RC24291 (W0510-017) October 5, 2005
Computer Science

|BM Resear ch Report

Synergistic Processing in Cell's Multicore Architecture

Michael Gschwind, H. Peter Hofstee, Brian Flachs, Marty Hopkins
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Y orktown Heights, NY 10598

Y ukio Watanabe
Toshiba

Takeshi Yamazaki
Sony Computer Entertainment

—=—=—=—=2= Research Division
£ S= 555 Almaden- Austin - Beijing - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

Synergistic Processing in Cell’s Multicore Architecture

Michael Gschwind, H. Peter Hofstee, Brian Flachs, Martin Hopkins, IBM
Yukio Watanabe, Toshiba
Takeshi Yamazaki, Sony Computer Entertainment

Abstract

Eight Synergistic Processor Units enable the Cell Broad-
band Engine’s breakthrough performance. The SPU ar-
chitecture implements a novel, pervasively data-parallel
architecture combining scalar and SIMD processing on a
wide data path. A large number of SPUs per chip provide
high thread-level parallelism.

1 Introduction

When IBM, Sony, and Toshiba launched the Cell project
[5] in 2000, the design goal was to improve performance
an order of magnitude over that of desktop systems ship-
ping in 2005. To meet that goal, designers had to optimize
performance against area, power, volume, and cost, but
clearly single-core designs offered diminishing returns on
investment [5, 9, 10]. If increased efficiency was the over-
riding concern, legacy architectures, which typically incur
a big overhead per data operation, would not suffice.

Thus, the design strategy was to exploit architecture in-
novation at all levels directed at increasing efficiency to
deliver the most performance per area invested, reduce
the area per core, and have more cores in a given chip
area. In this way, the design would exploit application
parallelism while supporting established application mod-
els and thereby ensure good programmability as well as
programmer efficiency.

The result was the Cell Broadband Engine Architec-
ture, which is based on heterogeneous chip multiprocess-
ing. Its first implementation is the Cell Broadband En-
gine (Cell BE). The Cell BE supports scalar and single-
instruction, multiple-data (SIMD) execution equally well
and provides a high-performance multithreaded execution

environment for all applications. The streamlined, data-
processing-oriented architecture enabled a design with
smaller cores and thus more cores on a chip [4]. This
translates to improved performance for all programs with
thread-level parallelism regardless of their ability to ex-
ploit data-level parallelism.

One of the key architecture features that enable the Cell
BE’s processing power is the synergistic processor unit
(SPU), a data-parallel processing engine aimed at provid-
ing parallelism at all abstraction levels. Data-parallel in-
structions support data-level parallelism, whereas having
multiple SPUs on a chip supports thread-level parallelism.

The SPU architecture is based on pervasively data par-
allel computing (PDPC), the aim of which is to archi-
tect and exploit wide data paths throughout the system.
The processor then performs both scalar and data-parallel
SIMD execution on these wide data paths, eliminating the
overhead from additional issues slots, separate pipelines,
and the control complexity of separate scalar units. The
processor also uses wide data paths to deliver instructions
from memory to the execution units.

2 Overview of the Cell Broadband
Engine architecture

As Figure 1 illustrates, the Cell BE implements a single-
chip multiprocessor with nine processors operating on a
shared, coherent system memory. The function of the pro-
cessor elements is specialized into two types: the Power
processor element (PPE) is optimized for control tasks
and the eight synergistic processor elements (SPEs) pro-
vide an execution environment optimized for data pro-
cessing. Figure 2 is a die photo of the Cell BE.

The design goals of the SPE and its architectural spec-

ification were to optimize for a low complexity, low area
implementation.

The PPE is built on IBM’s 64-bit Power Architecture
with 128-bit vector media extensions [1] and a two-level
on-chip cache hierarchy. It is fully compliant with the 64-
bit Power Architecture specification and can run 32-bit
and 64-bit operating systems and applications.

The SPEs are independent processors, each running an
independent application thread. The SPE design is opti-
mized for computation-intensive applications. Each SPE
includes a private local store for efficient instruction and
data access, but also has full access to the coherent shared
memory, including the memory- mapped I/O space.

Both types of processor cores share access to acommon
address space, which includes main memory, and address
ranges corresponding to each SPE’s local store, control
registers, and 1/0 devices.

2.1 Synergistic processing

The PPE and SPEs are highly integrated. The PPE pro-
vides common control functions, runs the operating sys-
tem, and provides application control, while the SPEs pro-
vide the bulk of the application performance. The PPE
and SPEs share address translation and virtual memory ar-
chitecture, and provide support for virtualization and dy-
namic system partitioning. They also share system page
tables and system functions such as interrupt presentation.
Finally, they share data type formats and operation seman-
tics to allow efficient data sharing among them.

Each SPE consists of the SPU and the synergistic mem-
ory flow (SMF) controller. The SMF controller moves
data and performs synchronization in parallel to SPU pro-
cessing and implements the interface to the element inter-
connect bus, which provides the Cell BE with a modular,
scalable integration point.

2.2 Designdrivers

For both the architecture and microarchitecture, our goal
was not to build the highest single-core performance ex-
ecution engine, but to deliver the most performance per
area invested, reduce the area per core, and increase the
number of cores (thread contexts) available in a given
chip area. The design decisions described in this arti-
cle exploit application characteristics for data-processing-

intensive applications to improve efficiency. Other, more
aggressive design decisions might have increased the per-
core performance, but at the cost of larger cores and thus
fewer cores in a given chip area.

Another design goal was to enable high-frequency im-
plementations with modest pipeline depths and without
deep sorting [8]. but without requiring the mechanisms
that typically allow efficient instruction pipelining (reg-
ister renaming, highly accurate branch predictors, and so
on). Our solution was to reduce architectural complexity
where feasible, subject to latencies from basic resource
decisions such as the large register file (2 Kbytes) and
large local store (256 Kbytes).

By providing critical system services (such as virtual
memory support and system virtualization) in a Power
Architecture core, the Cell BE avoids duplicating capa-
bilities across all execution contexts, thereby using re-
sources more efficiently. Providing two classes of cores
also means that the design can optimize the PPE for
control-dominated control code to dispatch high-volume
data-processing tasks to cores optimized for data process-

ing.

3 Synergistic processor unit

As Figure 3 shows, the SPU architecture promotes pro-
grammability by exploiting compiler techniques to tar-
get the data-parallel execution primitives. We essentially
took from the lessons of reduced-instruction-set comput-
ing (RISC): The architecture provides fast, simple primi-
tives, and the compiler uses these primitives to implement
higher-level idioms. If the compiler could not target a set
of functionality, we typically did not include it in the ar-
chitecture.

To move decisions best performed at compile time
into the compiler and thus reduce control complexity and
power consumption, the architectural definition focused
on exploiting the compiler to eliminate hardware com-
plexity. A simplified architectural specification also lets
the hardware design optimize circuits for the common
performance case, delivering lower latency and increas-
ing area efficiency.

SPE

PO PU PU PU PU PU
|'sxu [“sxu] sxu I sxu ifI_sxu_] | sxu I sxu I([Csxu_]
T T i ! 1 T T
Ls Ls Ls Ls Ls Ls Ls
leB/cycla
| EIB (up to 96B/cycle) |
A A
PPE geBiees 16B/cycle 16B/cycle (2x)

PPU

4

c]

[XU

Figure 1: Cell system architecture. The Cell Broadband Engine Architecture integrates a Power processor element
(PPE) and eight synergistic processor elements (SPES) in a unified system architecture. The PPE is based on the 64-bit
Power Architecture with vector media extensions and provides common system functions, while the SPEs perform
data-intensive processing. The element interconnect bus connects the processor elements with a high-performance

communication subsystem.
3.1 Pervasively data-parallel computing

Over the past decade, microprocessors have become pow-
erful enough to tackle previously intractable tasks and
cheap enough to use in a range of new applications.
Meanwhile, the volumes of data to process have bal-
looned. This phenomenon is evident in everything from
consumer entertainment, which is transitioning from ana-
log to digital media, to supercomputing applications,
which are starting to address previously unsolvable com-

puting problems involving massive data volumes.

To address this shift from control function to data pro-
cessing, we designed the SPU to exploit data-level par-
allelism through a SIMD architecture and the integration
of scalar and SIMD execution. In addition to improving
the efficiency of many vectorization transformations, this
approach reduces the area and complexity overhead that
scalar processing imposes. Any complexity reduction di-
rectly translates into increased performance because it en-
ables additional cores per given area.

Figure 2: Die photo of the Cell Broadband Engine. The synergistic processor elements (including eight local stores)
occupy only a fraction of the Power processor element area (including the L2 at top left) but deliver comparable

computational performance.

For programs with even modest amounts of data-level
parallelism, offering support for data-parallel operations
provides a major advantage over transforming data-level
parallelism into instruction-level parallelism. Legacy
cores often take the latter approach, which requires pro-
cessing and tracking the increased number of instruc-
tions and often yields significant penalties because par-
allelism must be rediscovered in instructions using area-
and power-intensive control logic.

3.2 Data alignment for scalar and vector
processing

In existing architectures, only limited, subword arithmetic
byte and halfword data paths could share logic between

scalar and vector processing; more general vector pro-
cessing required a separate data-parallel data path. To
streamline the design, we departed from this practice. The
SPU has no separate support for scalar processing.

To be consistent with the data-parallel focus, we also
optimized the memory interface for aligned quadword
access, thus eliminating an elaborate alignment network
typically associated with scalar data access. This design
decision reduces control complexity and eliminates sev-
eral latency stages from the critical memory access path,
similar to the original MIPS-X and Alpha architectural
specifications. It also reduces overall latency when dy-
namic data alignment is not required. When it is required,
either to access unaligned vectors or to extract scalar data
not aligned on a 128-bit boundary, the compiler can in-

Local Store

Single Port
SRAM

Figure 3: Synergistic processor unit. The SPU relies
on statically scheduled instruction streams and embraces
static compiler-based control decisions where feasible.
The use of wide execution data paths reduces control
overhead and increases the fraction of chip area and power
devoted to data processing.

sert vector shuffle or rotate instructions to align and ex-
tract data. The cumulative delay of this quadword data
access and a separate alignment instruction corresponds
to the delay of a memory operation implementing data
alignment.

The decision to use a software-controlled data-
alignment approach is synergistic with the integration of
scalar and vector processing and the emphasis on pro-
cessing through wide data paths. From a workload per-
spective, the quadword memory interface supports data-
parallel (short vector) processing, which means that the
Cell BE can perform array accesses to successive ele-
ments without repeated extraction by operating on mul-
tiple data elements in parallel. From a system architec-
ture perspective, there are no complications with device
driver code, such as those experienced in the Alpha envi-
ronment, because each SPU uses the SMF controller and
its direct memory access facility for 1/0 accesses.

Following the PDPC concept, the SPU architecture
does not include a separate scalar register file. This would
complicate data routing for source operands and computa-
tional results, require additional routing and multiplexers

(with their associated latency), and represent additional
loads on result buses. The SPU stores all scalar data
in a unified, 128-entry, 128-bit-wide scalar/vector regis-
ter file that feeds directly into the processing functions
performed in wide SIMD execution data paths. Using a
unified scalar/SIMD register also simplifies performing
scalar data extraction and insertion and data sharing be-
tween scalar and vector data for parallelizing compiler
optimizations [6, 2].

The unified register file also stores data of all types,
which means that a single register file stores integer val-
ues, single- and double-precision floating-point values,
Boolean values, and addresses. The register file can
provide a single quadword element, two 64-bit double-
word elements, four 32-bit word elements, eight 16-bit
halfword elements, 16-byte elements, or a vector of 128
single-bit elements. The program can use all 128 entries
to store data values, and the register file is fully symmetric
from an architecture perspective. No registers are hard-
wired to specific values, which would require expensive
special handling during instruction decode and register
file access and in bypass and forwarding logic. All in-
structions can reference any of the 128 registers, that is,
no instructions must use an instruction-specific implicit
register or a register file subset.

The aim of these design decisions is to increase com-
piler efficiency in register allocation. Using a single uni-
fied register file lets compiler and application program-
mers allocate resources according to specific applica-
tion needs, improving programmability and resource ef-
ficiency.

4 Scalar layering

We call the execution of scalar operations on wide SIMD
data paths scalar layering. It has two aspects: scalar op-
erations mapping onto the data-parallel execution engines
and data management to align, extract, and insert data on
memory accesses using the memory interface.

To illustrate how scalar layering works, consider the
operation of SIMD data-parallel execution pipelines as
described earlier on a four-element vector consisting of
one word each. Figure 4(a) illustrates how a processor
executes a SIMD instruction by performing the same op-
eration, in parallel, on each element. In the example, the

[I 2 |

G

DG -)l
e

[y 'm, J'm, T'm,]

Figure 4. How scalar layering works. Scalar layering aligns scalar data under compiler control. (a) SIMD op-
eration, (b) alignment mismatch of scalar elements in vector registers without data alignment, (c) operations with
scalar layering, compiler-managed scalar extraction, and data alignment, and (d) subvector write using optimized

read-modify-write sequence.

SIMD instruction sources two vector registers containing
elements x0, x1, x2, and x3 and y0, y1, y2, and y3, re-
spectively, and yields four results: z0 = x0 - y0; z1 = x1
-yl; z2 =x2 - y2; and z3 = x3 - y3 in a vector register
allocated to result z0, z1, z2, and z3. Figure 4(b) shows
that SIMD data-parallel operations cannot readily be used

for operations on scalar elements with arbitrary alignment
loaded into a vector register using the quadword load op-
erations. Instead, data has to be aligned to the same slot.

Figure 4(c) shows the compilation of scalar code to ex-
ecute on a SIMD engine. The example is based on per-
forming the computation in the leftmost slot, but a com-

piler, or programmer, can align scalar operands to any
common slot to perform operations. On the basis of the
alignment that the scalar word address specifies, rotate
instructions align scalar data in the selected vector slot
from the quadword that memory access retrieves (rotate
instructions obtain their shift count from the vector’s left-
most slot). Once the SPU aligns memory operands to
a common slot, the SPU will perform all computations
across the entire SIMD vector.

Figure 4(d) illustrates the use of a read-modify-write
sequence to store scalar data via the quadword-oriented
storage interface. To process scalar operations, the SPU
uses a compiler-generated layering sequence for memory
accesses when it must merge scalar data into memory.

The SPU inserts a scalar element in a quadword by us-
ing the shuffle instruction to route bytes of data from the
two input registers. To implement the read-modify-write
sequence, the SPU also supports a “generate controls for
insertion” instruction, which generates a control word to
steer the shuffle instruction to insert a byte or halfword or
word element into a position the memory address speci-
fies.

All streaming accesses for data-parallel SIMD pro-
cessing, except the first and last accesses, which could
represent partial accesses for improperly aligned streams
can exploit accesses without the latency, power, and area
penalty of implementing an additional merge network in
the memory store path. Streaming accesses predominate
in a PDPC architecture. By making data alignment dis-
tinct from memory access with a separate instruction, the
compiler can attempt to optimize data layout to reduce
this cost. Aligned quadword loads do not incur the latency
penalty for extracting and aligning subwords, because the
memory interface is optimized to transfer and store en-
tire quadwords in both memory and registers. This cost
avoidance directly benefits SIMD vector operations.

Scalar code sequences also do not incur the extraction
and alignment penalty implicit in memory accesses. Our
solution was to make a large register file available so that
the SPU can access many variables that would otherwise
spill into memory directly from the register file. Reducing
the number of opcode points (and hence the opcode field
size) assigned to different load and store variants makes
it easier to encode multiple 7-bit register specifiers in a
32-bit instruction word.

In generating code for the SPU, a compiler can allo-

cate scalar values that must be spilled during register al-
location to a full quadword spill area to spill and reload
the entire register. Additionally, it can tailor function call
and return sequences to start and end spilling at aligned
boundaries. In this way, these sequences can efficiently
pack scalar call site spills and reduce memory traffic and
instruction count. Exploiting statically known alignment
and selecting an optimized slot within the vector for in-
termediate computations are still other ways to achieve
compiler-based performance improvements.

Our decision to use data-parallel execution paths to im-
plement scalar processing simplifies the control logic to
dispatch instructions by reducing the number of execution
units to which the SPU can issue the instruction. This
also results in reduced fan-out and wire load on the is-
sue logic, less dependence checking and bypass logic, and
fewer register file ports. The PDPC architecture also facil-
itates the sharing of scalar and data parallel results. This
in turn makes SIMD vectorization more efficient because
of the lower data synchronization and movement cost.

5 Optimizing scalar processing

Many instructions require scalar operands, but in an ar-
chitecture with only vector registers, it is not sufficient to
specify a register containing a vector of multiple scalar
values. To resolve scalar operand references, the SPU ar-
chitecture convention is to locate these operands in the
vector’s “preferred slot”, which as Figure 5 shows, cor-
responds to the leftmost word element slot, consisting of
bytes b0 to b3. Instructions using the preferred slot con-
cept include shift and rotate instructions operating across
an entire quadword to specify the shift amount, mem-
ory load and store instructions that require an address,
and branch instructions that use the preferred slot for
branch conditions (for conditional branches) and branch
addresses (for register-indirect branches). Branch and link
instructions also use the preferred slot to deposit the func-
tion return address in the return address register, which the
Cell application binary interface (ABI) allocates to vector
register 0.

The preferred slot is the expected location for scalar
parameters to SPU instructions, but scalar computation
can occur in any slot. The preferred slot also serves as
a software abstraction in the ABI to identify the location

of scalar parameters on function calls and as function re-
turn values. Interprocedural register allocation can choose
alternative locations to pass scalar values across function
call boundaries.

Initially, the SPU architecture specification called for
an indicator bit in the instruction encoding for all vec-
tor instructions to indicate their use for scalar operations.
This meant that the processor would compute only results
in the preferred slot range and essentially deenergized
up to 75 percent of the data path. However, a test chip
showed that this optimization offered only limited power
reduction because of the focus on data-parallel process-
ing (most instructions exploit multiple parallel execution
lanes of a SIMD data path) as well as the increased con-
trol complexity of supporting different instruction types.
When operands of different widths are in the data path,
control decision complexity increases. For example, by-
passing becomes nonuniform when bypassing between
data of different widths. This in turn requires multiple
independent bypass networks and the ability to handle
boundary conditions, such as injecting default data val-
ues. Thus, if enough instructions in the mix are wide,
the power savings potential drops, overshadowed by the
increased power spent in more complex control and data
routing.

For that reason, the current SPU architecture specifica-
tion contains only vector instruction forms, and the scalar
nature of an instruction can be inferred only from how
the compiler uses that instruction, not by any form. The
compiler selects a slot position in a vector in which to
perform intermediate computations and from which to re-
trieve the result. The hardware is completely oblivious
of this use and always performs the specified operation
across all slots.

Removing explicit scalar indication, however, is pre-
cisely what frees the software to perform scalar operations
in any element slots of a vector. The compiler can opti-
mize alignment handling and eliminate previously com-
pulsory scalar data alignment to the preferred slot. Unify-
ing instruction encoding in this way makes more opcode
bits available to encode operations with up to four distinct
operands from a 128-entry register file.

Preferred Siot
o 1 2 2 'l
BYTE

HALFWORD I

Byte Index
3 e s

Registers

| ADORESS I
WORD I

| QUAD WORD

DOUBLEWORD

Figure 5: Data placement of scalar values in a vector reg-
ister using the preferred slot. SPU architecture convention
allocates scalar values in the leftmost slot for instruction
operands and function call interfaces, but the compiler can
optimize code to perform scalar computation in any vec-
tor element slot.

6 Data-parallel conditional execu-
tion

Many legacy architectures that focus on scalar computa-
tion emphasize the use of conditional test and branch to
select from possible data sources. Instead, following the
focus on PDPC, we made data-parallel select the preferred
method for implementing conditional computation. The
data-parallel select instruction takes two data inputs and
a control input (all stored in the unified register file) and
independently selects one of the two data inputs for each
vector slot under the control of the select control input.
Using data-parallel select to compute the result of condi-
tional program flow integrates conditional operations into
SIMD-based computation by eliminating the need to con-
vert between scalar and vector representation. The result-
ing vectorized code thus contains conditional expressions,
which in turn lets the SPU execute conditional execution
sequences in parallel.

As Figure 6 shows, to use conditional branch opera-
tions, the compiler must translate a simple element-wise
data selection into a sequence of scalar conditional tests,
each followed by a data-dependent branch. In addition
to the sequential schedule, each individual branch is data
dependent and many branches are prone to misprediction
by even the most sophisticated dynamic prediction algo-
rithm. This results in a long latency control-flow dom-
inated instruction schedule as shown in Figure 6 on the
right side, exacerbated by a significant penalty for each
mispredicted branch. The control-dominated test-and-

L 3 a[0]>b[0]

mi0j=al0]"2; m{0=bio}'3;

for (i =0; i< VL; i++)

if (a[i]>b[i]) 3 a[11>b[1]
m(i] = a[i]*2; QC', miij=al1)2; mAl=b[1]3;
©
else —_ a[2]>b[2]
. ; o
m[i] = b[i]*3;
[l =b0s; s mi2lealz2 b
-

al31>b[3]

m[3J=al3]'2; m3=b[3)'3;

s[0J=a[0}>b[0] s[al=al1]>bl1] s[2l=al2j>b{2) s(3)=al3]>b[3]

ao]=al0]'2; blOJ=bO]3; aly=allz; b[U=b[U'E; a[2=al2l'2 bJ=b2E; a3=aldz bE=bLS;

mio]=s{0]?
a[0]:b'[0]

m[1j=s[1)?
a[i]:bii]

mz=s[2]?
al2rpiz)

m[3J=s[3)?
303

Figure 6: The use of data-parallel select to exploit data
parallelism. (a) Conditional operations are integrated into
SIMD-based computation. (b) Using traditional code gen-
eration techniques, the source code is turned into a se-
quence of test and conditional branch instructions for each
vector element. High branch misprediction rates of data-
dependent branches and data conversion between vec-
tor and scalar representations incur long schedules. (c)
Exploiting data-parallel conditional execution with data-
parallel select allows the processing of conditional oper-
ations concurrently on multiple vector elements. In ad-
dition to exploiting data parallelism, data-parallel select
purges hard-to-predict data-dependent branches from the
instruction mix.

branch sequence must be embedded between code to un-
pack a vector into a sequence of scalar values and fol-
lowed by code to reassemble the scalar result into a vec-
tor.

The preferred method for conditional execution on the
SPU is to exploit data parallelism and implement con-
ditional execution with a short sequence of data-parallel
SIMD instructions, as shown at the bottom of Figure 6.
The data-parallel select sequence replaces the lengthy
test-and-branch sequence with four instructions (two mul-
tiplies, one compare, and a data-parallel select instruc-
tion) operating on a vector of four elements. By using
data-parallel if-conversion to execute both paths of a con-

ditional assignment, each path can execute on the full vec-
tor, effectively reducing the number of executed blocks
from once for each vector element (using scalar branch-
based code) to once for each execution path.

This emphasis on parallel execution offers signifi-
cant advantages over the control-dominated compare-and-
branch sequence. If-conversion creates opportunities for
exploiting transformations that enhance instruction-level
parallelism, like software pipelining. Such transforma-
tions become easier to perform with a simple dataflow
graph.

In addition to these familiar benefits of if-conversion,
data-parallel select is a basis for exploiting data-level par-
allelism. Historically, predicated architectures have suf-
fered from unbalanced then-else paths, where one execu-
tion path is inordinately longer than the other, or the distri-
bution between execution probabilities is widely skewed.
In a data-parallel environment, these trade-offs are more
favorable for data-parallel select.

In applying predication to scalar code, the number of
executed instructions corresponds to the sum of the in-
structions executed along either execution path. To off-
set this increased instruction count, scalar predication
reduces branch prediction penalties and improves code
scheduling.

In applying predication to SIMD execution, data-
parallel select offers an aggregate path length advantage
by exploiting data-level parallel SIMD processing in ad-
dition to the traditional advantages of predication. This
SIMD path length advantage offsets the potential cost
of misbalanced then-else paths. Predication applied to
SIMD execution offers to reduce path length to the ag-
gregate path length of the sum of instructions along one
instance of the short path and one instance of the long
path, compared to the sum of instructions on p * w short
paths, and (1 — p) = w long paths, where p is the probabil-
ity of executing a short path for a given execution, and w
is vector width. This makes data-parallel select attractive
except for very skewed probabilities or highly nonuniform
distributions within these probabilities.

Essentially, data-parallel select turns a data-driven
branch sequence prone to high misprediction rates into a
dataflow operation. It removes conditions that are hard to
predict statically from the instruction mix, thus skewing
the mix toward easier-to-predict branches [7]. Increasing
sequential control flow also increases opportunities for se-

quential fetch and reinforces the advantages of the static
scheduling architecture.

The data-parallel select architecture integrates with the
data-parallel compare architecture. All compare opera-
tions produce a data-width-specific control word to feed
as control input into the data-parallel select operation. In
addition, the result in the leftmost element slot (preferred
slot) is potential input for a conditional branch instruction.

The SPU implements only two types of compare oper-
ations for each data type: one for equality and one for or-
dering. Compilers and assembly language programmers
can derive all other conditions by inverting the order of
operands (for compare and select operations) and by test-
ing the condition or the inverted condition (for branch in-
structions).

7 Ensuring data fidelity

Many existing SIMD instruction sets emphasize process-
ing throughput over data quality by using short data types
and saturating arithmetic. In contrast, the SPU architec-
ture’s data type and operation repertoire emphasize half-
word and word data types with traditional two’s comple-
ment integer arithmetic and floating-point formats. The
repertoire also provides a carefully selected set of byte
operations to support efficient implementation of video
compression and cryptography algorithms.

To avoid the data fidelity loss associated with saturat-
ing roundoff, the SPU does not support integer-saturating
arithmetic, usually attractive for low-cost media rendering
devices. Instead, the SPU programming model extends
narrow data types and avoids repeated roundoff during
computation. Pack-and-saturate operations pack the final
results to reduce the memaory footprint.

Applications that require saturating arithmetic exploit
floating-point operations, which are naturally saturating
and offer a wide dynamic range. The SPU implements
single-precision floating-point arithmetic optimized for
graphics with an IEEE-compatible data format. The
graphics-optimized format eliminates traps and excep-
tions associated with IEEE arithmetic and substitutes ap-
propriate default values to avoid disrupting real-time me-
dia processing from overflow or underflow exception con-
ditions.

The SPU also implements IEEE-compatible double-

precision floating point arithmetic with full support for
IEEE-compatible rounding, NaN-handling, overflow and
underflow indication, and exception conditions.

8 Deterministic data delivery

Coherence traffic, cache-miss handling, and latencies
from variable memory accesses negatively affect compiler
scheduling. To avoid these costs, the SPE includes sup-
port for a high-performance local store that applications
can use in conjunction with data privatization.

All memory operations that the SPU executes refer to
the address space of this local store. Each SPU uses a
private local store, which provides a second level of data
storage beyond the large register file. Current SPU im-
plementations support a local store of 256 Kbytes, with
architectural support for up to a 4-Gbyte address range.
A local store limit register (LSLR) lets designers limit
the addressable memory range to promote compatibility
among generations of implementations with possibly dif-
ferent local store sizes.

From a hardware perspective, a local store allows
denser implementation than cache memory by eliminat-
ing tags and associated cache maintenance state as well as
cache control logic. Eliminating cache coherence traffic
also reduces the amount of necessary snoop traffic, which
makes the element interconnect bus more efficient.

Figure 2 shows the difference between the 256-Kbyte
SPU local store and a traditional 512-Kbyte L2 cache
with support logic. Eliminating complex and time-critical
cache-miss handling lets the SPU deliver lower latency
external data access. From a hardware-software codesign
perspective, replacing a sequence of cache-miss-induced
single cache line requests (typically 32 to 128 bytes) with
a block data transfer request of up to 16 Kbytes increases
the efficiency in using the memory interface, since ap-
plications can fetch data ahead of use, on the basis of
application behavior. The SMF controller implements
the SPE’s interface to the element interconnect bus for
data transfer and synchronization. Because the SMF con-
troller is an independent processing unit optimized for
data transfer, each SPE can perform data processing and
data transfer using software pipelining and double buffer-
ing of data transfer requests in parallel, making more par-
allelism available to application programmers [3].

10

From a software perspective, the local store offers low
and deterministic access latency, which improves the ef-
fectiveness of many compiler-based optimizations to hide
latency, such as instruction scheduling, loop unrolling,
and software pipelining [2].

Both memory read and write operations return a sin-
gle aligned quadword by truncating the low-order four
address bits. When the application must load data that
crosses a quadword boundary, the SPU uses the shuffle
byte operation to perform a sequence involving two load
operations and a data merge operation. The Cell ABI re-
quires alignment of scalar values on their natural align-
ment boundary (not crossing a quadword boundary), but
vector words can cross the quadword boundary because
of data access patterns. Thus, even if the underlying ar-
ray is aligned at a 128-bit boundary, selecting subarrays
could yield unaligned data values (accessing the second
element of a 128-bit aligned array, for example, yields an
unaligned vector address).

Unaligned load operations might seem to provide relief
in this context, but all implementation options that sup-
port unaligned access have a substantial cost. One imple-
mentation option is to preallocate bandwidth to perform
two accesses at instruction issue time, thereby reducing
the available bandwidth by 2 times even if no unaligned
accesses are required. Another option is to optimistically
assume aligned access, perform a pipeline flush, and re-
execute a recovery sequence in the event of unaligned ac-
cesses. However, every unaligned access incurs a sub-
stantial performance penalty. Because both these solu-
tions have high penalties, we opted to use a compiler-
aided alignment policy. When the compiler cannot de-
termine alignment statically, the compiler generates ex-
plicit dual-load and data-merge sequences for vector ac-
cesses. Most vector accesses are part of longer loops, so
the actual throughput of load operations approaches one
load per quadword loaded for common unit stride streams,
since two iterations can share each load operation as an
iteration-carried dependence. Compilation techniques to
exploit this feature are available in the literature [2].

The local store also serves as storage for program in-
structions that the SPU will execute (see Figure 2). The
SPU fetches instructions with 128-byte accesses from a
wide fetch port, delivering 32 instructions per access. It
stores instructions in instruction line buffers and delivers
them to the execution pipelines. Exploiting wide accesses

11

for both instruction and data accesses decreases the neces-
sary accesses and improves power efficiency. Instruction
and data accesses and the SMF controller share a single
SRAM port, which improves memory density and reduces
the latency for local store access.

9 Statically scheduled instruction-
level parallelism

In the Cell BE, the SPU front end implements statically
scheduled instruction fetch to reduce the cost of dynamic
instruction scheduling hardware. However, the SPU ar-
chitecture is not limited to implementations using static
scheduling.

The SPU architecture is bundle-oriented and supports
the delivery of up to two instructions per cycle to the data
parallel back end. All instructions respect their depen-
dencies to ensure sequential program semantics for future
architectural compatibility and to ensure good code den-
sity.

The use of compiler-generated bundling simplifies in-
struction routing logic. By relying on compile-time
scheduling to optimize instruction layout and encode in-
struction streams in bundles, the SPU eliminates much of
the overhead of dynamic scheduling. As Figure 7 shows,
instruction execution resources fall into one of two ex-
ecution complexes: odd or even. Instruction bundles
can dual-issue instructions if a bundle is allocated at an
even instruction address (an address that is a multiple of
8 bytes), and the two bundled instructions have no de-
pendencies. In a dual-issued bundle, the SPU executes
the first instruction in the even execution complex, and
a second instruction in the odd execution complex. As
the figure shows, the even execution complex consists of
fixed and floating-point execution pipelines; the odd exe-
cution complex includes memory access and data format-
ting pipelines, as well as branches and channel instruc-
tions for communicating with the SMF controller.

We also applied the idea of statically scheduled in-
struction execution to the branch prediction architecture,
which implements static branch prediction with a prepare-
to-branch instruction. The compiler inserts this branch
hint instruction to predict the target of branch instructions
and initiate instruction prefetch from the predicted branch

SPE PIPELINE FRONT END

SPE PIPELINE BACK END

Branch I nstruction

-

Permute I nstruction

L

L oad/Store I nstruction

odd execution complex

IF Instruction Fetch

IB Instruction Buffer
— | ID Instruction Decode

IS Instruction Issue

RF Register File Access
— | EX Execution

WB Write Back

Fixed Point | nstruction

Floating Point I nstruction

-5 B6- B BE - 5E - - - WE -

even execution complex

—

Figure 7: Microarchitecture for the SPE pipeline. The SPE architecture is bundle-oriented, supporting the delivery of
up to two instructions per cycle to the data-parallel back end. The architecture supports very high frequency operation
with comparatively modest pipeline depths by reducing architectural complexity.

target address. The prepare-to-branch instruction accepts
two addresses, a trigger address and a target address, and
fetches instructions from the specified target address into
a branch target buffer. When instruction fetch reaches the
trigger address, the instruction stream continues execution
with instructions from the target buffer to avoid a branch
delay penalty. Both mispredicted and non-hinted taken
branches incur a misprediction penalty.

In addition to the static branch prediction, the archi-
tecture supports compiler-controlled sequential instruc-
tion fetch primitives to avoid instruction starvation during
bursts of high-priority data memory accesses that might

12

otherwise preempt the instruction fetches. Instruction

fetches return a full 128-byte line per access.

10 Simplicity and synergy

We defined the SPU architecture from an intense focus
on simplicity and synergy. Our overarching goal was to
avoid inefficient and expensive superpipelining in favor
of optimizing for the common performance case. The
compiler aids in layering traditional hardware functions in
software to streamline the architecture further and elimi-

scalar
layering

shorter
pipeline

e

instruction
bundling

simpler
March

. predictio
cheduling
V 4

large
register

data
parallel

static

latency

Ao

Figure 8: How design goals and decisions have led to synergy across the architecture. To the left are the main three
design goals, while at the far right are design decisions. Interdependence increases in the center concepts.

nate nonessential functionality, thereby shortening laten-
cies for common-case operations.

The synergy comes from mutually reinforcing design
decisions, as Figure 8 illustrates.

At the left are the main design goals: high computa-
tional density, high frequency, and shorter pipelines. We
believe that we have successfully met these goals and
avoided the performance degradation often found in high-
frequency designs [10].

To the right are some of the design decisions, such
as large register file, data-parallel select, and large basic
blocks.

A simpler microarchitecture (left center) reduces area

13

use, design complexity, and critical decision paths, which
leads to increased computational density, a high oper-
ating frequency, and a short pipeline. The simpler mi-
croarchitecture improves the efficiency of static schedul-
ing by reducing the constraints on instruction scheduling
and shortening pipeline latencies that the schedule must
cover. Instruction bundling simplifies the microarchitec-
ture by streamlining instruction delivery. A simpler mi-
croarchitecture in turn eliminates complex rules on in-
struction placement and thus makes bundling more effi-
cient. Instruction bundling benefits from static scheduling
to schedule instructions properly and in turn provides an
efficient encoding of statically scheduled instructions.

Wide data paths simplify the microarchitecture by ef-
ficiently exploiting data-level parallelism expressed using
SIMD instructions. The use of SIMD instructions reduces
the total number of instructions and avoids the need to
build wider issue architectures to map data-level paral-
lelism onto instruction level parallelism. Finally, instruc-
tion bundles map efficiently onto the wide instruction de-
livery data path.

The local store aids static scheduling by providing low
latency, deterministic memory access. It also simplifies
the microarchitecture by eliminating tag-match compare
and late hit-miss detection, miss recovery, and coherence
management associated with cache architectures.

Many design decisions in Figure 8 provide additional
synergistic reinforcements. For example, static schedul-
ing magnifies the benefits of the large register file, and
the large register file makes it possible to generate better
schedules by giving the compiler (or programmer) more
instruction scheduling freedom and, indirectly, by provid-
ing more registers for advanced optimizations that target
instruction-level parallelism (ILP optimizations).

The large register file also exploits data-parallel se-
lect operations by providing registers for if-conversion.
Exploiting data-parallel select helps code efficiency by
supporting data-parallel execution of conditional program
flow; building larger basic blocks, which benefit other ILP
optimizations; and exploiting sequential fetch. Sequential
fetch with large basic blocks, in turn, is key for the effec-
tiveness of sequential fetch with the wide local store port,
which allows efficient sharing of the single port. Sharing a
single port then contributes to the local store’s efficiency.

11 Conclusions

Synergistic processing clearly drives Cell’s performance.
The streamlined architecture provides an efficient multi-
threaded execution environment for both scalar and SIMD
threads and represents a reaffirmation of the RISC prin-
ciples of combining leading edge architecture and com-
piler optimizations. These design decisions have enabled
the Cell BE to deliver unprecedented supercomputer-class
compute power for consumer applications to compute-
intensive server workloads.

14

Acknowledgments

We thank Jim Kahle, Ted Maeurer, Jaime Moreno, and
Alexandre Eichenberger for their many comments and
suggestions in the preparation of this work. We also thank
Valentina Salapura for her help and numerous suggestions
in the preparation of this article.

References

[1] Keith Diefendorff, Pradeep K. Dubey, Ron
Hochsprung, and Hunter Scales. Altivec extension
to PowerPC accelerates media processing. |EEE
Micro, pages 85-95, March 2000.

[2] A. Eichenberger, K. O’Brien, K. O’Brien, P. Wu,
T. Chen, P. Oden D. Prener, J, Shepherd, B. So,
Z. Sura, A Wang, T. Zhang, P. Zhao, and
M. Gschwind. Optimizing compiler for the cell pro-
cessor. In 14th International Conference on Par-
allel Architectures and Compilation Techniques, St.

Louis, MO, September 2005.
3]

Michael Gschwind. Chip multiprocessing and the
cell broadband engine. In ACM Computing Fron-

tiers 2006, May 2006.
[4]

Peter Hofstee. Power efficient processor architecture
and the Cell processor. In 11th International Sympo-
sium on High-Performance Computer Architecture.

IEEE, February 2005.

[5] James A. Kahle, Michael N. Day, H. Peter Hofs-
tee, Charles R. Johns, Theodore R. Maeurer, and
David Shippy. Introduction to the Cell multipro-
cessor. I1BM Journal of Research and Development,

49(4/5), 2005.
[6]

S. Larsen and S. Amarasinghe. Exploiting super-
word parallelism with multimedia instructions sets.
In Programming Language Design and Implementa-

tion, 2000.

[7] Scott A. Mahlke, Richard E. Hank, Roger A. Bring-
mann, John C. Gyllenhaal, David M. Gallagher,
and Wen mei W. Hwu. Characterizing the im-

pact of predicated execution on branch prediction.

[8]

[9]

[10]

In 27th International Symposium on Microarchitec-
ture, pages 217-227, 1994.

Dac Pham, S. Asano, M. Bolliger, M. N. Day, H. P.
Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty,
Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak,
M. Suzuoki, M. Wang, J. Warnock, S. Weitzel,
D. Wendel, T. Yamazaki, and K. Yazawa. The de-
sign and implementation of a first-generation CELL
processor. In International Solid-Sate Circuits Con-
ference Technical Digest, February 2005.

Valentina Salapura, Randy Bickford, Matthias
Blumrich, Arthur A. Bright, Dong Chen, Paul
Coteus, Alan Gara, Mark Giampapa, Michael
Gschwind, Manish Gupta, Shawn Hall, Ruud A.
Haring, Philip Heidelberger, Dirk Hoenicke, Ger-
ard V. Kopcsay, Martin Ohmacht, Rick A. Rand,
Todd Takken, and Pavlos Vranas. Power and per-
formance optimization at the system level. In ACM
Computing Frontiers 2005. ACM, May 2005.

Viji Srinivasan, David Brooks, Michael Gschwind,
Pradip Bose, Philip Emma, Victor Zyuban, and
Philip Strenski. Optimizing pipelines for power
and performance. In 35th International Symposium
on Microarchitecture, Istanbul, Turkey, December
2002.

15

