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Peter F. Sweeney Robert W. Wisniewski Călin Caşcaval Stephen E. Smith
IBM T.J. Watson Research Center

Abstract
Message Passing Interface (MPI) is the commonly used program-
ming paradigm for high performance computing (HPC). The model
has become popular mainly due to its portability and support across
HPC platforms. Because MPI programs are written in a portable
manner, programmers optimize application-related aspects, such as
the algorithm and generic communication, but typically do not op-
timize for the execution environment. In particular, MPI tasks are
often mapped to the processors in a linear order.

In this paper, we show that mapping tasks to processors in an
MPI program is a critical decision that significantly impacts per-
formance. We present techniques to model the hardware commu-
nication topology and application communication patterns. Given
such a model, we describe an algorithm to estimate the communi-
cation cost of any mapping of MPI tasks to processors. Also based
on the communication model, we present a heuristic algorithm to
generate a mapping of MPI tasks to processors. We demonstrate
that these generated mappings improves overall performance by up
to 35%.

1. Introduction
Message Passing Interface (MPI) is the prevalent programming
model for high performance computing (HPC), mainly due to its
portability and support across HPC platforms. Because most HPC
centers have a large variety of machines, portability is a major con-
cern of MPI programmers. Therefore, MPI programs are typically
optimized for algorithmic and generic communication issues. Par-
allel computation models such as the LogP [9] and LogGP [4], al-
low users to analyze parallel algorithms by providing a small set
of parameters that characterize an abstract machine. Often times in
such models, the execution environment (machine-specific) char-
acteristics are ignored by design. For example, the LogP model in-
tentionally leaves out the intercommunication network characteris-
tics and the network routing algorithm in order to keep the model
tractable.

However, in many cases, for a particular application running on
a specific machine, the mapping of MPI tasks to processors can
have a significant impact performance. This effect is due in part
to the fact that many scientific applications exhibit a regular point-
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to-point communication pattern between a subset of the neighbors1.
The default, linear order of mapping MPI tasks to processors, which
is often used in practice, does not consider the application’s regular
communication pattern when mapping MPI tasks to processors and
therefore may not achieve the best performance, as we will show
later.

In this paper, we focus on finding a good mapping of MPI tasks
to processors. To address this problem, we need to understand and
model the hardware communication topology of the execution envi-
ronment and the application communication pattern. We define the
hardware communication topology(HCT) as the hardware compo-
nents used by the executing MPI tasks to communicate. For ex-
ample, MPI tasks on cores in a chip communicate through caches,
cores in different chips communicate through memory; and cores in
different nodes communicate through a network interconnect. The
HCT encompasses all of these communication links. Theapplica-
tion communication pattern(ACP) characterizes how MPI tasks
exchange data with one another. This includes the number of mes-
sages and their size. (Section 3 provides more details).

Our goal is to define a small set of parameters that characterize
both the hardware communication topology and the application
communication pattern. We demonstrate that a model developed
with these parameters can estimate the communication cost of
different mappings of MPI tasks to processors for a given HCT and
ACP. This cost estimator can be embedded in heuristic algorithms
to guide their mapping choices or can be used to compare different
mappings to determine which one is more advantageous. In this
paper, we present a model, a heuristic and a cost estimator, and
evaluate their effectiveness in improving performance on a set of
benchmarks.

This paper makes following contributions:

• defines a set of parameters that characterize a hardware com-
munication topology and an application communication pattern
(Section 3), and presents an algorithm that uses these parame-
ters to derive the communication cost for a particular mapping
of tasks to processors (Section 5);

• presents an algorithm for mapping tasks to processors based on
a greedy heuristic (Section 4); and

• demonstrates that mapping tasks to processors has a significant
effect on performance, and show that up to 35% overall perfor-
mance improvement can be achieved automatically using our
approach (Section 6 and Section 7).

1 This is partly a consequence of good MPI programming education – if
global communication is needed, MPI programmers use collective opera-
tions over defined MPI communicators, which are typically tuned to the
underlying architecture.



We discuss related work in Section 8, future work in Section 9,
and conclude in Section 10.

2. Motivation
A large class of scientific applications are written in a stylized man-
ner. Typically these applications consist of a series of steps, where
in each step, the application executes two phases. A computation
phase in general is followed by a communication phase with syn-
chronization between them. This class of applications hasconcur-
rent communicationwhere the communication between MPI tasks
occurs at the same time, i.e., there is a period of time during which
all of the tasks are performing communication.

In this class of applications, there are four places where perfor-
mance can be improved, defined as follows:

computation the amount of time required to perform the compu-
tation.

computation imbalance the difference between the longest and
shortest compute times per phase.

communication overheadthe amount of time required to perform
communication.

communication imbalance the difference between the longest
and shortest communication times per phase.

In this paper, we focus on reducing the communication over-
head and communication imbalance in applications using MPI. The
goal is to improve performance by adapting an application to its
execution environment, without modifying the source code. We
achieve this goal by mapping MPI tasks to processors to exploit
the hardware communication topology with respect to bandwidth
and concurrency. Grouping together tasks that are communicating
frequently reduces the communication overhead of point-to-point
communication by exploiting the higher bandwidth available in the
lower levels of the hardware communication topology (HCT). We
exploit concurrency in the network by separating groups of tasks
such that intergroup communication can proceed in parallel.

To automate the mapping process, we need to be able to estimate
the performance of different mappings for a particular application
running on a given HCT. The data in Figure 1 illustrates the map-
ping of tasks to processor significantly affects the communication
bandwidth and in turn the performance of the application. In partic-
ular, we have abstracted out four characteristics that are crucial to
modeling communication cost. They include message length, HCT
concurrency, maximum bandwidth, and placement of tasks.

The graph in Figure 1 illustrates the bandwidth (y-axis) for
different message lengths (x-axis) when pairs of MPI tasks com-
municate concurrently. We obtained this data using NetPIPE [17]
(http://www.scl.ameslab.gov/netpipe/), a network protocol inde-
pendent evaluator and mapping the MPI tasks to different cores
on a two-tiered network of eight PowerPC 970FX dual-processor
Xserve machines. The graph plots the following four communi-
cation configurations: the lowest line represents the unidirectional
bandwidth when two tasks are mapped to processors on different
machines in different subnets (labeled “2T across subnets”); the
next higher line represents the unidirectional bandwidth when two
tasks are mapped to processors on different machines in the same
subnet (labeled “2T in subnet”); the next line represents the bidi-
rectional bandwidth when two tasks are mapped to processors on
different machines in the same subnet (labeled “2T B in subnet”);
and the highest line represents when four tasks are mapped to pro-
cessors on different machines in the same subnet (labeled “4T B in
subnet”).

The graph illustrates that bandwidth varies with message length.
For example, as message length increases up to 64 KB, bandwidth
increases for all four configurations, then drops significantly as the

MPI implementation switches message delivery mechanisms. Be-
cause bandwidth varies across message sizes, a model for commu-
nication cost should take message length into consideration.

The top two lines, “2T B in subnet” and “4T B in subnet”, show
that when the number of communicating tasks doubles from two to
four and each pair of communication tasks does not share resources
in the switch, the bidirectional bandwidth for a message length also
doubles. The doubling of bandwidth is due to parallelism provided
by the switch2. It is a common characteristic of switches to have
a higher internal bandwidth than on each of the ports. Because the
internal bandwidth of a switch allows multiple concurrent ports to
communicate, a model for communication cost should take HCT
concurrency into consideration.

HCT resources, switches or memory, have a maximum band-
width between any given pair of communicating tasks. Figure 1
illustrates multiple instances of communication throughput being
bound by maximum bandwidth. As message lengths exceed 64 Kb,
the bandwidth is bound by 100 Mbps for all configurations other
than “4T B in subnet”, which is bound by 200 Mbps3. Because
bandwidth is bound, a model for communication cost should take
maximum bandwidth of the HCT resources into consideration.

The graph illustrates that the mapping of tasks to processors im-
pacts bandwidth. For example when the message length is less than
64Kb, mapping two tasks to processors in the same subnet has im-
proved bandwidth over mapping the same two tasks to processors
in different subnets. Therefore, a model should take the mapping of
tasks to processors into consideration.

One other component, which is needed for estimating the per-
formance of a mapping, is the application communication pattern.
This will be discussed in detail in the next section.

Finally, the problem of finding the best mapping for a given
hardware communication topology and application communication
pattern is NP complete [18]. Any MPI task may be mapped to any
processor. Thus, forT tasks there areT ! mappings. Because there is
an exponential number of mappings, any reasonable-sized problem
requires a heuristic algorithm to determine a mapping. We present
such a heuristic algorithm in Section 4.

3. Data Model
This section presents the model of the hardware communication
topology (Section 3.1) that MPI tasks use to communicate, and
the model of application communication patterns (Section 3.2), the
data that these tasks communicate.

3.1 Hardware Communication Topology

Today’s large-scale machines are often constructed out of smaller
SMP nodes connected in a hierarchical manner by a high band-
width interconnect. This section presents how we model such a
tree-structured hardware communication topology.

Figure 2 illustrates the two basic elements that we use to model
a hardware communication topology. A processing element rep-
resents a single computational unit (denoted as CU in the figure)
at the lowest level in the hardware communication topology. For
single threaded machines, a computational unit is a processor (or
core), for SMT machines it is the hardware thread. A switch ele-

2 Specifically, we used an NETGEAR FS108 network switch that has 8
switched 100 Mbps ports.
3 We use the LAM MPI implementation (www.lam-mpi.org) that uses a
hand-shaking protocol for messages whose length equal or exceed 64 kb.
The hand-shake protocol is a bidirectional, rendezvous protocol that re-
quires the two tasks, prior to communication ensure that the receiving task
has a buffer available to receive the message. The hand-shake protocol ef-
fectively converts bidirectional communication to unidirectional due to the
protocols interference.
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Figure 1. Throughput graph: Message Length versus Bandwidth.
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Figure 2. Model Elements

ment is used to combine lower-level components, either process-
ing or switch elements. The switch’s “down ports” represent how
lower-level components that are connected to the switch communi-
cate. The single “up port” represents how a component commu-
nicates with a higher-level switch. The hierarchical interconnect
forms a tree-structured topology.

The arrows associated with a port represent directional band-
width as a function of message length and the maximum bandwidth
that port can support in a particular direction. The down arrow rep-
resents “in” bandwidth and the up arrow represents “out” band-
width. This is used to model the fact that bidirectional communi-
cation through a port can occur in parallel. In addition, each pair
of communicating tasks has the full bandwidth of a port they are
using provided no other tasks are using the same port. If a port is
shared between pairs of communicating processing elements, then

the bandwidth of the shared port is bounded by the port’s maximum
bandwidth.

A switch element has a maximum bandwidth (identified as
MBW in the figure) that bounds the aggregate bandwidth of all the
ports on the switch. Maximum bandwidth determines the switch
element’s concurrency. If no arrow is associated with a port, the
switch element’s maximum bandwidth bounds the port’s band-
width.

A hardware communication topology may define multiple pro-
cessing elements to reflect multiple types of computation units and
define multiple switch elements to reflect multiple types of switch
elements. For example, the hardware communication topology that
we used in our experiments has two switch elements defined, one
for a PowerPC 970FX dual-processor Xserve machine, and another
for a NETGEAR FS108 switch.

3.2 Application Communication Pattern

An application communication patterncharacterizes the way in
which one MPI task exchanges data with another MPI task. We
characterize an application communication pattern by the number
of messages of a certain size that is communicated between each
pair of MPI tasks. For simplicity, this characterization ignores the
order that messages are sent between two MPI tasks and ignores
the blocking/nonblocking semantics of the point-to-point commu-
nication. In Section 7.3, we discuss how this simplification affects
our results.

Application communication patterns are derived from a trace
of the point-to-point communication in an MPI application. As we
discussed before, typically communication and computation alter-
nate in phases. Such phases repeat throughout the execution of the
application. Thus, only one instance of each phase needs to be mod-
eled. To obtain the best mapping, each unique class of phases would
need to be characterized with the weighted combination of those
phases being used to determine the overall effect on performance.

3 2007/2/12



4. Mapping Algorithm

Input :
T : hardware communication topology
P : application communication pattern between MPI tasks

Output :
M : mapping of MPI tasks to processors inT

Method:
// Initialization: assign a MPI task to a cluster
for i = 1 to P.numberOfTasks

C0 += {< i, 0 >}

// exploit bandwidth
for i = 1 toT.levels

Ci = {} // cluster set for leveli
S = {} // communication set
forall Q: Ti.numberOfChildren combinations ofCi−1

S+ = {< Q, b >: b = number of bytes communicated
between MPI tasks in differentCi− 1 clusters∈ Q}

foreach< Q, b >∈ S in sorted order byb
Ci+ =< Q, b > if no MPI task inQ already∈ Ci

// exploit concurrency
for i = T.levels to 1

for j = 1 toTi.numberOfChildren

T j
i .cluster = Cj

i−1.first

// output
forall n ∈ T0

M+ =< n.cluster, n.processor >
returnM

Figure 3. Greedy algorithm to map MPI tasks to processors.

Given a hardware communication topology and an application
communication pattern, the mapping algorithm in Figure 3 com-
putes an assignment of MPI tasks to processors. The goal of this
mapping is to optimize performance by exploiting bandwidth dif-
ferences on communication links in the HCT and by exploiting con-
currency in different subtrees in the HCT hierarchy. The algorithm
uses a greedy heuristic under the following assumptions: i) a single
MPI task is assigned to a processor, and ii) that bandwidth stays the
same or gets worse as one move higher in the HCT (further away
from the processing elements). For presentation purposes, the al-
gorithm presented in Figure 3 makes the following simplifications
compared to the one we actually implemented: the arity of the chil-
dren of a node in the HCT is the same at each level, and the assign-
ment of communication sets that span clusters is ignored.

The algorithm will cluster MPI tasks according to the above
heuristics. During initialization, each MPI task is assigned to a
separate cluster,C0. Then, the algorithm makes two passes over the
HCT, first to exploit bandwidth, and second to exploit concurrency.
The first pass starts from the next to the bottom level and assigns a
number ofCi−1 clusters toCi clusters (one level up) according
to the number of children of an element at theith level in the
HCT. The number of bytes communicated between the tasks in the
Ci−1 clusters determines howCi clusters are generated: theCi−1

clusters with the most inter-cluster communication are created as
Ci clusters first. We use clusters in this pass instead of assigning
tasks directly to HCT elements to allow the second pass, which
assigns tasks to HCT elements, to exploit concurrency. The second
pass starts from the top assigning clusters to elements at each HCT
level. At the lowest level of the HCT, MPI tasks are assigned to
processing elements. The output of the algorithm is a mapping of
MPI tasks to processors.

Algorithm Analysis The complexity of this algorithm is bounded
by a sort operation on the number of communication pairs of MPI
tasks. The bound isO(R log R), whereR is the pairs of MPI tasks

that communicate which in turn is bounded byT ∗ T whereT is
the number of MPI tasks.

Discussion We chose a mapping algorithm that does not use the
cost estimator presented in Section 5 to guide the mapping. This
decision allows us to validate our cost and the mapping algorithms
independently. Another class of heuristic algorithms could use the
cost algorithm to guide the mapping. Orthogonally, a probablistic
approach could be used to help avoid local minima that greedy
algorithms are susceptible to finding. The exploration of the better
heuristic algorithm is future work.

5. Cost Estimator
Given a hardware communication topology, a mapping of MPI
tasks to processors, and the application communication pattern
between these tasks, the cost estimator computes a communication
time (or cost) for a communication phase using the algorithm in
Figure 4. To simplify the presentation, the cost estimator presented
in Figure 4 does not consider the maximum bandwidth of the switch
element.

Input :
T : hardware communication topology
M : mapping of MPI tasks to processors inT
P : application communication pattern between tasks inM

Output :
C: estimated communication cost

Method:
foreach task src∈ M

// compute serial cost for src’s messages
foreachmessage msg∈ P sent by src to dst

foreachport p∈ T on the path from src to dst inT
// update local copy of p’s cost and bytes
p.taskCost += (msg.len / p.bandwidth(msg.len) * msg.count
p.taskBytes += msg.len

// compute aggregate cost at each port
foreachport p∈ T

// update p’s cost and bytes with local copy
p.bytes += p.taskBytes
bytesAvailable = (p.maxBandwidth * p.cost) - p.bytes
if bytesAvailable< p.taskBytes

p.cost += ((p.taskBytes - bytesAvailable) / p.taskBytes) * p.taskCost)

// clear local copy of p’s cost and bytes
p.taskCost = p.taskBytes = 0

returnC = MAX(p.cost) ∀ port p∈ T

Figure 4. Cost estimator computes the estimated communication
time.

Before discussing the algorithm in detail, there are several im-
portant points to highlight. First, we strove to design a model that
was simple, but accurate enough to to predict the performance of a
mapping. For application communication patterns, only the number
and the size of the messages (msg.count andmsg.len in Figure 4)
between two tasks is maintained. The order in which messages are
sent is not taken into consideration. For the hardware communica-
tion topology, the only parameters in our model are: observed band-
width per message length, concurrency, and the maximum band-
width of a port. The values used for these parameters were obtained
experimentally using NetPIPE [17] running between different com-
binations of tasks and processors, as explained in Section 2.

Second, our algorithm takes advantage of concurrent commu-
nication. This allows us to remove the ordering of messages when
we capture the application communication patterns. The drawback
is that, for applications that overlap computation with communica-
tion, the cost estimator algorithm will produce less accurate results.
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Our cost estimator algorithm is presented in Figure 4. For each
task, the cost estimator has two steps. The first step accumulates, for
each message, the cost (p.taskCost) and bytes (p.taskBytes)
at each port (p)in the hardware communication topology through
which the message flows. Because the messages are processed se-
rially and the cost and bytes at each port are accumulated, the maxi-
mum bandwidth at any port is guaranteed not to be exceeded for the
current task’s communication. The second step aggregates the cur-
rent task’s cost (taskCost) and bytes (taskBytes) at each port,p,
limiting the aggregation byp’s max bandwidth. This step exploits
the fact that task communication in different portion of the tree-
topology can occur at the same time.p.bytesAvailable is the
number of additional bytes that can be communicated atp without
exceedingp’s max bandwidth. Ifp.bytesAvailable is less than
the number of bytes sent by the messages of the current task atp
(p.taskBytes), additional cost has to be added top.cost. The es-
timator computes the additional cost as a faction of the task’s cost
(taskCost), where the fraction is computed as((p.taskBytes -
bytesAvailable) / p.taskBytes).

After all communication of all tasks is processed, the estimated
commuincation cost (C) for the communication phase is taken as
the maximum time over all ports in the hardware communication
topology.

Algorithm Analysis The complexity of this algorithm isO(M ×
N) whereM is the number of messages sent between MPI ranks
and N is the number of ports in the hardware communication
topology.

6. Experimental Methodology
In this section, we discuss the experimental framework used to ob-
tain our results. We ran on a two-tiered network of eight PowerPC
970FX dual-processor Xserve machines. Thus the total number of
processors available in our experiments is sixteen. The processors
are clocked at 2 GHz. Dual-processors share the memory bus but
have separate caches. We ran a Gentoo Linux distribution with the
2.6.12-rc2 kernel.

Figure 5 illustrates how we model an Xserve machine using
one switch element and two processing elements from Figure 2
in Section 3. Each machine contains two single-threaded cores on
a chip, the cores communicate with each other through memory;
they do not share caches. The switch element models the memory
bus to which the two cores are connected. The up-port of a switch
represents the network interface card. The down-ports model how

xserve 2-way SMP

5 machine subnet 3 machine subnet

NETGEAR Switch

MBW = 1600 Mb
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Figure 6. Experimental Hardware Communication Topology

the cores communicate. The bandwidths values were determined
by running two NetPIPE processes on different processors in one
machine.

Figure 6 illustrates schematically the hardware communication
topology used in our experiments. Our experimental network con-
sists of eight Xserve machines, five on one subnet, and three on an-
other subnet. The switches on the subnet were NETGEAR switches
and the subnets were connected together via a large Cisco switch
with the same properties as the NETGEAR switch, i.e., 100Mbps
per port with higher internal connectivity.

Other hardware topologies can be modeled in a similar tree-
structured manner. For example, we are in the process of modeling
a PowerPC POWER5 machine where each core has two hardware
threads, each chip has two cores, and each module has eight chips
to provide 32 logical processors that communicate through the
memory hierarchy.

6.1 Benchmarks

For our experimental evaluation, we use theMG benchmark as
a representative benchmark from the NAS Parallel Benchmarks
suite [5, 6] and two large scientific applicationsUMT2K [19] and
RF-CTH [13, 2]. To collect application communication patterns we
used the PMPI interface to intercept all MPI calls in the application.
For each benchmark, we evaluated different configurations that
differed by the number of MPI tasks. For reported execution times,
we ran each benchmark five times and took the median.

MG uses a multigrid method to compute the solution of the 3D
scalar Poisson equation. The partitioning is done by recursively
halving the grid until all the processors are assigned. This bench-
mark requires a power-of-2 number of processors. Communication
occurs between iterations by exchanging data at the borders.

UMT2K is a 3D, deterministic, multigroup, photon transport
code for unstructured meshes. It solves the first-order form of the
steady-state Bolzmann transport equation. The equation’s energy
dependence is modeled using multiple photon energy groups, each
using a collocation of discrete directions. The memory access pat-
tern varies substantially for each direction, and the entire mesh is
“swept” multiple times. The unstructured meshes are generated at
run-time using a 2D unstructured mesh and extruding it into the

5 2007/2/12



third dimension. The meshes are distributed across the MPI tasks
using the METIS Library [1].

RF-CTH is a code used to explore the effects of strong shock
waves on materials using different models. The code simulates
shock hydrodynamics equations. The MPI parallel version is based
on an SPMD programming model. It decomposes a domain into
subdomains and communication between those subdomains uses
ghost cells.

7. Evaluation
This section evaluates both the cost estimator presented in Sec-
tion 5 and the mapping algorithm presented in Section 4. Figure 7
evaluates the accuracy and predictability of the cost estimator. Fig-
ure 9 shows that our mapping algorithm has significant perfor-
mance gains in many cases (up to 35%) with an overall average
speedup of ten percent. This is achieved automatically without pro-
grammer intervention.

7.1 Cost Estimator Evaluation

We start by evaluating the predictability and accuracy of the cost
estimator.Predictability determines the cost estimator’s ability to
determine if a different mapping will speed up or slow down the
benchmark’s execution.Accuracydetermines how close is the dif-
ference between two mappings predicted by the cost estimator
compared to the difference between their actual executions.

The bar graphs in Figure 7 illustrate the cost estimator’s pre-
dictability and accuracy for the three benchmarks by comparing
the estimated execution time speedup (left bar) and actual execu-
tion time speedup (right bar). The cost estimator is predictable if
both bars go in the same direction, and the algorithm is accurate if
both bars are close in height. In determining whether a particular
mapping should be chosen, predictability is the important metric.
For example, as long as a meaningful performance improvement
is predicted, whether it is actually 10% or 15% is less critical that
knowing there is a performance win.

In what follows, speedup reflects the total execution time de-
crease, not only communication time. We compute the estimated
speedup as the percentage difference between the cost estimator’s
prediction of the default (linear mapping of tasks to processors)
and greedy mappings (Section 4) multiplied by the percentage of
total execution time spent in MPI communication4. We compute
the actual speedup as the percentage difference between the actual
execution times of the default and greedy mappings. Each config-
uration, which is determined by a benchmark, number of tasks and
a mapping, was run five times and we used the median of the five
runs as the execution time. We found that the variation of execution
times between runs of a configuration is insignificant.

The top bar graph in Figure 7 evaluates the cost estimator for
UMT2K. The graph illustrates that the cost estimator has good
predictability. All configurations, except 2 and 4, are predictable.
For the two unpredictable configurations the difference between
estimated and actual speedups is less than 1%, which is within
measurement error. This data illustrates the model achieves the
predictability needed to determine which mapping to use.

The graph also illustrates that the cost estimator’s accuracy has
room for improvement. In some configurations, there is significant
variation between estimated and actual speedups. For example, the
9 task configuration has an estimated speedup of 1.5%, but an
actual speedup of 12.1%; whereas the 15 task configuration has
an estimated speedup of 10.6%, but an actual speedup of 2.2%.

The 16 task configuration illustrates a case where our mapping
heuristic does poorly because the heuristic is greedy: the greedy

4 The total execution time spent in MPI communication includes both col-
lective and point-to-point communication.
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Figure 8. RFCTH communication patterns.

mapping results in more bytes being communicated in the top-level
switch in the hardware communication topology than the default
mapping. This level has the lowest bandwidth and will take the
most time, as is correctly predicted by the cost estimator. Thus,
using the cost estimator prediction, we will choose the default
mapping as the best mapping.

The middle graph in Figure 7 evaluates the cost estimator for
RFCTH. The graph illustrates that the cost estimator is predictable.
In only one configuration out of 15 (8 tasks), does the cost estima-
tor’s prediction fails — the estimated speedup is 4.0%, while the
actual speedup is -5.9%, a slowdown. We studied the application
communication pattern (ACP) for the 8 task configuration and de-
termined that the tasks are laid out two dimensionally as a ladder, as
shown in Figure 8(b). There is 75% more communication occurring
along the steps than along the sides. The greedy algorithm appears
to have a better mapping by clustering the steps on the same ma-
chine, where as the default mapping clusters the steps across ma-
chines. More work is required to understand why the greedy map-
ping performs worse than the default mapping for this application
communication pattern.

The graph also illustrates that the cost estimator’s accuracy
continues to have room for improvement: in some configure-
ations, there is significant variation between estimated and actual
speedups. For example, the 10 task configuration has an estimated
speedup of 9.1%, but has an actual speedup of 29.6%; and the 12
task configuration has an estimated speedup of 15.7%, but has an
actual speedup of 10.7%.

The cost estimator predicted a zero (or close to zero) speedup
for all the configurations with an odd number of MPI tasks, ex-
cept for 15. Upon examiningRFCTH’s application communica-
tion patterns for these configurations, we found the MPI tasks are
embedded into a one dimensional array where each task first com-
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Figure 7. Cost algorithm evaluation

municates to its left neighbor and then communicates with its right
neighbor. Figure 8(a) illustrates the embedding for five MPI tasks.
The number of bytes communicated between neighbors are almost
identical, and the difference between the two mappings is that the
default mapping mapped MPI tasks together from left-to-right and
the greedy mapping mapped MPI tasks together from right-to-left.

The cost estimator predicts that there will be little or no difference
between the two mappings, as indicated with the estimated speedup
bar being zero or very close to zero.

We studied this benchmark’s detailed communication patterns.
The application uses blocking sends and nonblocking receives for
large messages. Our manual inspection determined that the order of
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the messages and the subtle interaction of the blocking/ nonblock-
ing communication semantics may have a profound impact on per-
formance. Because our application communication patterns do not
take into account the order of messages or blocking/nonblocking
communication semantics, we can not effectively model these con-
figurations’ communication behavior. We plan, in future work, to
explore extending the model to incorporate message order and
communication semantics.

All the other configurations forRFCTH (4, 6, 8, 10, 12, 14, 15,
and 16 tasks) embed the MPI tasks into a two or three dimensional
array, and our mapping algorithm is able to find mappings that
perform as well or better than the default mapping.

The bottom bar graph in Figure 7 evaluates the cost estimator
for MG. The cost estimator is predictable for three of the four con-
figurations that have a non zero estimated speedup. The cost esti-
mator has good accuracy for three of the four configurations, only
the 16 task configuration has a large difference between estimated
and actual speedups.

We studied the detailed communication patterns ofMG. This
application uses blocking sends and nonblocking receives for large
messages. As withRFCTH, our manual inspection determined that
the order of the messages and the subtle interaction of the block-
ing/nonblocking communication semantics have a profound impact
on performance. Because our application communication patterns
do not model the order of messages or communication semantics,
we can not effectively model these configurations’ communication
behavior. We plan, in future work, to explore extending the model
to incorporate message order and message semantics.

7.2 Mapping Algorithm Evaluation

The bar chart in Figure 9 illustrates the difference in execution time
between the greedy and default mappings. A higher bar means that
the greedy mapping speeds up the execution for a given configura-
tion of the benchmark. The bar chart includes only the greedy map-
pings which have an estimated speedup value greater than zero5.

The bars are grouped by benchmark. For the readers conve-
nience, we have included an average bar for each benchmark and
an average bar across all the benchmarks. The last bar illustrates a
10% average improvement across all the benchmarks if the greedy
mapping is used, and the bar forRFCTH with 15 tasks has the
highest actual speed up of 35.3%.

The bar chart illustrates that a slowdown occurs in only three out
of the twenty-five configurations. The first two slowdowns for the
2 and 4 tasks ofUMT2K are less than one percent, and fall within
measurement error. The third slowdown is of 5.9% occurred for the
8 task run ofRFCTH and was discussed in the previous subsection.

7.3 Discussion

Real applications have complex application communication pat-
terns that are a function of the number of MPI tasks that are used.
In Section 7.1, we described thatRFCTH used application com-
munication patterns that modeled one, two and three dimensional
communication grids. Furthermore,UMT2K’s application commu-
nication patterns differ significantly when the number of MPI tasks
differs. When application communication patterns are a function
of a command line option, it is difficult for the user to determine
the best MPI task to processor mapping. Therefore automatic tech-
niques are critical. This paper presents a model that allows an au-
tomatic approach to determine a better mapping of MPI tasks to
processors.

The goal of modeling a system is to simplify the system’s
underlying complexity by ignoring some details while retaining
other details to capture the system’s essence. We model an ap-

5 Estimated speedup is computed in Section 7.1.

plication’s communication patterns by capturing the number of
messages of a particular size that are communicated between two
tasks, but ignore the order in which the messages occur and ig-
nore blocking/nonblocking communication semantics. In all three
benchmarks, we have determined that message order and block-
ing/nonblocking communication semantics can have a significant
impact on the cost estimator’s accuracy. We plan, in future work,
to explore extending the ACP model to incorporate message order
and message semantics.

8. Related Work
Orduna et al [15] argue that cluster-based platforms are cost-
effective for high-performance computing, and identify the inter-
connection network as the system bottleneck. We both have the
same goal to develop task mapping techniques to reduce communi-
cation costs. We both model the traffic generated by the application
and model network resources. Our work differs from their work in
that they do not model specific messages, only the aggregate bytes
sent between two tasks, and they do not model the on-chip memory
hierarchy that allow multi-cores and multiple threads to communi-
cate. In addition, we restrict our communication topology to be a
tree, whereas they can handle an arbitrary graph [14].

There is a significant body of work on modeling communica-
tion between tasks in parallel programs [3, 8, 20, 9, 4, 11]. Most
of these models are designed to analyze parallel algorithms, and
typically contain a small number of parameters that abstract the
communication on the machine such that machine specific features
are suppressed. Most notably, the LogP model [9] and its deriva-
tives [4, 11] intentionally remove the network topology and the
routing algorithm from the model in order to to characterize an al-
gorithm on a large class of machines. We showed that the mapping
to the hardware communication topology has a considerable effect
on performance, and therefore, for specific applications it is benefi-
cial to model the network topology. Unlike the PRAM model [10]
and its derivatives, our model does not account for computation. In-
tegrating our communication model with other such models is part
of our future work.

Träff [18] presents a graph embedding algorithm that optimizes
the MPI communication by matching the application communica-
tion patterns to the topology using the MPI virtual topology mecha-
nism. His study focuses on the performance of the embedding algo-
rithm and requires the user to specify the application communica-
tion patterns and to code the virtual topology in the application. Our
technique of collecting application communication patterns and es-
timating the communication cost is orthogonal to his embedding
algorithm, and in fact can be used as input to direct the graph em-
bedding decisions.

Pant and Jafri [16] present two complementary approaches,
which extend the MPICH implementation of MPI, to reduce the
communication cost of an MPI application that runs on a cluster
of machines. Their topology consists of slow wide-area links that
interconnect clusters and faster links to interconnect processors
within a cluster. They use a profile guided optimization approach
to map MPI tasks to processors to reduce the cost of point to point
communication. They also replace sets of communications with
collective operations (e.g. allreduce or broadcast) to minimize the
traffic on the slow inter-cluster links, using topology information.

Freitag et al [12] use repeatability to infer message sizes and
change the MPI library to take advantage of the extra knowledge to
reduce the amount of time spent on the rendezvous protocol. Our
method does not change the MPI implementation in order to reduce
the amount of overhead.
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Figure 9. Greedy mapping speedup over default.

9. Future Work
The model presented in this paper strives to balance simplicity with
sufficient details to adequately predict an application’s communica-
tion behavior for a given execution environment.

There are some anomalies in the actual performance that we
want to investigate further. In particular,RFCTH had runs where
the cost estimator predicted no change while some of the actual
runs achieve a performance improvement, while others showed a
performance degradation. Part of this investigation will determine
what needs to be enhanced: the model, the cost estimator, or both.

Currently, the cost estimator does not address applications with
non-concurrent communication. There are several directions in
which we can extend the cost estimator to allow handling more
complex application communication patterns and we plan to evalu-
ate them. Whether a more accurate model is needed is an interesting
open question.

The default mapping is a random point in the mapping space.
While it made sense to evaluate against the mapping programmers
commonly use, we plan to explore the mapping space with an algo-
rithm that takes a number of random mappings and evaluates them
using the cost estimator to determine the spread of performance
between a best and a worst mapping.

We are in the process of extending the model from our current
ethernet network configuration of Xserve machines to a cluster of
Power5 machines connected via a high bandwidth crossbar switch.
As part of this environment, the Power5 processor contains two
hardware threads, which requires modeling a trade-off between
computation and communication.

10. Conclusions
MPI is a commonly used paradigm for parallel programming. Typ-
ically, programmers optimize application-related aspects, such as

the algorithm and generic communication, rather than optimize
for the execution environment. In this paper we have shown that
there is significant benefit to be gained by optimizing for the exe-
cution environment. Specifically, mapping tasks to processors sig-
nificantly improves performance when taking into account the ap-
plication communication pattern and the communication capabil-
ities of the underlying hardware. In keeping with the execution-
environment-independent philosophy of MPI, this work is part of
our larger Continuous Program Optimization (CPO) environment
whereby automatic agents perform optimizations [7]. The tech-
niques we described in the paper are amenable to that environment,
thus maintaining MPI-execution independence.

After demonstrating that mapping tasks to processors in an MPI
program is a critical decision that significantly impacts perfor-
mance, we described how to model the application’s communica-
tion pattern and how to construct a simple model of the hardware
communication topology. We presented a simple mapping algo-
rithm that uses a greedy heuristic to map MPI tasks to processors.
We then described a cost estimator that takes the hardware com-
munication topology, the application communication pattern, and a
mapping from MPI tasks to processors and estimates the commu-
nication cost. Using both the cost estimator and the mapping algo-
rithm on multiple configurations of three benchmarks, we demon-
strate that the cost estimator is a good predictor of performance and
up to a 35% improvement in performance over the default mapping.
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