
RC24282 (W0706-053) June 12, 2007
Computer Science

IBM Research Report

Towards Formal Analysis of
Artifact-Centric Business Process Models

Kamal Bhattacharya1, Cagdas Gerede2, Richard Hull3, Rong Liu1, Jianwen Su2

1IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

2University of California at Santa Barbara

3Bell Labs, Alcatel-Lucent

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Towards Formal Analysis of
Artifact-Centric Business Process Models

Kamal Bhattacharya1, Cagdas Gerede2, Richard Hull3, Rong Liu1, Jianwen Su2⋆

1 IBM T.J. Watson Research Center 3 Bell Labs, Alcatel-Lucent
2 University of California at Santa Barbara

Abstract. Business process (BP) modeling is a building block for design and manage-
ment of business processes. Two fundamental aspects of BP modeling are: a formal
framework that well integrates bothcontrol flowanddata, and a set of tools to assist all
aspects of a BP life cycle. A typical BP life cycle includes atleast a design phase where
the key concerns are around “correct” realization of business logic in a resource con-
strained environment, and an operational phase where a mainobjective is to optimize and
improve the realization during the execution (operation).This paper is an initial attempt
to address both aspects of BP modeling. We view our investigation as a precursor to the
development of a framework and tools that enable automated construction of processes,
along the lines of techniques developed around OWL-S and Semantic Web Services.

Over the last decade, the idea of coupling control and data inan “artifact-centric”
approach emerged in the practice of business process design. The key focus is on the
“moving” data as they are manipulated throughout a process.The idea works well with
many applications, typical examples include customer order processing, insurance claim
handling, etc. Based on this idea, we formulate a theoretical model for artifact-centric
business processes and develop complexity results concerning static analysis of three
problems of immediate practical concerns. The problems focus on the ability to complete
an execution, existence of an execution “deadend”, and redundancy. It is shown that the
problems are undecidable in the general case; and under various restrictions they are
decidable but complete inPSPACE, co-NP, andNP; and in some cases decidable in linear
time.

1 Introduction

In recent years, competitive business environment has forced companies to be opera-
tionally innovative in order to outperform their competitors [7]. This challenge requires
business process models not only to ensure work to be done as desired but also to en-
able operational innovations. In general, a process model describes activities conducted
in order to achieve business goals, informational structure of a business, and organiza-
tional resources. Workflows, as a typical process modeling approach, often emphasize
the sequencing of activities (i.e., control flows), but ignore the informational perspec-
tive or treat it only within the context of single activities. Without a complete view of
the informational context, business actors often focus on what should be done instead
of what can be done, hindering operational innovations [7, 1].

The goal of this paper is to develop and investigate a new modeling framework
centered around “business artifacts”. Business artifacts(or simply artifacts) are the in-
formation entities that capture process goals and allow forevaluating how thoroughly

⋆ Contact author, su@cs.ucsb.edu

1

these goals are achieved. Business “services” (or tasks) act on artifacts and then modify
artifacts based on business rules. A fundamental thesis of this paper is that business ser-
vices are typically less frequently changed; a technical challenge is to properly “chain”
the services together or “evolve” the current workflow of theservices to adapt for new
business requirements. In our framework, “business rules”are used to assemble the ser-
vices together; they are specified in declarative languagesand are easy to modify. A
process model thus consists of business artifacts, services, and rules. Based on this
framework, we study properties of process models that concern both information per-
spective and control flows. In particular, we develop complexity results on the following
problems: Can a process complete, i.e., an artifact can be successfully processed? Does
a dead-end path exist in a process? Are there redundant data in artifacts or redundant
services?

This paper makes the following contributions.

1. The development of a formal artifact-based business model and a declarative se-
mantics based on the use of business rules which can be created and modified sep-
arately from the artifacts.

2. A preliminary set of technical results concerning statically analysing the semantics
of a specified artifact-based business process model. The results range from
(a) undecidability for the general case,
(b) PSPACE-complete when no new artifacts are created during the execution,
(c) intractable (co-NP- or NP-complete) under various restrictions including “mono-

tonic” services, and
(d) linear time under more limited restrictions.

Organization: §2 provides a motivating example for business artifacts and mod-
eling. A formal artifact-centric process model is introduced in §3. In §4, we present
technical results on static analysis of process models specified in our framework.§5
discusses related work.§6 concludes this paper with a brief discussion on future work.

2 A Motivating Example

Consider an IT service provider aimed to provide IT servicesto an enterprise com-
prising a large number of geographically distributed “small sites”. Provided services
include IT provisioning, installation, and maintenance aswell as general support. Typ-
ical examples for small sites are individual hotels part of alarger chain or fast food
restaurants that are part of a franchise. The service provider typically signs a contract
with the franchise corporation, which determines the service level agreements for each
order of a given IT service. For example, a hotel corporationmight sign a contract with
a service provider that allows the provider to execute any kind of IT systems related
services at individual hotel sites. The service provider receives a request for service
from a hotel site and creates an order. Fig. 1 illustrates thehigh level business process
for a particular corporation. Typically, after initiatingthe accounting (e.g. performing a
credit check and filing the invoice) a schedule for executingthe requested services will
be planned (e.g. performing an update on all cash registers in the hotel and an upgrade
of the main reservation terminals). Insufficient funds may lead to a termination of the
order (before the schedule is created). After the hotel corporation approves the install

2

for the hotel site, the IT services can execute the planned schedule and complete the
order.

Create
Order

Initiate
Accounting

Plan
Schedule

Approve
Install

Complete
Customer

Accept

Cancel
Order

Fig. 1. An IT Service Provider’s Process Model

The high-level process model describes the sequence of activities executed by the
service provider to reach the business goal of completing the IT services delivery. Each
task in the process model describes business intent. In our context it is convenient to
consider each task as a service which requires an input, produces an output, may have
pre-conditions and have an effect on an external system. (This is similar in spirit to se-
mantic web services, e.g., [4, 12].) In recent years, some ofthe authors have investigated
a different approach to modeling business operations. The artifact-centered approach
has been documented in various papers [3, 15, 11, 6], and has been applied in various
both internal and external IBM client engagements. The key idea is to shift the focus
of business modeling from the actions taken to the entities that are acted upon. These
entities (business artifacts or simply artifacts), such asan Order, a Request, a Plan, or
an Invoice are information entities used by enterprises to keep track of their business
operations. Not every information entity in a business is a business artifact. The focus
for artifact-centric modeling is on business entities that(a) are records used to store
information pertinent to a given business context, (b) havea distinct life-cycle from
creation to completion, and (c) have a unique identifier thatallows identification of an
artifact across the enterprise. Business artifacts are an abstraction to focus businesses
on not just any information but on the core information entities that are most significant
from a perspective of accountability. The artifact is an information record that allows
for measuring whether or not the business is on track to achieve their business goals. [3,
15, 11] provides more information on the methodology to identify business artifacts.

In the previous example, the key business artifact is the Order. The Order stores dif-
ferent aspects such as the date created, the result of the credit check, planned execution
date, etc. The Order exists in different states or stages such as Pending Order, Planning,
Live Order and Completed. The services will interact with the artifacts by (a) instanti-
ating an artifact instance, (b) updating an artifact, and (c) triggering state transitions on
artifacts. We require that each service will at least updateone or many business artifacts,
or change the state of at least one artifact. The reasoning behind the update requirement
is the intent to model for accountability; hence, a businessuser should be empowered
to measure what has been done in each step of a given process. Figure 2 illustrates the
artifact-centric modeling approach using the service delivery example.

The Create Order service creates an instance of the Order artifact, updates the arti-
fact (update dateCreated) and triggers the transition fromPending Order into Planning.
The Initiate Accounting service interacts with the Invoiceartifact, which captures infor-
mation pertinent to accounting. The result of this interaction is (typically) a validation
of a sufficient credit. Business rules are used to either cancel the order or instantiate the

3

Create
Order

Initiate
Accounting

Plan
Schedule

Approve
Install

Complete
Customer

Accept

Cancel
Order

Pending
Order

Planning

Live
Order

Completed

Canceled

• orderId
• currentState
• dateCreated
• invoiceId
• creditCheckApproved
• planId
• installApproved
• installApprovedDate
• installCompletedDate

Order Artifact

• invoiceId
• state
• att

Invoice Artifact

• planId
• state
• att

Tasks Artifact

instantiate

trigger

update

Fig. 2.An artifact-based view of the same workflow

Plan Schedule service. The Initiate Accounting will updatethe Order artifact with the
appropriate decision (update creditCheckApproved with either true or false). The Plan
Schedule service will create an execution plan by interaction with the Tasks artifact.
Neither the Initiate Accounting service nor the Plan Schedule services trigger a state
transition but both update the Order artifact.

The three artifacts shown in Fig. 2 are related to each other.The information content
of the Order artifact references both the Invoice artifact and the Tasks artifact. This
implies traceability of Tasks and Invoices from an Order artifact. There are different
models for artifact relationships. In the context of this paper we omit details about
the different models, but assume for simplicity that each artifact in the given business
context is associated to other artifacts in the same business context.

The abstraction of artifacts and services that act upon artifacts facilitate customiza-
tion of services flows. In an engagement scenario, identifying artifacts of a business
precedes the definition of the services flows that will execute the operations on artifacts.
The sequence of services can be exchanged unless some constraints prevent it, e.g., be-
cause of a data dependency between services. To illustrate customization, suppose that
for Hotel Corporation A the contract between the service provider and A requires to
perform a credit check before the plan execution as the contract requires each hotel site
to provide their own budget for maintenance services. For Hotel Corporation B, which
centrally budgets maintenance, planning the execution schedule is the only action re-
quired, hence, Initiate Accounting can be skipped altogether as accounting is covered
in the overall contract. Finally, for Hotel Corporation C may be charged by the service
provider on a per-site and per-service level. Thus, Corporation C expects a quote before
each transaction, and the schedule is planned prior to accounting. We believe that the
challenges one typically encounters for building systems that allow for on-demand cus-

4

tomization can be overcome with a shift of focus from a activity (or verb)-centric to an
artifact (or noun)-centric perspective.

Recent articles [3, 15, 11] on artifact-centric modeling have described various tech-
niques and experiences to support business transformationthrough the design of artifact-
based operation models, and some [15, 11] have laid out how tographically represent
business operations using artifacts. The artifact-centric approach has been applied in
various client engagements at IBM and has been used both for business analysis and
business-driven development engagements. Our goal in thispaper is to define a more
generic formal model that provides us with the tools to reason about some very practical
problems encountered in real world engagements.

In order to help lay the groundwork for the formal study of theartifact-based ap-
proach to business processes, we study three fundamental issues in this paper.

Issue 1:As with any other business process modeling technique, artifact-centric op-
eration models can get quite complex, especially when a large number of artifacts are
involved to describe a business scenario. In this case it is helpful to perform a reachabil-
ity analysis to support the needs of both business and solution architects. A reachability
analysis will allow to determine if an artifact is processedproperly through its life-cylce
from creation to completion.

Issue 2:An artifact can reach a valid state, which is a dead-end, i.e.a final state which
is not the completed state. Most of the times, these dead-endpaths exist by design, as
e.g. in Figure 2 where the canceled state is introduced by design. Techniques to detect
non-intended dead-end situations are valuable especiallyif one can provide guidance
how to resolve the situation.

Issue 3:Any process modeling engagement is iterative. The artifact-based approach
can be a valuable tool in business transformation, because it allows a business to make
the key data in their processes visible. In practice, however, there is a tendency to keep
all of the data used by the legacy processes in the artificats as they are designed. This
however may lead to the design of services that act upon on potentially redundant data.
In this case it is useful to have tools that reason about the pre-design of the business arti-
fact, to reduce redundancy and to re-organize the services flows to remove unnecessary
attributes and tasks/services.

3 Formal Model for Artifact-centric Business Processes

In this section we introduce the formal model for business processes. The key notions
include, artifacts, schemas, services, and business rules. These are brought together by
the notion of “artifact system”.

3.1: Artifacts and schemas.To begin with, we assume the existence of the following
pairwise disjoint countably infinite sets:Tp of primitive types, C of (artifact) classes
(names), A of attributes (names), STATES of artifactstates, andIDC of (artifact) identi-
fiersfor each classC ∈ C. A typeis an element in the unionT = Tp ∪ C.

The domainof each typet in T , denoted asDOM(t), is defined as follows: (1) if
t ∈ Tp is a primitive type, the domainDOM(t) is some known set ofvalues(integers,
strings, etc.); (2) ift ∈ C is an artifact type,DOM(t) = IDt.

5

Definition. An (artifact) classis a tuple(C,A, τ, Q, s, F) whereC ∈ C is a class name,
A ⊆ A is a finite set of attributes,τ : A → T is a total mapping,Q ⊆ STATES is a finite
set of states, ands ∈ Q,F ⊆ Q areinitial , final states (resp.).

An artifact (object)of class(C,A, τ, Q, s, F) is a triple(o, µ, q) whereo ∈ IDC is
an identifier,µ is a partial mapping that assigns each attributeA in A an element in its
domainDOM(τ(A)), andq ∈ Q is the current state. An artifact object(o, µ, q) is initial
if q = s (initial state) andµ is undefined for every attribute, andfinal if q ∈ F .

ARTIFACT CLASS ORDER

STATES:
PendingOrder (initial)
Planning
Canceled
LiveOrder
Completed (final)
. . .

ATTRIBUTES:
invoice: Invoice
task: Task
dateCreated : String
crediCheckApproved : bool
currentCredit: int
installAprroved: bool
. . .

AN ORDEROBJECT

ID: id927461
STATE: LiveOrder
ATTRIBUTES:
invoice: id1317231
task: id540343
dateCreated: “2 April 2007”
creditCheckApproved: true
currentCredit: undefined
installApproved: undefined
. . .

Fig. 3. Order Artifact and an Order Object

Example 3.1 Fig. 3 illustrates the Order artifact class from the exampleof Section 2,
along with an object of this class. As defined by that class, anorder has a record of
important business information such as the date the order iscreated, and has references
to the related artifacts such as Invoice and Task. The class description also contains
possible states an order can be in such as “Pending Order”. Anartifact of the Order
class has three parts: “ID” maps to a unique identifier for the artifact; “STATE” maps to
one of the states defined by the Order class; and each attribute maps to eitherundefined
or a value in the domain of the attribute’s type.

When the context is clear, we may denote an artifact class(C,A, τ, Q, s, F) simply
as(C,A), or evenC. A classC2 is referenced byanother classC1 if an attribute of
C1 has typeC2. Similarly, an identifiero is referenced inan artifacto if o occurs as an
attribute value ofo.

An artifacto′ extendsanother artifacto if (1) they have the same identifier and (2)
the partial mapping ofo′ extends that ofo′ (i.e. if an attribute is defined ino, then it is
also defined ino′ and has the same value as ino).

Note that an artifact may have some of its attributes undefined.

Definition. A schemais a finite setΓ of artifact classes with distinct names such that
every class referenced inΓ also occurs inΓ .

For technical convenience, we may assume that classes in a schema have pairwise
disjoint sets of states. Note that distinct classes have disjoint sets of identifiers.

Let S be a set of artifacts of classes in a schemaΓ . S is valid if artifacts inS have
distinct identifiers;S is completeif every identifier of typeC referenced in an artifact
in S is an identifier of another artifact inS.

Definition. LetΓ be a schema. Aninstanceof Γ is a mappingI that assigns each class
C in Γ a finite, valid, and complete set of artifacts of classC. Let inst(Γ) denote the

6

set of all instances ofΓ . An instanceI ∈ inst(Γ) is initial , final (resp.) if every artifact
in I is initial, final (resp.).

Notation. Let J be a collection of artifacts ando an identifier of an artifact inJ . We
denote byJ(o) the artifacto = (o, µ, s) in J ; and byJ(o).A or o.A the valueµ(A),
whereA is an attribute ofo.

Example 3.2 Consider a schema consists of3 artifacts: Order, Task, and Invoice, as
in Section 2. An instanceI of this schema isI(Order) = {o1,o2}, I(Task) =
{o3}, I(Invoice) = {o4}, whereo1 is an order artifact illustrated in Fig. 3 such that
“o1.task” holds the ID ofo3, and “o1.invoice” holds the ID ofo4; whereas, “o2.task”
and “o2.invoice” are undefined.

3.2: Services and their semantics.We now proceed to modeling “services”. These are
essentially existing software modules used to act on artifacts, and serve as the compo-
nents from which business models are assembled. We assume the existence of pairwise
disjoint countably infinite sets of variables for classes inC. A variable of typeC ∈ C
may hold an identifier inIDC .

Definition. The set of(typed) terms overa schemaΓ includes the following.
– Variables of a classC in Γ , and
– x.A, wherex is a term of some classC (in Γ) andA an attribute inC. (Note that
x.A has the same type asA.)

Roughly, a “service” is described by input variables, a precondition, and conditional
effect. This can be viewed as a variation on the spirit of OWL-S [4, 12], where services
have input, output, precondition, and conditional effects. In the case of OWL-S, the
precondition and effects may refer to the inputs and outputs, and also to some under-
lying “real world”. In our context, the artifacts correspond to the OWL-S “real world”,
and the conditional effects typically write new values intothe artifacts (or change their
state) – it is for this reason that we don’t explicitly specify the outputs of services. The
preconditions and conditional effects are defined using logical formula characterizing
properties of the artifacts before and after the service execution. In the present paper,
we focus on the static analysis of artifacts and their associated processing flow, and
thus do not model repositories explicitly. Reference [6] presents a model that models
and studies the artifact repositories in a much more refined manner.

We now define the notions of “atoms” and “conditions”, which are used to specify
the preconditions and conditional effects..

Definition. An atom overa schemaΓ is one of the following:
1. t1 = t2, wheret1, t2 are terms of classC in Γ ,
2. DEFINED(t, A), wheret is a term of classC andA an attribute inC,
3. NEW(t, A), wheret is a term of classC andA an artifact typed attribute inC, and
4. s(t) (a stateatom), wheret is a term of classC ands a state ofC.

A negated atomis of form “¬c” wherec is an atom. Acondition overΓ is a conjunction
of atoms and negated atoms. A condition isstatelessif it contains no state atoms.

Let I be an instance of a schemaΓ . An assignment (resp. forI) is a mapping from
variables to IDs (resp. occurring inI) such that a variable of classC is mapped to
an ID in IDC . Under a given instanceI and a given assignmentν for I, all variables

7

are assigned (identifiers of) artifacts, thetruth valueof a condition is defined naturally
(details omitted) with the following exceptions: (1)DEFINED(t, A) is true if the attribute
A of the artifactt has a value, and (2)NEW(t, A) is true if the attributeA of the artifact
t holds an identifier not inI. If ν is an assignment for an instanceI, we denote by
I |= ϕ[ν] if under the assignmentν, the artifacts inI satisfies a conditionϕ. Let V

denote the set of all assignments.
Following the spirit of OWL-S, we provide a mechanism to specify the “effect” of

executing a service. In our case, the effect will be described in terms of how it impacts
whether artifact attributes become defined or undefined, andwhether new artifacts are
created. We follow the spirit of OWL-S in allowing non-determinism in the model –
execution of a service might result in one of several possible effects – this corresponds
to the intuition that our model is fairly abstract, and does not encompass many relevant
details about the underlying artifacts.

LetV be a set of variables of classes in a schemaΓ . A (conditional) effectoverV is
a finite setE = {ψ1, . . . , ψq} of stateless conditions overV . In this context we call each
ψp a potential effectof E. Intuitively, if a services with conditional effectE is applied
to an instanceI, then the resulting instance will satisfyψp for somep ∈ [1..q]. We
also incorporate a condition based on the notion of circumscription [16] to capture the
intuition that “nothing is changed in the input instance except things required to satisfy
ψp”. (This contrasts with the approach taken by OWL-S, in whichthe effect portion of
a conditional effect is interpreted using the conventionallogic semantics rather than one
based on circumscription.)

We can now describe services and their semantics. We assume the existence of a
disjoint infinite setS of service names.

Definition. A serviceover a schemaΓ is tuple(n, Vr, Vw, P, E), wheren ∈ S is a
service name,Vr , Vw finite sets of variables of classes inΓ ,P a stateless condition over
V that does not containNEW, andE a conditional effect.

Intuitively,Vr, Vw are artifacts to be read, modified (resp.) by a service. (These may
overlap). Note, however, that ifv ∈ Vr, then terms such asv.A.B can be used, for
some artifact-valued attributeA, to read attribute values associated with artifacts lying
outside of the image ofVr under an assignmentν. The analogous observation holds for
Vw. It is possible to prevent this through syntactic restrictions.

SERVICE UPDATECREDIT

WRITE:{x:Order}
READ:{y:CreditReport}
PRE: ¬ DEFINED(x, creditCheckApproved)

and ¬ DEFINED(x, currentCredit)
EFFECTS:

- DEFINED(x, creditCheckApproved)
- DEFINED(x, creditCheckApproved) and
DEFINED(x, currentCredit)

SERVICE PLAN SCHEDULE

WRITE:{x:Order}
READ:{x:Order, s:Supplier, c:Site}
PRE: ¬ DEFINED(x.task)
EFFECTS:

- NEW(x, task) and
DEFINED(x.task, expectedStartDate) and
DEFINED(x.task, expectedEndDate) and
DEFINED(x.task, supplier) and
DEFINED(x.task, site) and
x.task.supplier = s and x.task.site = c

Fig. 4. Example Services

Example 3.3 Fig. 4 illustrates two services. Service UpdateCredit updates an order’s
credit information according to the credit report. In some cases, when the credit check is
approved, the credit amount is not known at the time of the update; in those cases, only

8

the credit check approved field is defined. This is modeled with two possible effects.
Service PlanSchedule creates a task for an order and defines attributes of the task such
as expectedStartDate and supplier.

Definition. Let σ = (n, Vr, Vw, P, E) be a service over a schemaΓ . The (circum-
scribed) semanticsof σ is a set[[σ]] ⊆ V × inst(Γ) × inst(Γ) such that for each
I ∈ inst(Γ) and assignmentν for I overVr ∪ Vw,

(1) There is at least oneJ with (ν, I, J) ∈ [[σ]] iff I |= P [ν] (i.e., I satisfies the pre-
conditionP under assignmentν), and

(2) if (ν, I, J) ∈ [[σ]] then there is some potential effectψ ∈ E for which there exist
setsKprev andKnew of artifacts over schemaΓ having disjoint sets of distinct
artifact IDs such that:
(a) K = Kprev ∪Knew is an instance ofΓ .
(b) The collections of artifacts inI and inKprev have the same set of identifiers.

(This implies thatν is an assignment forK.)
(c) For each artifact IDo occuring inI, the artifact class and state ofo in Kprev is

identical to the artifact class and state ofo in I.
(d) For each atom inψ of form NEW(t, A) there is a distinct artifact IDo in Knew,

such thatν(t.A) = o. Further, each artifact IDo in Knew corresponds to some
atom of formNEW(t, A) occurring inψ.

(e) For each artifacto ∈ IDC in Knew, o is in the start state forC.
(f) (“Satisfaction”)(K ∪ L) |= ψ[ν].
(g) (“Circumscription”) Suppose thato ∈ IDC occurs inK, and letA be an at-

tribute ofC. Suppose thato 6= t[ν] for any termt which occurs in an atom of
ψ that has any of the following forms:
(i) t.A = t′.B or t′.B = t.A for some attributeB;

(ii) DEFINED(t, A) occuring inψ;
(iii) NEW(t, A)
Then we have the following
(α) If o occurs inI, theno.A is defined inK iff o.A is defined inI.
(β) If o occurs inKnew, theno.A is undefined inK.

Intuitively, the setKprev in the above definition captures the way that existing arti-
facts inI are changed by potential effectψ, and the setKnew corresponds to new arti-
facts that are created byψ. The circumscription condition ensures that if(ν, I, J) ∈ [[σ]],
then an attribute value is changed inJ only if this is required in order to satisfyψ.

Concrete business services will assign specific values for attributes, or might inval-
idate an existing value, with the result of making it undefined again. In our abstract
model, we focus only on whether the service gives a defined value to an attribute, or
makes the attribute undefined again. It is useful to considerservices that are “mono-
tonic”, by which is meant that each attribute can be written at most once (and not re-
assigned nor moved back to the undefined condition). Artifact schemas with monotonic
services enjoy certain decidability and complexity properties. Further, in many real sit-
uations the underlying business artifacts are in fact monotonic, due to the need for
historical logging. (Typically, some attributes of the artifact schemas in those situations
are set- or list-valued, so that multiple “draft” values foran attribute can be assigned

9

before a final value is committed to. An analysis of the impactof including such value
types in the model is beyond the scope of the current paper.)

Definition. Let I andJ be instances of an artifact schemaΓ . ThenJ extendsI if for
each artifact IDo in I, o occurs inJ andJ(o) extendsI(o).

Definition. A serviceσ is monotonicif J extendsI for each(ν, I, J) ∈ [[σ]] .

For the technical development, it is useful to work with services which affect just
one attribute value.

Definition. The serviceσ = (n, Vr, Vw, P, E) is atomicif it is monotonic,Vw = {x} is
a singleton set, and for each(ν, I, J) ∈ [[σ]], I andJ differ only in the following ways:
(a) For at most one artifact IDo and one attributeA of o, I(o).A is undefined and

J(o).A is defined.
(b) If in (a) the type ofA is artifact classC, thenJ has one artifact ID thatI does not,

namlyJ(o).A.
(c) The set of artifact IDs inI is contained in the set of artifact IDs inJ .
The serviceσ is scalar atomicif the attribute changed is of a primitive type inTp.

3.3: Business rules. Based on an artifact schema and a set of available services,a
business model is then formulated by “business rules”, which define the business logic.
Roughly, business rules can specify what services are to be excuted on which artifacts
and when.

Technically, we assume some fixed enumeration of all variables. Ifσ is a service, we
will use the notationσ(x1, ..., xℓ; y1, ..., yk) to mean thatx1, ..., xℓ is an enumeration
of variables in the modify set andy1, ..., yk an enumeration of read only variables (i.e.,
in the read set but not the modify set).

Definition. Given a schemaΓ and a set of servicesS, abusiness ruleis an expression
with one of the following two forms:

– “ if ϕ invoke σ(x1, ..., xℓ; y1, ..., yk)”, or
– “ if ϕ change state toψ”.

whereϕ is a condition over variablesx1, ..., xℓ, y1, ..., yk (ℓ, k > 0), σ a service inS
such thatx1, ..., xℓ are all artifact variables to be modified andy1, ..., yk are all read only
variables ofσ, andψ a condition consisting of only positive state atoms overx1, ..., xℓ.

If PendingOrder(x) and DEFINED(x, creditCheckApproved)
invoke InitiateAccounting(x;)

If DEFINED(x.task.expectedStartDate) and
DEFINED(x.task.expectedEndDate) and
DEFINED(x, installApproved)

change state to LiveOrder(x) and PendingTask(x.task)

Fig. 5. Example Business Rules

Example 3.4 Fig. 5 illustrates two business rules. The first rule says if an order is in
PendingOrder state and the credit check is approved, then the service InitiateAccounting
is invoked. The second rule says if for an order, the expectedstart date and the expected
end date of the associated task are defined, and the installation is approved, then the
order moves to LiveOrder state, while the associated task moves to PendingTask state.

We now briefly describe the semantics of business rules. For two given instances
I, J of a schemaΓ , and a given assignmentν ∈ V, a business ruler, we sayI derives
J usingr andν, denoted asI

r,ν
→ J , if one of the following holds.

10

– I |= ϕ[ν] and(ν, I, J) ∈ [[σ]], if r is the rule “if ϕ invoke σ(x1, ..., xℓ; y1, ..., yk)”.
– I |= ϕ[ν] andJ is identical toI except that eachJ(ν(xi)) has the state according

to ψ, if r is the rule “if ϕ change state toψ”.

3.4: Artifact systems and their semantics.A business model is then captured as an
“artifact system”.

Definition. An artifact systemis a tripleW = (Γ,S,R) whereΓ is a schema,S is a
family of services overΓ , andR is a family of business rules with respect toΓ andS.

In the next section, we shall also include, as a fourth component, a setC of con-
straints; in these cases we shall indicate the class of constraints from whichC is drawn.

We now sketch the semantics of artifact systems, in particular, define the notion
focused path for an artifact, which will be the basis for muchof the technical investiga-
tion.

Definition. LetW = (Γ,S,R) be an artifact system andC a class inΓ . A path in W
is a finite sequenceπ = I0, I1, ..., In of instances ofΓ . The path isvalid if
(i) For eachj ∈ [1..n], Ij is the result of applying one business ruler of R to Ij−1,

i.e.,Ij−1

r,ν
→ Ii for some assignmentν ∈ V.

For an artifact IDo, the pathπ is o-relevantif
(ii) n > 1,
(iii) o does not occur inI0, and
(iv) o does occur inI1.
(Intuitively, this means that artifact IDo is created in the transition fromI0 to I1.) If
the path iso-relevant, then it iso-successfulif In(o) is in a final state. It iso-dead-
end if o is not in a final state forC and there is no sequenceIn+1, ..., Im such that
I0, I1, ..., In, In+1, ..., Im is a valid,o-successful path. Finally, a valid pathI0, I1, ..., In
is o-focusedif it is o-relevant and
(v) o does occur inIj for eachj ∈ [1..n]
(vi) for eachj ∈ [2..n], we haveIj(o) 6= Ij−1(o) (i.e., o has changed state or some

attribute value ofo has changed).
(vii) for eachj ∈ [2..n], and for eacho′ 6= o, we haveIj(o′) = Ij−1(o

′) (i.e.,o′ does
not change state and no attribute value ofo′ has changed).
We close this section by introducing a formalism that characterizes “redundant at-

tributes”. For an attributeA of a classC, let ρA(C) represent the class identical toC
but withoutA. For a schemaΓ , let ρC.A(Γ) be the schema(Γ − {C}) ∪ {ρA(C)}.
If S is a set of services, letSC.A be the set{σ | σ ∈ S andσ referencesA of C}.
Similarly, for a setR of business rules, letRC.A be the set{r | r ∈ R andr references
C.A, orr invokes a service inSC.A }. LetW = (Γ,S,R) be an artifact system. Define
ρC.A(W) as the artifact system(ρC.A(Γ),S−SC.A,R−RC.A). Intuitively,ρC.A(W)
is an artifact system similar toW but with attributeA of classC completely removed.
This removal operationρA.C is natually extended to instances, and to paths. For the
latter, if the result ofρA.C on a consecutive block of instances in the path yield identical
instances, then all but one of the indentical instances are removed in the resulting path.

Definition. For an identifiero of classC, we say an attributeA of a classC is redundant
on an [o-focused and]o-successful pathπ in W if ρC.A(π) is an [o-focused and]o-
successful path inρC.A(W). An attributeA of a classC is redundant inW [for C-
focused paths] ifA is redundant on every [o-focused and]o-successful path inW .

11

4 Technical Results

We believe that the artifact model can provide the backbone for the automated construc-
tion of workflow schemas, or more specifically the automated construction of artifact
schemas. The section studies some basic decision problems about schemas, and obtains
complexity characterizations for them. The problems studied are chosen based on our
interest in testing whether automatically generated schemas satisfy key reachability and
minimality properties.

Due to space limitations, we do not include the proofs of the technical results here.
We now provide formal counterparts to the intuitive decision problems introduced

in Section 2. Each of these is of fundamental importance whenconstructing artifact-
based workflows (either manually or automatically). Suppose thatW = (Γ,S,R) is
an artifact system (possibly with constraints), andC is an artifact class inΓ .

Q1: (Successful completion forC.) Is there anIDC o and a valid,o-successful path in
W?

Q2: (Dead-end path forC.) Is there aIDC o and a valid,o-dead-end path inW? Given
W with dead-end paths, is there a way to construct an artifact systemW ′ which
(a) is “equivalent” toW (according to a definition given below) and (b) has no
dead-end paths forC?

Q3: (Attribute redundancy forC). Is an attributeA of C redundant inW?
Intuitively, Q1 is focused on whether classC in W is “satisfiable”. The existance

of at least one successful completion forC is a minimum test on whetherW is well-
formed.

Q2 is based on a more refined notion of well-formed. Suppose thatW does have
a valid, dead-end,o-focused path. This suggests that an execution of the workflow can
reach a point in which the artifacto cannot be further extended to completion. In other
words, the workflow would need to perform a “roll-back” for this artifact. To avoid this
undesirable situation, it might be possible to construct a new artifact systemW ′ from
W which supports all of the same successful paths asW , but which has no dead-end
paths. (This might be acheived, for example, by adding constraints toW , which for any
successful, non-dead-end pathI0, ..., Ij , prevent moves into an instanceIj+1 for which
I0, ..., Ij , Ij+1 is valid but dead-end. See Theorem 4.5 below.)

Q3 can be used to assist in optimizing an artifact system. IfW has a redundant
attribute, then this attribute, all business rules and services referring to this attribute can
be removed fromW which reduces the complexity of the design specification.

We first note that all three questions are undecidable in the context of general artifact
systems.

Theorem 4.1 LetW = (Γ,S,R) be an artifact system. Then each ofQ1, Q2, andQ3
for classC is undecidable. WhenW does not contain predicateNEW, Q1, Q2, andQ3
are inPSPACE, and furthermore, they are complete inPSPACEfor o-focused paths.

We now look at some restricted forms of artifact systems for which the questions
are either tractible orNP-complete.

To obtain various decidability results, we focus herafter on artifact systems that are
monotonic. Also, to simplify the discussion, we assume thatall artifact systems under
consideration are atomic.

12

Our first result yields tractable decidability forQ1. For this result, we use a slight
variation on the conditions used elsewhere in the paper. Recall that an atom over schema
Γ may have the forms(t) wheret is an artifact term of some classC ands is a state of
C in Γ .

Definition. A previous-or-current-stateatom has the form[prev curr]s(t). Let ν be a
variable assignment andI0, I1, ..., In aν(t)-relevant path. Then[prev curr]s(t) is true
underν for In in the context ofI0, I1, ..., In if Ij(ν(t)) is in states for somej ∈ [1..n],
(i.e., if ν(t) is in states in In, or was in states in some preceding instance of the path).

Theorem 4.2 LetW = (Γ,S,R) be a monotonic artifact system. Assume that
(i) Each serviceS in S is deterministic, i.e., it has exactly one conditional effect,

whose antecedant is “true”.
(ii) The pre-condition for each service is positive (i.e., no negated atoms), has no atoms

of the forms(t) for a states, but may have atoms of the form[prev curr]s(t).
(iii) The antecedant of each rule inR is positive, has no atoms of the forms(t) for a

states, but may have atoms of the form[prev curr]s(t).

LetA be an attribute of a classC in Γ , ando a IDC . Then there are linear-time algorithms
to decide the following.
(a) For an attributeA of C, whether there is ano-focused,o-successful pathI0, . . . , In

in W such thatIn(o).A is defined.
(b) Whether there is ano-focused,o-successful pathI0, . . . , In in W .

Our next result shows that slight relaxation of most of the conditions in the above
theorem yieldsNP-completeness forQ1.

Theorem 4.3 LetW = (Γ,S,R) be a monotonic artifact system. In connection with
monotonic,o-successful paths (which have no artifact invention but which are not re-
quired to beo-focused), QuestionQ1 is NP-complete for the following cases. (Here
conditions (i) through (iii) refer to the conditions of Theorem 4.2
(a) Conditions (ii), (iii) are satisfied byW but condition (i) is not. Furthermore, each

service can be applied at most once to a given artifact.
(b) Conditions (i), (ii), (iii) are satisfied byW , except that negation is permitted in the

pre-conditions of services.
(c) Conditions (i), (ii), (iii) are satisfied byW , except that negation is permitted in the

antecedents of business rules.
(d) Instead of using previous-or-current-state atoms the rule pre-conditions and con-

ndional effect antecedants may use atoms of the forms(t). All other conditions of
Theorem 4.2 apply.

These are allNP-hard even in the case ofo-focused paths.

While the various decision problems just mentioned are allNP-complete in the worst
case, we expect that heuristics can be developed to decide these problems in commonly
arising cases.

In an artifact systemW = (Γ,S,R), the business rulesR provide the mechanism
for a workflow execution to “make forward progress”. In some cases it may also be
convenient to specify constraints on the execution, which can succinctly prevent certain
rules from executing. A simple form of constraint is now introduced.

13

Definition. LetΓ be an artifact schema andC an artifact class inΓ . Theundefined-att-
state-blockingconstraint for a setA = A1, . . . , An of attributes forC and states for C
is the expression¬DEFINEDA1 ∧ . . . ∧ ¬DEFINEDAn → blockchange state tos. A
short-hand for this isUNDEFINEDA→ blocks.

We extend the notion of artifact system to include such constraints.

Definition. An artifact system (with undefined-att-state-blocking constraints) is a 4-
tupleW = (Γ,S,R,C) where(Γ,S,R) is an artifact system as defined before andC

is a family of undefined-att-state-blocking constraints overΓ . Each pathπ = I0, ..., In
for W ′ = (Γ,S,R) is also a path forW . This path isvalid for W if it is valid for
W ′ and for eachj ∈ [1..n] and each constraintUNDEFINEDA → blocks in C, if the
transition fromIj to Ij+1 includes moving an artifacto into classs, thenIj(o).A is
defined for someA ∈ A.

As it turns out, a system with blocking constraints can be replaced by an “equiva-
lent” system without constraints. but there there may be an exponential blow-up in the
size of the system.

Definition. LetW = (Γ,S,R,C) andW ′ = (Γ ′,S′,R′,C ′) be two artifact systems.
ThenW andW ′ have thesame basisif Γ = Γ ′. In this case,W andW ′ arepath-wise
equivalentif the set ofW -valid paths is equivalent to the set ofW ′-valid paths.W and
W ′ arefunctionally equivalentover artifact classC if the set ofo-successful paths for
W is equal to the set ofo-successful paths forW ′. They arefunctionally equivalent
for C-focused pathsfor artifact classC if for eacho ∈ IDC , the set ofo-focused,o-
successful paths forW is equal to the set ofo-focused,o-successful paths forW ′

(Obviously, ifW andW ′ are path-wise equivalent, then they are functionally equiv-
alent for each classC.)

Theorem 4.4 LetW = (Γ,S,R,C) be a monotonic artifact system andC an artifact
class inΓ . Then it isΠP

2 -complete whether there is a dead-end path forC in W . This
remains true under the various restrictions described in the statement of Theorem 4.3.

We now provide a construction that can be used to eliminate dead-end paths.

Theorem 4.5 LetW = (Γ,S,R,C) be a monotonic artifact system andC an artifact
class inΓ , andC a class inΓ . Then there is an artifact systemW ′ = (Γ,S,R,C ∪
C

′), with C
′ a family of undefined-att-state-blocking constraints, which is functionally

equivalent forC-focused paths toW , and for eacho ∈ IDC , W ′ has noo-focused
dead-end paths. Further, the size ofW ′ is no greater than exponential in the size ofW .

A similar result can be obtained that starts with an artifactsystem with no con-
straints, and produces a functionally equivalent artifactsystem with no constraints and
no dead-end paths.

Turning toQ3, we show that this problem is decidable under the same restrictions.

Theorem 4.6 Let W = (Γ,S,R) be an artifact system. The problem of deciding
whether an attributeA of a classC ∈ Γ is redundant is coNP-complete for all cases (a,
b, c, d, e) of Theorem 4.3.

Finally, we briefly outline an extension of the positive results.

14

Definition. Let Γ be a schema andI, J two instances ofΓ . J link-extendsI, I 6L J ,
if for each classC, eachIDC o, and each attributeA of C whose type is artifact ID, (1)
there is an artifact inI with ID o implies that there an artifact inJ with ID o, and (2)
J(o).A = I(o).A.

Definition. LetW = (Γ,S,R) be an artifact system, andk > 0. A pathI0, I1, ..., In
is ak-fixed-link structureif (1) for eachj ∈ [0..k], Ij has at mostk artifacts for each
class, and (2) for eachj ∈ [1..n], Ij−1 6L Ij .

Paths for the Order artifact of Section 2 hav 4-fixed-link structure.

Theorem 4.7 For eachk, Theorems 4.2, 4.3, 4.5, and 4.6 hold fork-fixed-link structure
paths.

5 Related work

The concept of business artifacts is introduced in [15] and further studied in [3, 11, 6]. In
[3], the authors lay out the methodology in the context of Model Driven Business Trans-
formation and describes the positive feedback received in real-world engagements. [11]
presents nine patterns emerging in artifact-centric process models and develops a com-
putational model based on Petri Nets. [6] uses a different model and develops static
analysis techniques for artifact-centric model properties such as arrival, persistence,
and uniqueness.

Many tools and techniques proposed for the development of business process mod-
els using workflows (e.g., [9, 14, 10]). These approaches have followed a process-centric
approach focused on the control and coordination of tasks [5]. The importance of a data-
centric view of processes is also advocated in [2] and [8]. In[2], the authors encourage
an “object view” of scientific workflows where the data generated and used is the central
focus; while [8] investigates “attribute-centric” workflows where attributes and modules
have states. [13] proposes a mixed approach which can express both control and data
flow. Compared to these approaches, our work favors a data-centric view.

Another thread of related work is the new paradigm of workflowresearch which
concerns both control flows and data flows. The Product-driven case handling approach
[1] addresses many concerns of traditional workflows especially with respect to the
treatment of process context or data. Wang and Kumar [20] proposed document-driven
workflow systems where data dependencies, in addition to control flows, are introduced
into process design in order to make more efficient process design. In their framework,
business tasks are defined using input and output documents as well as other constraints,
like business rules and policies, imposed on the documents.In comparison, our artifact-
centric model re-organizes documents into structured business artifacts, which signifi-
cantly reduces complexity of modeling data-control flow interactions.

Process verification has been studied extensively in the workflow community, with
activity sequencing in Patri nets [19], in graphs [17], datadependencies [18]. (See [6]
for additional references.)

15

6 Conclusions

The artifact-based approach uses key business data, in the form of “artifacts”, as the
driving force in the design of business processes. It enables a separation of data man-
agement concerns from process flow concerns, and can supportrich flexibility in the
creation and evolution of business processes. In particular, the artifact-based approach
holds the promise of enabling automatic creation of new business processes from exist-
ing ones, or from initial specifications of the artifacts andbasic services for operating on
them. This paper lays the foundation for a formal study of theartifact-based approach
and its use as the basis for automated workflow creation.

The focus of this paper is on basic decision problems, related to reachability, avoid-
ing dead-ends, and redundancy. While providing key insights, extensions and refine-
ments of these results will be useful, that take into accountactual data values, and struc-
tural properties of the artifacts and their state diagrams.More broadly, we are interested
to develop tools and techniques for automatic constructionof business processes, in the
spirit of the Semantic Web Services community.

Acknowledgments: Work by Gerede, Hull, and Su is supported in part by NSF grantsIIS-
0415195 and CNS-0613998.

References

1. W.M.P. Aalst, M. Weske, and D. Grnbauer. Case handling: a new paradigm for business
process support.Data and Knowledge Engineering, 53:129–162, 2005.

2. A. Ailamaki, Y. Ioannidis, and M. Livny. Scientific workflow management by database
management. InProc. Int. Conf. on Statistical and Scientific Database Management, 1998.

3. K. Bhattacharya, R. Guttman, K. Lymann, F. F. Heath III, S.Kumaran, P. Nandi, F. Wu,
P. Athma, C. Freiberg, L. Johannsen, and A. Staudt. A model-driven approach to industrial-
izing discovery processes in pharmaceutical research.IBM Systems Journal, 44(1):145–162,
2005.

4. OWL Services Coalition. OWL-S: Semantic markup for web services, November 2003.
5. D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow management:

From process modeling to workflow automation infrastructure. Distributed and Parallel
Databases, 3(2):119–154, April 1995.

6. C. E. Gerede and K. Bhattacharya J. Su. Static analysis of business artifact-centric op-
erational models. InIEEE International Conference on Service-Oriented Computing and
Applications, 2007. to appear.

7. M. Hammer. Deep change: How operational innovation can transform your company.
Havard Business Review, pages 84–93, April 2004.

8. R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong, B. Kumar, and G. Zhou. Declarative workflows
that support easy modification and dynamic browsing. InProc. Int. Joint Conf. on Work
Activities Coordination and Collaboration, 1999.

9. M. Jackson and G. Twaddle.Business Process Implementation Building Workflow Systems.
Addison-Wesley, ACM Press Books, Boston, 1997.

10. F. Leymann and D. Roller. Business process management with flowmark. InProc. of COM-
PCON, 1994.

11. R. Liu, K. Bhattacharya, and F. Y. Wu. Modeling business contexture and behavior using
business artifacts. InCAiSE, volume 4495 ofLNCS, 2007.

16

12. S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services. InIEEE Intelligent Systems,
March/April 2001.

13. C. Medeiros, G. Vossen, and M. Weske. Wasa: a workflow-based architecture to support
scientific database applications. InProc. 6th DEXA Conference, 1995.

14. J. P. Morrison.Flow-Based Programming. Van Nostrand ReinHold, New York, 1994.
15. A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification.

IBM Systems Journal, 42(3):428–445, 2003.
16. R. Reiter. A logic for default reasoning.Artificial Intelligence, 13:81–132, 1980.
17. Wasim Sadiq and Maria E. Orlowska. Analyzing process models using graph reduction

techniques.Inf. Syst., 25(2):117–134, 2000.
18. S. X. Sun, J. F. Nunamaker J. L. Zhao, and O. R. L. Sheng. Formulating the data-flow

perspective for business process management.Information Systems Research, 17(4):374391,
2006.

19. W. M. P. van der Aalst. The application of Petri nets to workflow management.J. of Circuits,
Systems and Computers, 8(1), 1998.

20. J. Wang and A. Kumar. A framework for document-driven workflow systems. InBusiness
Process Management, pages 285–301, 2005.

17

