
RC24286 (W0706-065) June 15, 2007
Computer Science

IBM Research Report

Performance Problem Prediction in
Transaction Based e-Business Systems

Manoj K Agarwal, Gautam Kar, Ruchi Mahindru,
Anindya Neogi, Anca Sailer

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

1

Performance Problem Prediction in Transaction
Based e-Business Systems

Manoj K. Agarwal, Gautam Kar, Ruchi Mahindru, Anindya Neogi, and Anca Sailer

Abstract— Key areas in managing environments that imple-
ment e-commerce systems are problem prediction, root cause
analysis, and automated problem remediation. Anticipating SLO
violations by proactive (rather than reactive) problem deter-
mination is particularly important since it can significantly
lower the business impact of application performance problems.
The approach investigated here is based on two important
concepts: dependency graphs and dynamic runtime performance
characteristics of resources that comprise an I/T environment.
The authors show how one can calculate and use the extent to
which supporting resources for a transaction contribute to the
end-to-end SLOs for that transaction. An important aspect of
this process is the classification of user transactions based on the
profile of their resource usage, enabling one to set appropriate
thresholds for different classes. Combined with the complete or
semi-complete dependency information, our approch confines the
scope of potential root causes to a small set of components, thus
enabling efficient performance problem anticipation and quick
remediation.

Index Terms— SLA management, automatic threshold man-
agement, proactive problem determination, system dependencies.

I. INTRODUCTION

APPLICATION Service Level Objective (SLO) manage-
ment in an I/T infrastructure for on-line e-commerce is

a challenging task. At the user level, it involves guaranteeing
end-to-end response time and throughput for the different types
of transactions that comprise a users interaction with the e-
commerce system. In order to ensure such guarantees, the
management system needs to monitor the flow and response
time of transactions, identify the areas of bottleneck that might
limit throughput or introduce delays, and execute remedial
procedures that correct such problems.

Anticipating SLO violations by proactive (rather than only
reactive) problem determination could significantly lower the
impact of application performance problems. A survey on
Total Cost of Operation (TCO) for cluster-based services [1]
suggests that a third to half of TCO, which in turn is 5-10 times
the purchase price of the system hardware and software, is
spent in fixing problems or preparing for impending problems
in the system. Hence, the cost of problem determination
and remediation forms a substantial part of the operational
costs. Being able to perform timely and proactive problem
determination can contribute to a substantial reduction in
system administration costs.

Manoj K. Agarwal and Anindya Neogi are with IBM India Research Lab,
New Delhi. Gautam Kar, Ruchi Mahindru, and Anca Sailer are with IBM T.J.
Watson Research Center, New York. The corresponding author is Anca Sailer,
ancas@us.ibm.com.

This paper presents an architecture that enables proactive
application problem determination based on the general con-
cept of resource dependency relationships [2], [3]. The user
transactions are supported by these resources. Hereafter, a
transaction SLO is specified at the application level and is
called Transaction-SLO or T SLO. In a reactive approach, the
antecedent resources are examined to pinpoint the root cause
when T SLO violations occur. In our proactive approach, the
potential root causes of imminent problems are detected when
T SLO notifications of an imminent violation are received,
before the actual T SLO violation occurs. The main theme
of this paper deals with the design and implementation of a
management system for proactively determining performance
problems in an e-commerce service provider domain.

Fig. 1 depicts an e-commerce management system designed
on three tiers. The first tier consists of monitoring agents (M)
specific to server platforms such as HTTP servers, application
servers, and databases. In the second tier, the Management
Service performs dependency extraction, assigns weights to
the extracted dependencies, and stores them in a repository.
A standardized object-oriented management data repository
technology called Common Information Modeling (CIM) [4]
is used to store the dependency information. When a problem
such as transaction slowdown (depicted by step a in Fig. 1)
manifests itself at the user level, the problem may lie any-
where in the system: the HTTP server, the network, the web
application server, the backend database etc. In a traditional
management system, problem determination is related to the
state of components at the system level (e.g., CPU, memory)
and application related problems that are often difficult to
pinpoint.

Fig. 1. Monitoring Architecture for a Standard e-commerce system

Our research addresses this issue by combining application
dependency information with individual resource behavior
models, in the third tier of Fig. 1. The work reported here
complements our research reported in [5]. It is a major
extension of the way we use the resource operation models and

2

compute thresholds to perform proactive root cause analysis,
as detailed in Section 4. Additionally, it is described in Section
5 of the analysis of the dependency graph accuracy impact on
the quality of the problem determination.

A resource dependency graph is a valuable tool to isolate
root causes of detected problems, or analyze the impact of
issues on other resources. A pictorial representation of the
notion of transaction dependency is shown in Fig. 2. The
resources that comprise the system are grouped into various
service layers, e.g., access, application, database, etc. Depen-
dency relationships may exist between components located in
different systems, such as between a Web Application Server
(WAS) instance in one server and a database instance in
another server, as well as between components that belong to
the same logical system boundary, such as servlets and EJBs
within an individual WAS instance.

Fig. 2. Dependency Relationships in an e-commerce Application

In this paper, we assume that the dependency graph has
already been constructed and is available [2], [3]. The research
results reported here concentrate on the third tier of Fig. 1.
The first contribution of this paper is an algorithm that uses
monitored information to experimentally build performance
models. These models are used to categorize transactions into
classes, and then derive resource operational thresholds based
on the SLOs of the classes. The second contribution is an
algorithm that uses the dynamically derived operational thresh-
olds and the dependency information to anticipate performance
problems and perform proactive root cause analysis based on
the resources’ performance.

The rest of the paper is structured as follows: Section 2
provides a short survey of related work. In Section 3, we
present the details of performance behavior modeling for
resources and show how user transactions can be classified
based on the behavior of the resources that they depend on.
Section 4 describes our problem determination algorithms,
while the results of the experimental validation are in Section
5. We conclude the paper in Section 6 with current ideas for
future research work.

II. RELATED WORK

In a traditional management system, problem determination
(PD) is related to the state of resources at the system level
(e.g., CPU, memory, queue length). In application performance

analysis, the usual starting point for detecting performance
problems is the SLO. Response time has been considered
since the late seventies as an essential metric for quantifying
system productivity, and tools have been constantly developed
to accurately detect delays in various components of typical
distributed systems. In our scenario, we consider a response
time based SLO, while we characterize the system components
in terms of the time locally spent at each of them by requests
triggered by user transactions.

The solutions proposed in the literature with respect to
predictions at application level, mainly focus on performance
predictions from historical data [6], [7] or solving queuing
network models [8]–[10]. The goal of these approaches is
either to provision the system appropriately [6], or to limit
the traffic access [8] in order to satisfy the SLO for the
incoming traffic. These solutions do not consider unexpected
performance values that may occur due to failures in the
system that can jeopardize the capacity planning estimations
or the limits imposed on the arriving traffic.

Intensive work has been done in the network research
community to predict network failures. The proposed solutions
are based on TCP related data [11], [12] or MIB variables
[13], [14] which present highly non-stationary characteristics
making it difficult to accurately model the dynamics of the
system without large amounts of input information and pro-
cessing requirements [15]. In [13], the authors use the GLR
algorithm which is known to be computationally complex
[16], while [14] uses Bayesian networks which fails to capture
propagation of abnormal behavior through dependent network
entities. The proactive network failure determination solutions
represent a rich collection of predictive techniques tailored for
the network traffic conditions and network problems. Proactive
failure determination at application level needs to evaluate the
application performance and its related middleware specific
traffic conditions and failures, while using the network expe-
rience to avoid techniques that proved complex or inefficient.

Steinke [17] presents a survey of existing products and
monitoring techniques used in application performance man-
agement and PD with the ultimate goal of getting a grip on
performance at the business process level. The author remarks
that the standardized management software of the Distributed
Management Task Force [18] and the Open Group’s Appli-
cation Response Measurement working group [19] does not
apply to all applications that need to be monitored. Therefore,
legacy applications still require a different technology to be
monitored and managed. The most widely adopted solutions
that provide precise and reliable monitoring measurement and
do not require application modification are the agent-based
solutions. Our solution addresses the case of ARM enabled
systems as well as legacy systems, and relies on agents (ARM
or native agents) to collect monitoring data.

Steinder [20] reviews the existing approaches to fault local-
ization and also presents the challenges of managing modern e-
business environments. The most common approaches to fault
localization are AI techniques (e.g., rule-based, model-based,
neural networks, decision trees), model traversing techniques
(e.g., dependency-based), and fault propagation techniques
(e.g., codebook-based, Bayesian networks, causality graphs).

3

Our solution falls in the category of model traversing tech-
niques. Many of these techniques are event-based. Alarms re-
lying on static dependencies between system components [21],
[22] or on symptom-fault maps [23], [24] may be analyzed
to perform PD. Unfortunately, since systems implementing
Internet-based application and services change constantly, it is
very difficult to accurately maintain such system knowledge
and consequently use these PD techniques. In [22], the authors
achieve PD based on fault injection and dynamic depen-
dency information generated by Active Dependency Discovery
(ADD) [25]. ADD builds the system dependency graph by in-
dividually perturbing the system resources during a test phase,
while PD uses fault injection at run-time, which may not
be acceptable in most e-business environments. Kiciman [26]
has proposed a solution to overcome the limitation of static
dependencies by tracing the request as they travel through the
system. The authors perform data clustering analysis over a
large number of requests to determine the expected combina-
tions of components and most likely root causes. When a trace
does not fit the expected pattern, the misbehaving resource
is considered the root cause. Our technique uses dynamic
dependencies inferred from monitored data, without requiring
invasive changes to provide trace information. We use such
dependency information and resource behavior models to
troubleshoot SLO related problems.

III. RESOURCE OPERATION MODELING BASED ON
DEPENDENCY GRAPHS

In most management systems today, the SLO monitor,
which observes the transaction’s end-to-end response time and
notifies the management service when the specified thresholds
are violated, cannot identify resource bottlenecks. In this
section, we explain the key features of our management system
which models resources’ behavior, such that when an end-
to-end T SLO notification occurs, the current state of related
components may be compared with their dynamic threshold,
leading to a method for systematically identifying the root
cause of potential T SLO violations. We assume hereafter two
types of SLO monitor notifications:

1) T SLO violation notification used when the SLO mon-
itor observes a transaction end-to-end response time
exceeding the SLO-threshold, and

2) T SLO imminent violation notification used when the
SLO monitor observes a transaction end-to-end response
time approaching the SLO-threshold by less than a
percentage δSLO.

A. Input data

Our component performance indicator is a threshold, called
component SLO (c SLO) for each transaction type. c SLO
reflects the time spent by a transaction at a specific resource.
It is constructed based on three inputs: (i) resource response
time samples, (ii) components dependency graph, and (iii)
T SLO monitor notifications. (i) The response time samples
are obtained through the available monitoring infrastructure.
(ii) Our behavior modeling technique applies to ARM [19] en-
abled systems where the dependency information is explicitly

available, as well as to legacy systems, where the dependency
graph generation is done as we showed in Section 1, using
aggregate monitoring data. Fig. 3 illustrates such a depen-
dency graph generated over multiple transaction instances. (iii)
We use the T SLO monitor notifications to distinguish the
monitoring data generated under normal operating conditions
from the monitoring data altered by failure. Thus, the c SLOs
are computed in such a way so as to only reflect the normal
behavior of resources.

The monitors used for gathering response time samples for
operational behavior model construction and specific data for
dependency extraction are Web Server API, WAS Performance
Monitoring Infrastructure (PMI), and DB2 Snapshot API.

B. Modeling Metric

In a traditional management system, the thresholds con-
figured for each component are typically hard-coded limits
for the components expected response time. If the response
time is beyond the limit, the component sends an event to
a management server which tries to correlate this event with
others received around the same time, guided by expert rules,
in order to identify the root cause. This approach often requires
examining a large number of events from various components.
A drawback of this approach is that the response time of
components is a cumulative metric. Thus, components without
any problem may send threshold violation notifications as
they include in their response time, the response time of
defective child components. As an example, Fig. 3 shows the
dependency graph of two transactions T1 and T2. The response
time of resource S1 that serves transaction T1 includes the
response time of S1’s children Q1 and Q2, as illustrated in
Fig. 4. Hence, if Q1 experiences a service slow down, both
Q1 and S1’s response time values are affected and reported,
although only Q1 is failing.

Fig. 3. Dependency graph

Fig. 4. The cumulative nature of the response time parameter

Thus, the response time metric can be primarily used in
identifying entire faulty paths rather than individual faulty

4

components in a dependency tree (e.g., the path T1—>S1—
>Q1 instead of the component Q1). In many cases, this is not

the adequate level of granularity for root cause identification.
One key feature of our system is that it captures as the
model variable the local time spent by transactions at a
component, thus remaining independent of the response time
of the children. Hence, a bottleneck at Q1 does not affect
the behavior model of S1. The first step of our model-builder
logic is to compute the local time spent by transactions at
each component out of the cumulative response time data that
is typically monitored. The algorithm for this computation is
described in Section 3.C.

In the next step, the model-builder checks the current state
of transactions. A transaction that generates a monitor viola-
tion notification means that its response time has been above
the T SLO limit and it is a “failed transaction”. Otherwise,
it is a “successful” transaction. Our management system uses
the T SLO violation notification together with the dependency
graph to choose whether the computed local time is valid for
the c SLO computation. The rule states that if any (all) of the
parent transaction(s) of a component failed (succeeded) when
the local time is obtained, then the sample is (not) used for
c SLO threshold computation. In Fig. 3, for instance, S1 may
access only Q1, or only Q2, or both, Q1 and Q2. When a
local time value is obtained for Q2, the model-builder logic
checks the current state of T1 and T2. If both T1 and T2 are
successful, the threshold is updated with the new local time,
as detailed in Section 3.C. If T1 or T2 exceeds (or approaches
by less than a percentage δSLO) the T SLO, a notification is
received, and the problem determination logic is invoked.

The problem determination logic localizes the root causes
of the potential failure. If c SLO thresholds already exist for
the components involved in a notified transaction, each com-
ponent’s current local time is compared to the corresponding
c SLO threshold. If the local time exceeds (or approaches by
less than δSLO) the local threshold, the component is ranked as
described in Section 4 and the root cause resource is identified.

Fig. 5. Typical Transaction Behavior in E-business Applications

We have assumed up to this point that each component
has a c SLO threshold for each transaction in the system.
For large applications and complex distributed environments,
this may result in a large number of thresholds to manage. To

address this inconvenience, we group transactions with similar
behavior in a single class characterized by one threshold
for each resource type involved in those transactions, thus
reducing the total number of managed thresholds. Our tech-
nique allows comparing the behavior of different transactions
over large periods of run-time and under various loads and
requests conditions. Fig. 5 illustrates examples of behavior
types encountered in a typical e-business application, modeled
after TPC-W. They show the distribution of the component’s
local time contribution to the related transaction’s end-to-end
response time. We will refer to the results shown in Fig. 5
extensively in Section 5, where we experimentally investigate
the categorization of transactions into behavior based classes.

C. Component SLO Threshold Computation

The main idea of our technique is to combine system
dependencies with the components’ response time in order
to translate the end-to-end user-defined T SLO thresholds
into individual dynamic c SLOs. We first compute the time
locally spent (TLocal) by specific transactions at each system
component, for a stable load in the system. As expected,
TLocal increases as the load increases, because the waiting
time in the system increases. However, the TLocal fraction
of the end-to-end transaction response time is independent
of the load if the system components operate on the linear
part of their response time curve [27], [28]. The servers
involved in our scenario satisfy this assumption. The key
observation in this approach is that the TLocal fraction of the
end-to-end transaction response time reflects the individual
c SLO threshold fraction of the T SLO.

Algorithm:
Let us consider the Web Server response time as RTWEB .

This response time at the Web Server includes the time
(TLocal WEB) spent by the request on the Web Server itself,
as well as the response time (RTWAS) of the next component
involved in serving the transaction (in our case the Web Appli-
cation Server). In a three level architecture with synchronous
processes, as the one considered in our scenario, this is:

RTWEB = TLocal WEB + RTWAS

RTWAS = TLocal WAS + RTDB2

In general, the response time of component i:

RTi = TLocal i + RTnext resource

HTTP request
START

HTTP request
END

Servelt START Servelt END

SQL START SQL END

RTDB2

RTWAS

RTHTTPS

t1a t2a t3a + t3b t2b t1b time

Fig. 6. Transaction response time decomposition in a three level e-business
architecture

5

TLocal is the time taken for handling a request before the
synchronous invocation of the next resource in the system,
plus the time taken for handling and sending the response
from that resource to the expected caller. In case of the Web
Server, TLocal WEB is illustrated in Fig. 6 by t1a, the time
before the Web Server invokes the corresponding servlet, and
by t1b, the time for handling and sending the servlet response
to the user. In general:

TLocal i = tia + tib

TLocal is computed as the difference between the response
times of successively invoked resources, for a known period
of time and known load in the system. Let us consider
transaction T1 from the dependency graph in Fig. 3, where
servlet S1 invokes the collection S SQL = {Q1, Q2}. Hence,
S1’s local time is the difference between S1’s response time,
RTS1(N), and the response time of S1 SQL triggered by S1,
RTS1 SQL(N):

TLocal S1(N) = tSa + tSb = RTS1(N)−RTS1 SQL(N),

where N signifies the load in the system as measured by the
number of customers issuing HTTP requests.

If there is only one SQL invoked by a servlet S in a trans-
action T, RTSQL is computed as the average response time
of that SQL. Otherwise, if the dependency graph shows that
the servlet may trigger multiple SQLs (SQL1, . . . , SQLM),
RTSQL is computed as the average of the response times
of these SQLs, weighted by their cumulative frequency of
invocation during the period of time up to the current sample:

RTS SQL(N) =
M∑

k=1

#SQLk

#S
×RTSQL(N),

where #S is the number of occurrences of servlet S and
#SQLk is the number of occurrences of SQLk invoked by
servlet S.

Hence, for a generic transaction T where resourcei may
invoke resource1, . . . , resourceK ,. . . , resourceM , the local time
spent at resourcei is computed as follows:

TLocali(N) = RTi(N)−
M∑

k=1

#k

#i
×RTk(N) (1)

Here we have assumed that the behavior of a component
remains unchanged irrespective of whoever calls it in the
same transaction context, and if all other parameters are the
same. In future, our modeling logic can be easily extended to
detect high variances in our component behavior models and
automatically split into multiple sub-behavior models so that
individual models do not have high variance.

Based on TLocal time obtained as described in Equation (1)
the TLocal fraction of the end-to-end transaction T response
time is computed as follows:

Pi = TLocali(N)/RTT end−to−end(N) (2)

For successful transactions T, we store for each component
the Pi values, which represent the history of the components
behavior under transaction T. The comparison of transactions

mentioned in the previous section is based on these Pi values.
Changes in the environment may be reflected in these values.

The c SLO for transaction T is computed based on the
average Pi value:

c SLOi = T SLO × avg(Pi) (3)

where T SLO is the transaction threshold (or other type of
response time SLO limits, e.g., an interval).

As soon as a predetermined number of end-to-end T SLO
notifications have been received, the problem determination
logic is invoked. At that moment, (i) the components invoked
in the notified transaction(s) are identified based on the depen-
dency graph, (ii) their TLocal is averaged over the period of
time since the notifications have been received, and (iii) the
average local time is compared to the correspondent c SLO
threshold. Finally, (iv) the affected components are ranked by
severity degree as shown in the next section.

IV. PROBLEM DETERMINATION

A. Severity Computation

The key component in the problem determination logic is
the severity computation for each component. In our reactive
PD approach, the severity value is defined as the measure of
the component local time threshold violation during the current
problematic period with respect to the c SLO computed over
the long term. The following steps are followed for severity
computation.

1. for each component do
2. begin
3. Severity = 0
4. if n TLocal > c SLO //n=number of samples
5. begin
6. compute average bad TLocal

7. severity = avg(TLocal)/c SLO
8. end
9. end

Fig. 7. Problem determination using severity values

Once the severity is computed, the components in each tier
of the system are ranked by their severity value, as shown in
Fig. 7. Due to our TLocal model parameter, the severity value
of a parent is independent of problematic children and only the
root-cause nodes are highlighted for the user in the resource
dependency graph (Q2 in Fig. 7).

6

B. Problem Prediction
In this section, we describe our proactive techniques de-

veloped on the reactive problem determination algorithm,
discussed so far. The techniques are used to derive relative
ordering among the system components that indicates the most
likely cause of an imminent problem.

The simplest technique to achieve proactiveness is to sub-
divide the end-to-end T SLO and the internal c SLO into
multiple thresholds so that one can detect finer level changes
or trends. The following steps are followed for severity com-
putation, where n is number of samples.

1. for each component do
2. begin
3. Severity = 0
4. if n TLocal > c SLO - δSLO× c SLO
5. begin
6. compute average bad TLocal

7. severity = avg(TLocal)/c SLO
8. end
9. end

When the T SLO monitor detects the end-to-end response
time being close to the corresponding T SLO beyond the
safe limit of δSLO× T SLO, issues an imminent violation
notification. As a result, each component related to the re-
spective transaction starts comparing its TLocal to the proactive
threshold, which is c SLO - δSLO× c SLO. Here δSLO values
may vary depending on whether intermediate prediction levels
are required. Similar to the reactive PD approach, if TLocal

exceeds the local threshold for a sufficient number n of
samples, an average is computed from the TLocal obtained
under problematic transaction(s) and subsequently used for
computing the severity. Finally, the components in each system
tier are ranked by their severity value and the top of the list
predicts the most probable resources to imminently experience
performance problems.

Note that in the proactive as well as in the reactive
techniques, the c SLO and T SLO thresholds are computed
as the means of their distributions. Higher moments of the
distribution may also be considered for ranking components.
In this case, we compute the severity value of a component
as the normalized variance of the c SLO distribution. The
normalization is done by considering the percentage variance
w.r.t. the mean of the distribution. A higher variance w.r.t.
the mean is going to position a component higher in the
suspect list. The ordered list may be computed continuously.
Depending on the alert system implementation, the ordering
based on higher moments may also be created when the end-
to-end T SLO threshold shows significant change. Thus, the
end-to-end alerts are based on multiple split thresholds while
internally normalized c SLO variance is used for ordering
suspect components on end-to-end notifications.

A second proactive technique uses the drift of the c SLO
for ordering components. In this case, the good model of a
component is updated with response time samples that are
less than T SLO. However, the most recent k samples (called
topK samples) are excluded from the computation of the good
model, as they are used to compute a separate short-term good

behavior model. The remaining of the samples are used to
create a longer term good behavior model. The short-term
and the long-term models are compared to detect drifts and
create an ordering among components. The component with
the highest drift is positioned on top of the suspect list. Our
model is based on the mean of the set of samples considered.
The drift is measured as the distance between the two means.
The ordering may be continuously maintained or may be
created when a proactive notification is received. Assuming
that multiple thresholds are implemented, a notification is
issued when an end-to-end response time crosses to a higher
intermediate T SLO threshold.

In case proactive T SLO notification is not present, an
internal proactive notification is generated when the short-term
mean does not lie within m times the standard deviation of
the long term mean. The two parameters mentioned above, m
and k, are to be tuned. If we have high value of k, the mean
of topK model would be closer to its real value, however
we shall be more reactive when a problem manifests itself in
the system due to the large window size. On the other hand,
if k is too small, we may detect false positives. Similarly,
if m is too small we may generate false positives, while
if it is too large we may be more reactive. This reasoning
implies that m and k are inversely proportional. When a
problem occurs in a component and its behavior deteriorates
considerably from its normal behavior, i.e., the response times
values from that component shooting up considerably from
the normal responses expected from that component, then we
should use a relatively higher value of m and smaller value of
k. These settings also ensure a quick reaction time in case a
problem occurs in the system. One of the down sides of this
approach is that some times we may raise an alarm, whenever,
there is spiky behavior in the system. This may be due to
any number of reasons, for example, a spike in the workload
arrival pattern may generate a spike at component level or a
resource consuming process suddenly gets started at one of
the servers which generate a spike at the component level at
that the server. Nevertheless, these events like change in arrival
rate or resource unavailability at a node are high level events
and can be easily correlated with performance metrics.

The above mentioned techniques consider the load on the
system to be fixed and are used to detect a failing component
at constant arrival rate. Variations in the component behavior
(e.g., response time increase) are systematically attributed to
an abnormal operation of the component. However, in case of
variable load in the system the component behavior variation
can also be attributed to the changes in the arrival pattern
or load. In order to provide proactive problem determination
assistance under variable load, a complementary technique is
discussed next. The core of our third proative technique is to
build a model of the normal end-to-end response time (RT) as
a function of the system load (λ) during an interval I chosen
by the system administrator, based on trial runs, experience,
etc, such as all the user transactions are exercised in the system
a sufficient number of times to provide relevant statistics. The
steps for building the RT function are described below. We
assume the managed system is well provisioned to serve the
maximum load allowed in the system is less than T SLO. We

7

also assume that the customer load is throttled to keep the
input load in the zone of the linear part of the corresponding
response time curve [27], [28].

1) During I if RT < T SLO read the transaction response
time RT and correspondent system load λ.

2) Compute Pearson’s correlation r between the load λ and
the response time RT for each transaction type.

3) Compute the slope b and the 0y intercept A for the linear
regression of λ and RT .

4) The estimated RTi of transaction type i is computed as:

RTi = bλ + A

Once trained, the prediction algorithm is enabled to proac-
tively detect end-to-end application performance anomalies by
comparing the system observed performance under variable
load to the expected end-to-end performance computed by our
algorithms, and trigger alarms:

1) If the monitored response time is smaller than the T SLO
and has a squared difference bigger than the maximum
squared difference of the training data, the SLO monitor
sends an early notification for failure prediction.

2) If the monitored response time is bigger than T SLO,
the SLO monitor sends an SLO violation notification
for failure detection.

Upon reception of notification, the previously discussed tech-
niques are applied to order the components. The resources on
the top of the list are potential causes of the predicted failure.

V. QUALITY OF PD USING INEXACT DEPENDENCY
GRAPHS

We have described in the Section 3.C how the TLocal and
c SLO thresholds calculation relies on the resource depen-
dency information. In case of ARM enabled systems, the
dependency is accurately known from the monitored transac-
tion traces. Therefore, the calculation of TLocal and c SLO
thresholds is exact. In case of legacy systems (not ARM
instrumented) the dependency knowledge can be inferred
using statistical approaches [2], [3]. Thus, false or missing
dependencies may lead to an inexact dependency graph. In
this section we analyze the impact of such flaws in the graph
on the PD logic.

Equation (1) (Section 3.C) calculates the TLocal of a com-
ponent i that may invoke resources 1, ..., M , for a load N :

TLocal i calc(N) = RTi mon(N)−
M∑

k=1

#k

#i
×RTk mon(N)

We use the notations “mon” and “calc” to differentiate
actual from calculated metrics. The contributors to the sum in
the Equation above are the resources invoked by component i,
as they are provided by the dependency graph. Let us suppose
that among the M resources in the dependency graph that
component i may invoke, there are false dependencies. Then:

TLocal i calc(N) = TLocal i mon(N)− Error (4)

If the Error triggered by the false dependencies is so
high that TLocal calc has a negative value, then this is a

straightforward indication of false dependencies highly ranked
in the dependency graph and a need to refine the graph. No
c SLO is to be computed as valid in this case.

If TLocal calc has positive values for all resources involved
in a transaction, we compare their sum with the actual end-
to-end transaction average response time. Although the sum
will be smaller than the actual end-to-end transaction average
response time (Error is a positive value), we analyze the
difference. If the difference is higher than a preset threshold
δ, the dependency graph and the c SLO values should be
recomputed. If the difference is smaller than δ, we accept as
valid the c SLO calculated from those TLocal calc.

In the case of missing dependencies, TLocal calc is positive
but higher than the correct values for the respective parent
resources. The sum of all TLocal calc involved in a transaction
will be higher than the actual end-to-end transaction average
response time. Again, we accept as valid the c SLO calculated
in Equation (4) only if that difference is smaller than δ.

Note that experiments performed in [2], [3] show that
dependency graphs, as used in this paper, are obtained with
a precision and accuracy (as defined in [2], [3]) that lead to
very low, and hence acceptable, δ values.

VI. EXPERIMENTAL EVALUATION

This section outlines configuration and performance con-
siderations of our application performance behavior modeling
and PD technique on the testbed shown in Fig. 8.

A. Experimental Environment

The TPC-W bookstore application is a benchmark suite that
models the behavior of online web merchant sites [29]. The
workload generation is performed using the Remote Browser
Emulation package [29]. The number of simultaneous cus-
tomers specifies the simulated load in an experiment run. The
think-time of requests is a uniform distribution with 7 seconds
average for all experiments. TPC-W has 14 transactions and its
resources are 14 servlets, 46 SQLs, 10 tables, and a database
of 10,000 books.

We instrumented the TPC-W bookstore application source
in order to get accurate transaction, servlet, and SQL instance
level monitoring data. The Online Mining Engine (OME) in
Fig. 8 extracts statistical dependencies between these resources
based on existent averaged monitored data. We utilized the
Performance Monitoring Infrastructure (PMI) [30] provided
by WAS and the Snapshot interface provided by DB2 [31]
to sample the aggregate monitoring data. OME stores the
statistical dependencies in the CIM repository where they are
available for the PD application.

A T SLO monitor intercepts the HTTP requests and re-
sponses at the workload generator level and classifies the
transactions as “successful” or “failed” after comparison of
their response time to the T SLO thresholds. We have set
the T SLO thresholds at 8 seconds for all 14 transactions as
research [32] has indicated that most people will give up on a
site if it takes more than 8 seconds to download a page and,
therefore, this is the maximum acceptable time for a request
to complete in a real customer environment.

8

Fig. 8. Experimental set-up. WAS and DB2 are on 2GHz Pentiums with
1028 MB RAM

B. Generation of Behavior Classes

In the first part of our experiments, we collected TLocal for
all the components of the 14 TPC-W transactions. The TLocal

fraction of the end-to-end response time represents the Pi

value computed as shown in Section 3.C. Fig. 5 illustrates 4 of
the 14 distributions of the Pi values obtained for a load of 100
simultaneous customers using the instrumentation. We com-
pared the distribution of the Pi among the 14 transactions and
grouped similar ones in 6 classes as illustrated in Fig. 9. For
example, six of the TPC-W transactions (Admin Request, Cus-
tomer Registration, Home, New Products, Product Detail, and
Search Request) have the behavior illustrated in the histogram
Class A of Fig. 5. Other three transactions (Buy Request,
Execute Search, and Shopping Cart) have their Pi distributed
as in the histogram Class B of Fig. 5. The lower-left his-
togram (Class C) characterizes another two transactions (Ad-
min Response and Order Display). The lower-right histogram
(Class D) corresponds to the Best Sellers transaction. Finally,
the two remaining transactions have their particular behavior
that does not match the above four classes (Buy Confirm in
Class E and Order Inquiry in Class F).

We repeated the transaction behavior comparison exper-
iment with varying load in the system. The number of
customers is increased till a significant percentage of URL
requests time out due to high load. The WAS machine can
support up to 150 customers on TPC-W in order for the
system to operate on the linear part of its response time curve.
We investigated the character of transaction classification, i.e.,
whether it is an application invariant or it is related to the load.

Fig. 9. Servers Quota of the End-to-End Response Time using accurate
dependency and instrumented based data

Fig. 9 illustrates the results of this analysis. The TLocal

distribution between the servers varies slightly with the load
variation for a given class while the character of the class
behavior is preserved. In order to test the impact of different
traffic patterns, we ran additional experiments by varying
the transaction mix for each load level. The results, not
shown here, revealed the same behavior classification. Based
on these observations, the model-builder logic computes the
c SLO thresholds for 6 classes of transactions instead of
14 transactions. However, if a major change takes place in
the application (e.g., transaction addition/deletion) or in the
computational environment, the behavior classification should
be redone in order for the PD process to reflect the new
context.

In the above experiments, precise dependency information
was obtained through instrumentation. If instrumented code is
not available, a statistical graph (with some false dependen-
cies) may be obtained through the online mining techniques
presented in [2], [3]. We took a TPC-W bookstore graph
with 82% precision extracted at a load of 100 simultaneous
customers. The inexactness reflected in the 82% precision
(compared to the 100% precision of the true graph) corre-
sponds to false servlet to SQL dependencies, in addition to
the true ones.

We repeated the experiment using the statistical graph and
aggregate monitoring data obtained from WAS and DB2 mon-
itoring interfaces. As expected, the sum of the components’
averaged Pi was slightly different from 100% due to the
use of statistical data. Additionally, the DB2 average Pi is
higher than in reality, while the servlet Pi is lower than in
reality for the transactions altered by false dependencies (see
Equation(2) in Section 3.C). The resource behavior inferred
using statistical dependencies is very close to the accurate
behavior model. In addition, the transaction categories yield
the same composition. These results are not illustrated here
due to lack of space.

However, dependency inexactness reflects on the inexact-
ness of resource behavior models. Thus the quality of behavior
modeling is limited by the quality of the dependency graph
used. Our experimental results described in the next section
investigate the impact of such inexactness and show that
graphs with limited errors (such as 82% precision) can be
successfully used for problem determination most of the time.

C. Problem Determination
In the second part of the experiments, we investigated the

efficiency of our PD technique as well as the effect of the
quality of the dependency graph on the PD results. A fault
injector program inserts problems into the system by regularly
locking chosen servlets on WAS, or tables on DB2, or both
simultaneously. Thus, all transactions involving that particular
servlet or table slow down, their response time increases over
the T SLO threshold, and the T SLO monitor notifies their
T SLO violation. The injected problems are logged into a file
as the ground truth and the file is used for evaluating the
efficiency of our PD technique.

We evaluated the results of our experiments using two
performance measures: accuracy and precision. Accuracy

9

is defined as the percentage of the true faults discovered,
averaged over multiple problem injections. Precision is a per-
formance measure in ranking the possible faulty components
during PD, when a T SLO violation is being investigated.
We rank the possible faulty components in descending order
of their severity value. Recall that the severity value of a
component is the difference between its measured performance
and the c SLO. In the sorted list of problems numbered
(starting from the highest severity value) from 1 to n, let
m(≤ n) be the last true faulty components in the list. We
assigned a penalty of m − i to the false problem labeled i,
where 1 ≤ i ≤ m− 1. The maximum possible penalty, when
there are only false problems before the last true problem, is
therefore wtot = m(m − 1)/2. Thus the total penalty due to
false problems is the sum as follows:

wf =
∑

i<m, i is a false problem

m− i

We used the percentage precision defined as 100(1− wf

wtot
).

Intuitively, this definition penalizes a false problem more if
it occurs higher in the list. The closer the PD is to 100%
accuracy and precision, the higher is its efficiency.

We ran experiments with load values of 50, 100, 150
customers and three different transaction mixes over the dura-
tion of one hour each. During each experiment we randomly
injected (1) only servlet problems, (2) only table problems,
then (3) both servlet and table problems mixed. Each problem
occurs 5 to 10 times and the average accuracy and precision
are computed over the injected problems separately for each
case (1), (2) and (3). We investigated the efficiency of our
PD technique in the case of instrumented code, as well as the
effect of false dependencies in our 82% precision dependency
graph on the detection of servlet, table, and mixed problems.
For the 82% precision dependency graph, the critical factor
that impacts the PD performance is the low WAS Pi and high
DB2 Pi values of the transactions altered by false servlet to
SQL dependencies (see Equation (2) in Section 3.C). These
values lead to low WAS and high DB2 thresholds and, thus,
to false servlet problems that are ranked at comparable level
with true table problems in the list of suspected root cause.

Fig. 10. Precision of the PD algorithm using exact dependency graph and
instrumentation based monitoring data

We start by evaluating the accuracy of our technique. The
results (not illustrated here) show that the accuracy is 100%
in all situations. This means that we always find the injected
problem in the ordered output list of suspected root causes.
Fig. 10 and Fig. 11 show the variation of precision values
with increasing customer load. As expected, the precision of
our PD technique is higher when the code is instrumented
compared to when we use aggregate monitoring data and a
statistical graph. The root causes are almost always on the top
of the suspected problem list when the dependency graph is
exact (see the almost 100% precision in Fig. 10).

Fig. 11. Precision of the PD algorithm using statistical dependency graph
and aggregate monitoring data

In case of statistical dependency, the root cause list may
contain, as expected, few false problems highly ranked while
detecting faulty tables among the real problems that are always
identified and highly ranked (see the curves with diamonds and
triangles in Fig. 11).

Note that the statistical dependency graph of 82% precision
is extracted at a load of 100 simultaneous customers, which is
a high load for our laboratory environment. In [2], the authors
recommend the dependency extraction at low loads for highly
precise dependency graphs. By using very precise dependency
graph, our PD technique performs close to the results of Fig.
10, which were obtained using the instrumented code.

VII. CONCLUSIONS

In this paper, we have presented our research in the area of
proactive problem determination in transaction oriented, multi-
tier e-commerce systems, consisting of HTTP, applications,
and database servers. The originality of our approach, as
compared to others reported in the literature, is that we use a
combination of resource dependency information and resource
operational models to facilitate the rapid isolation of causes
when application performance degrades. The PD system we
have built uses a two-phased approach. In the first phase, user
transactions are launched with varying rates to compute their
dependencies on the resources that support them. In addition,
important metrics related to the resources are monitored and
analyzed to obtain a profile of their behavior. In the second
phase, the user transactions are grouped into categories, based
on the run-time profiles of their dependent resources, and
appropriate thresholds are set.

10

Our validation experiments performed in the laboratory,
in reasonable realistic setups, have shown that this approach
yields a promising level of efficiency in root cause analysis.
As future work, we plan to validate our results and refine our
algorithms using different types of transactions, such as those
that use messaging middleware.

REFERENCES

[1] A. Gillen, D. Kusnetzky, and S. McLaron, “The role of linux in reducing
cost of enterprise computing,” IDC white paper, 2002.

[2] M. Gupta, A. Neogi, M. Agarwal, and G. Kar, “Discovering dynamic
dependencies in enterprise environments for problem determination,” in
Proc. of IEEE International Workshop on Distributed Systems Opera-
tions and Management DSOM’03, Heidelberg, Germany, 2003, pp. 221–
2003.

[3] M. K. Agarwal, M. Gupta, G. Kar, A. Neogi, and A. Sailer, “Mining
activity data for dynamic dependency discovery in e-business systems,”
eTransactions on Network Service Management eTNSM Journal, vol. 1,
no. 2, 2004.

[4] (2006) Cim: Common information model. [online]. available:. [Online].
Available: http://www.dmtf.org/standards/standard cim.php

[5] K. Appleby, J. Faik, G. Kar, A. Sailer, M. Agarwal, and A. Neogi,
“Threshold management in transaction based e-commerce systems,” in
Proc. of the Ninth IFIP/IEEE International Symposium on Integrated
Network Management IM’05, France, 2005.

[6] J. Aman, C. Eilert, D. Emmes, P. Yocom, and D. Dillenberger, “Adaptive
algorithms for managing a distributed data processing workload,” IBM
Systems Journal, vol. 36, no. 2, pp. 242–283, February 1997.

[7] M. Goldszmidt, D. Palma, and B. Sabata, “On the quantification of e-
business capacity,” in On the Quantification of e-Electronic Commerce
EC’01, Florida, USA, 2001, pp. 235–244.

[8] Y. Diao, J. Hellerstein, and S. Parekh, “Stochastic modeling of lotus
notes with a queueing model,” in Computer Measurement Group Inter-
national Conference CMG’01, California, USA, 2001.

[9] Z. Liu, M. Squillante, and J. Wolf, “On maximizing service-level-
agreement profits,” in ACM Conference on Electronic Commerce EC’01,
Florida, USA, 2001.

[10] D. Menasce, “Two-level iterative queuing modeling of software con-
tention,” in 10th IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunications Systems MAS-
COTS’02, Texas, USA, 2002.

[11] W. Cleveland, D. Lin, and D. Sun, “Ip packet generation: Statistical
models for tcp start times based on connection rate superposition,” in
Proc. of ACM SIGMETRICS’02, Santa Clara, California, USA, 2000,
pp. 166–177.

[12] H. Wang, D. Zhang, and K. Shin, “Detecting syn flooding attacks,” in
Proc. of IEEE INFOCOM, New York, USA, 2002.

[13] M. Thottan and C. Ji, “Anomaly detection in ip networks,” in IEEE
Transactions on Signal Processing, 2003, vol. 51, pp. 11–14.

[14] C. Hood and C. Ji, “Proactive network fault detection,” in Proc. of IEEE
INFOCOM, Japan, 1997.

[15] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar
nature of ethernet traffic,” in IEEE/ACM Transactions Networking, 1994,
vol. 2.

[16] M. Basseville and I. Nikiforov, Detection of Abrupt Changes: Theory
and Application. Englewood Cliffs: Prentice-Hall, 1993.

[17] S. Steinke, “Tools for managing application performance,” Network
Magazine, June 2003.

[18] (2006) Dmtf: Distributed management task force. [online]. available:.
[Online]. Available: www.dmtf.org

[19] (2006) Arm: Application response measurement. [online]. available:.
[Online]. Available: www.opengroup.org/management/arm.htm

[20] M. Steinder and A. S. Sethi, “The present and future of event correlation:
A need for end-to-end service fault localization,” in Proc. of Fifth World
Multiconference on Systemics, Cybernetics, and Informatics MCSI’01,
Orlando, FL, 2001, pp. 124–129.

[21] J. Gao, G. Kar, and P. Kermani, “Approaches to building self healing
systems using dependency analysis,” in Proc. of IEEE/IFIP Network
Operations and Management Symposium NOMS’04, Seoul, Korea, 2004,
pp. 119–131.

[22] A. Brown, G. Kar, and A. Keller, “An active approach to characterizing
dynamic dependencies for problem determination in a distributed envi-
ronment,” in Proc. of IEEE/IFIP International Symposium on Integrated
Network Management IM’01, Seattle, WA, 2001, pp. 377–390.

[23] U. Blumenthal, G. Kar, , and A. Keller, “Classification and computation
of dependencies for distributed management,” in Proc. of IEEE Sympo-
sium on Computers and Communications ISCC’00, Antibes Juan Les
Pins, France, 2000, pp. 78–83.

[24] M. Steinder and A. Sethi, “Probabilistic event-driven fault diagno-
sis through incremental hypothesis updating,” in Proc. of IEEE/IFIP
International Symposium on Integrated Network Management IM’03,
Colorado Springs, CO, 2003, pp. 635–648.

[25] S. Bagchi, G. Kar, and J. L. Hellerstein, “Dependency analysis in
distributed systems using fault injection: Application to problem de-
termination in an e-commerce environment,” in Proc. of the 12th
IEEE/IFIP International Symposium on Distributed Systems: Operations
and Management DSOM’01, Nancy, France, 2001.

[26] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Pd in large, dynamic internet services,” in Proc. of the International
Conference on Dependable Systems and Networks, Washington DC,
2002, pp. 595–604.

[27] L. Slothouber, “A model of web server performance,” in Proc. of the
5th Conference World Wide Web WWW’96, Paris, France, 1996.

[28] J. Steffan. (2001) Performance monitoring for db2 udb. [online].
available:. [Online]. Available: www.quest.com

[29] Tpcw wisconsin website. [online]. available:. [Online]. Available:
http://www.ece.wisc.edu/∼pharm/tpcw.shtml

[30] S. Rangaswamy, R. Willenborg, and W. Qiao, “Writing a performance
monitoring tool using websphere application servers performance mon-
itoring infrastructure api,” In IBM WebSphere Developer Technical
Journal, vol. 5, no. 1, February 2002.

[31] Db2. [online]. available:. [Online]. Available: http://www-3.ibm.com/
software/data/db2/

[32] Z. Research, “The need for speed,” 1999.
Anindya Neogi received his Ph.D. and M.S. in
Computer Science from State University of New
York at Stony Brook in 2002 and 1999, respectively
and a B.E. in Computer Science and Engineering
from Jadavpur University, Kolkata in 1995. He has
worked in Cadence Design Systems, Rether Net-
works, and is a Research Staff Member at IBM
Research, New Delhi since 2002. He is interested in
performance and failure management in large-scale
systems.
Manoj K. Agarwal received a B.E. in Electronics
and Communication Engineering from IIT, Roorkee
in 1997 and M.S. degree (Electrical) from Uni-
versity of Texas at Austin in 2001. He was with
Infosys Technologies Ltd. from 1997 to 1999. He
joined IBM Research, New Delhi in 2001 as a
Research Staff Member. His research interests are
in distributed systems, computer networks and per-
formance modeling of computer systems.

Gautam Kar received his Ph.D. in Computer and
Information Science from the Ohio State University,
Columbus, Ohio. He joined the IBM T.J. Watson
Research Center in 1983, where, currently, he is the
Manager of the Systems and Network management
Department. His research interests include manage-
ment of distributed systems and network services.

Ruchi Mahindru is pursuing her Ph.D. in Computer
Science at New Jersey Institute of Technology. She
received her M.S. and B.S. in Computer Science
from Lehman College-CUNY. At present, she is an
intern in Systems and Network management group
at IBM T.J. Watson Research Center . Aside from
performance analysis and problem detection, her
interests include data mining, machine learning, and
computational biology.
Anca Sailer received her engineering degree from
Politechnica University of Bucharest, Romania, in
1995, and D.E.A. and Ph.D. in Computer Science
from Pierre et Marie Curie University of Paris,
France, in 1997 and 2000, respectively. She was a
Research Member at the Networking Research Lab-
oratory at Bell Labs, Lucent Technology, between
2001-2003. Currently a Research Staff Member at
IBM T.J. Watson Research Center, her research
interests include Autonomic Computing and Web
Services architecture.

