach to industrial-
izing discovery processes in pharmaceutical resedBM.Systems Journadt4(1):145-162,
2005.

4. OWL Services Coalition. OWL-S: Semantic markup for wetviees, November 2003.

5. D. Georgakopoulos, M. Hornick, and A. Sheth. An overvigwworkflow management:
From process modeling to workflow automation infrastruetubDistributed and Parallel
Databases3(2):119-154, April 1995.

6. C. E. Gerede and K. Bhattacharya J. Su. Static analysisi®ihéss artifact-centric op-
erational models. IHEEE International Conference on Service-Oriented Cormguand
Applications 2007. to appear.

7. M. Hammer. Deep change: How operational innovation cansform your company.
Havard Business Reviewages 84-93, April 2004.

8. R.Hull, F.Llirbat, E. Simon, J. Su, G. Dong, B. Kumar, andZBou. Declarative workflows
that support easy modification and dynamic browsing.Ptac. Int. Joint Conf. on Work
Activities Coordination and Collaboratigri999.

9. M. Jackson and G. Twaddl8usiness Process Implementation Building Workflow Systems
Addison-Wesley, ACM Press Books, Boston, 1997.

10. F. Leymann and D. Roller. Business process managem#nflaswmark. InProc. of COM-
PCON 1994,

11. R. Liu, K. Bhattacharya, and F. Y. Wu. Modeling businesstexture and behavior using
business artifacts. I6AISE volume 4495 of NCS 2007.

16

12.

13.

14.
15.

16.
17.

18.

19.

20.

S. A. Mcllraith, T. C. Son, and H. Zeng. Semantic web s&wi INIEEE Intelligent Systems
March/April 2001.

C. Medeiros, G. Vossen, and M. Weske. Wasa: a workfloweaschitecture to support
scientific database applications. Pnoc. 6th DEXA Conferenc&995.

J. P. MorrisonFlow-Based Programmingvan Nostrand ReinHold, New York, 1994.

A. Nigam and N. S. Caswell. Business artifacts: An apghida operational specification.
IBM Systems Journali2(3):428-445, 2003.

R. Reiter. A logic for default reasoningutificial Intelligence 13:81-132, 1980.

Wasim Sadiq and Maria E. Orlowska. Analyzing process et®odsing graph reduction
techniquesinf. Syst, 25(2):117-134, 2000.

S. X. Sun, J. F. Nunamaker J. L. Zhao, and O. R. L. Shengmiating the data-flow
perspective for business process managenheftirmation Systems Researd7(4):374391,
2006.

W. M. P. van der Aalst. The application of Petri nets tokflorv management]. of Circuits,
Systems and ComputeB{1), 1998.

J. Wang and A. Kumar. A framework for document-driven kflorv systems. IrBusiness
Process Managementages 285-301, 2005.

17

