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Abstract. The approach of using ontology reasoning to cleanse the out-
put of information extraction tools was first articulated in SemantiClean.
A limiting factor in applying this approach has been that ontology rea-
soning to find inconsistencies does not scale to the size of data produced
by information extraction tools. In this paper, we describe techniques to
scale inconsistency detection, and illustrate the use of our techniques to
produce a consistent subset of a knowledge base with several thousand
inconsistencies.

1 Introduction

The original vision of the semantic web was concerned with publishing the se-
mantics of, and inter-connecting, the back-end databases that generate the vast
majority of HTML content. A common misunderstanding about the semantic
web is that the vision somehow hinges on manual markup of natural language
text on web pages with semantic labels the way the original webs HTML markup
was done.

While this is a misunderstanding and not really a valid criticism of the seman-
tic web vision, the vast majority of knowledge on the web, and in organizations,
is in natural language text. Exploiting this knowledge in automated ways is an
important scientific and economic problem, and should not be ignored, however
it is not always clear whether semantic web technology can really make any
difference.

In previous work, we have reported on SemantiClean [1], a system to clean
up natural language processing results using an OWL-DL reasoner that has
been shown in experiments to improve the precision of relation analysis. The
main shortcomings of the SemantiClean work was scalability In this paper,
we report on initial experiments to use a Scalable Highly Expressive Reasoner
(SHER) [2] [3], to bring the SemantiClean approach up to the scale of current
information extraction technology and to provide explanations for removed as-
sertions.



The paper is organized as follows. After a brief background section, Section
3 presents our approach for scalable cleanup. Section 4 discusses presentation
of explanations for removed assertions. The results of our experimental evalua-
tion is presented in Section 5. In Section 6, we describe more advanced cleanup
strategies. Section 7 and 8 provide the related work and conclusions.

2 Background

2.1 SemantiClean

The most problematic kind of extraction produced by natural language compo-
nents we have experienced is relation extraction - the identification of relation-
ships and their arguments in natural language text. A common type of error we
see in extracted relations is the violation of simple domain and range constraints.
For example, in the following sentence:

... the decision in September 1991 to withdraw tactical nuclear bombs,
missiles and torpedoes from US Navy ships ...

our analytics extract an ownership relation in the italicized text between nuclear
(annotated as a weapon), and bombs (also a weapon), which maps to a ownerOf

relation in the ontology. The ownerOf relation has a restriction limiting the
domain to Person or Organization or GPE and a disjointness constraint between
each of these and Weapon.

The SemantiClean approach is a simple one. We start with an ontology ex-
pressed in OWL-DL that must include negation (i.e. it must be possible to gen-
erate a contradiction in the Abox). Relations are extracted from text and stored
as an RDF model that instantiates the ontology. As the relations are extracted
into RDF, we construct an intermediate model. With each relation added, we
run the model through a consistency check using Pellet [4], an in-memory rea-
soner. If it is not consistent, we drop the triple, if it is consistent, we add the
triple to the final RDF model.

This triple-at-a-time technique has two problems. The main problem is scale:
our information extraction technology can process, on normal desktop hardware,
roughly a million of documents a day, the SemantiClean system could process
hundreds of documents a day. Our analytics today produce about 70 entities
(RDF nodes) and about 40 relations (RDF triples) per document, but these
numbers can easily change. The point is that the size of the RDF graph could
be two orders of magnitude larger than the number of documents.

A second problem is an order dependency created by the triple-by-triple
approach of dropping the triple that, when added, causes the knowledge-base
to change from consistent to inconsistent. When constraint violations arise from
multiple triples together, it is possible that the dropped triple is not the incorrect
one.

In two separate experiments, we found SemantiClean improved overall preci-
sion of relation extraction by 8% and 15%. As we continue to experiment, there



is evidence to indicate that the precision improvement may increase with the
size of the graph, however we have reached the resource limits of Pellet on con-
ventional 64-bit hardware. In the next sections, we describe techniques to scale
cleanup.

2.2 Summarization

The techniques we apply in this paper assume ontologies of SHIN expressive-
ness. A key feature of our approach is the construction of a summary Abox A′

corresponding to the Abox A. An individual in A′ represents individuals in A
which are members of the same concepts. Formally, an Abox A′ is a summary
Abox of a SHIN Abox A if there is a mapping function f that satisfies the
following constraints:

(1) if a : C ∈ A then f(a) : C ∈ A′

(2) if R(a, b) ∈ A then R(f(a), f(b)) ∈ A′

(3) if a ˙6=b ∈ A then f(a) ˙6=f(b) ∈ A′

The image of an individual u in A′ is the set, denoted Image(u), of individuals
a in A such that f(a) = u. The accurate image of a subset L of a summary A′,
denoted AccImage(L), is the subset of A defined as AccImage(L) = {a : C ∈
A|f(a) : C ∈ L} ∪ {R(a, b) ∈ A|R(f(a), f(b)) ∈ L} ∪ {a ˙6=b ∈ A|f(a) ˙6=f(b) ∈ L}

If the summary Abox A′, obtained by applying the mapping function f to A
is consistent w.r.t. a Tbox T and a Rbox R, then A is consistent w.r.t. T and
R [2]. However, the converse does not hold.

In general, the summary Abox A′ is dramatically smaller than the original
Abox A.

2.3 Refinement

If the summary Abox is inconsistent,then, in general, we cannot directly conclude
anything about the original Abox consistency status.

Our approach [3] for resolving summary Abox inconsistencies is to iteratively
refine the summary. A refinement step consists of splitting a given summary in-
dividual by the sets of role assertions that are present in the original Abox for
the Abox individuals mapped to the given summary individual. Refinement in-
creases the size and precision of the summary, and preserves the summary Abox
properties(1)-(3) defined in the previous section. Our strategy is to refine only
individuals that are part of a summary Abox justification, where a justification
is a minimal set of assertions which, when taken together, imply a logical contra-
diction, thus making the entire Abox inconsistent. In some cases, inconsistencies
disappear through refinement. Otherwise, when a justification J is precise (as
defined below in Definition 1) we typically know that we have converged on a
real inconsistency(see [3] for more details).

Definition 1 Let A′ be a summary Abox of an Abox A obtained through the summary
mapping f . Let H be a subset of A′. We say that an individual s ∈ H is precise w.r.t.
H iff the following conditions are satisfied:



1. for all individuals t ∈ H and for all roles R, R(s, t) ∈ H (resp. R(t, s) ∈ H) implies
that, for all individuals a ∈ A such that f(a) = s, there is an individual b ∈ A such
that f(b) = t and R(a, b) ∈ A (resp. R(b, a) ∈ A); and

2. for all individuals t ∈ H, s ˙6=t ∈ H (resp. t ˙6=s ∈ H) implies that, for all individuals
a ∈ A such that f(a) = s, there is an individual b ∈ A such that f(b) = t and
a ˙6=b ∈ A (resp. b ˙6=a ∈ A); and

3. There is an individual a ∈ A such that f(a) = s; and

4. s : C ∈ H implies that, for all individuals a ∈ A such that f(a) = s, a : C ∈ A

We say that H is precise iff all its individuals are precise w.r.t. H.

3 Summarization and Refinement for Abox Cleanup

In previous work [2] [3], we established that summarization and refinement tech-
niques enable scalable consistency checking and membership query answering
over very large and expressive knowledge bases. In this section, we show how
these techniques can be adapted to address the issue of detecting and resolving
sources of inconsistencies in large knowledge bases such as those generated by
text analytic tools.

3.1 The cleanup problem

The Abox cleanup problem consists in identifying consistent subsets of an incon-
sistent Abox. Ideally, it is desirable to identify maximal consistent subsets, i.e.
subsets that are consistent but the addition of a single assertion from the incon-
sistent Abox yields an inconsistency. Unfortunately, computing a single maximal
consistency subset is known to be intractable even for realistic small and medium
size expressive Aboxes [5].

In our approach, we do not require a cleansed Abox to be a maximal consis-
tent subset. However, each removed assertion must be associated with a unique
justification containing it in the original Abox. Since an assertion is removed to
avoid the inconsistency created by its associated justification, two distinct as-
sertions must not be associated with the same justification (there is no need to
remove more than one assertion from a justification to avoid an inconsistency).
Finally, for two justifications J1 and J2 having assertions x and y in common, if
the justification associated with x is J1, then J2 cannot be associated with y (it
is clearly not optimal to remove both x and y to avoid the inconsistencies due to
J1 and J2). When these three conditions are satisfied, we say that the cleansed
Abox is a justification-based consistent subset as formally defined below:

Definition 2 A justification-based consistent subset CA of an inconsistent Abox
A w.r.t. its Tbox T and Rbox R is a consistent subset of A w.r.t. T and R such
that there is a set E of justifications of A and a bijection e from A− CA to E

such that, for assertions x and y in A−CA, the following hold: (a) x ∈ e(x), and
(b) for J1 and J2 in E such that {x, y} ⊆ J1∩J2, e(x) = J1 implies e(y) 6= J2.



A maximal consistent subset is always a justification-based consistent subset,
but the converse does not hold if non-disjoint justifications exist. The follow-
ing example illustrates the differences between maximal consistent subsets and
justification-based consistent subsets.

Fig. 1. Simple Abox

R = {Range(S) = ∀P.A,Range(P ) = ¬A,Range(T ) = A,Range(R) =
∀T.¬A}

Computing a justification-based consistent subset does not require an ex-
haustive search of justifications. For example, Algorithm 1 provides a straight-
forward computation of a justification-based consistent subset of an inconsistent
Abox. For each inconsistency justification found, one of its assertions is removed
from the Abox, and the algorithm continues looking for further justifications
and removing axioms from the Abox until it becomes consistent. Likewise, the
triple-at-time approach described in our previous work [1] yields a justification-
based consistent subset. However, depending on the order in which justifications
are found and the choices of removed assertions, a particular execution of these
two algorithms might not result in a maximal consistent subset. For instance in
the previous example (Figure 1), if an execution of Algorithm 1 first discovers
J1 and J2 (see below) and chooses to remove S(a, b) and R(e, d), it will at some
point find J3 and be forced to remove either P (b, c) or T (d, c); i.e. it will not
find a maximal consistent subset.

J1 = {S(a, b), P (b, c)} J2 = {R(e, d), T (d, c)} J3 = {P (b, c), T (d, c)} J4 =
{S(a, g), P (g, h)} AllJustifications = {J1, J2, J3, J4}

MA = A− {P (b, c), R(e, d), S(a, g)} JCA = MA − {S(a, b)}

CA1 = JCA − {T (c, f)} CA2 = JCA − {P (g, h)}

MA is a maximal consistent subset of A. JCA is clearly not maximal (it
is a proper subset of MA, a maximal consistent subset). However, JCA is
a justification-based consistent subset of A: the set E of explanations is the
set of all justifications, and e, defined as e(S(a, b)) = J1, e(R(e, d)) = J2,
e(P (b, c)) = J3, and e(S(a, g)) = J4, satisfies conditions (a) and (b) of Defi-
nition 2. CA1 is not a justification-based consistent subset because T (c, f) is not
present in any justification. CA2 is not a justification-based consistent subset
because S(a, g) and P (g, h) have both been removed, but they only appear in a
single justification, J4.

The most important limitation of the previously described algorithms to
compute a justification-based consistent subset is their obvious inability to scale



to large and expressive Aboxes containing many inconsistencies, such as those
generated from text analytic tools. This is an issue we address in this paper.

NaiveJustificationConsistentSubset(Abox A, Tbox T , Rbox R)
begin

A←A;
while inconsistent(A, T , R) do

Find a justification J in A;
select an Abox assertion x in J ;
A ← A− {x} ;

end

return A ;
end

Algorithm 1: Naive Justification-based Consistent Subset Computation

3.2 Scalable Approach to Abox Cleanup

In order to scale the computation of a justification-based consistent subset of
an Abox A, our approach identifies justifications in the dramatically reduced
summary A′ of A. Justifications are then refined until they become precise or
they disappear from the refined summary. Our Algorithm 2 simulates on A′ an
execution of the naive algorithm 1 applied to A.

For an acyclic (considering the undirected graph induced by role and differ-
entFrom assertions) precise justification in the summary A′, if it has at least
one role assertion, one of its role assertions is removed from the summary;
otherwise, one of its concept assertions is removed 3. The accurate image of
the summary A′

1
obtained from removing an role assertion R(u, v) of a precise

acyclic justification is the Abox A1 resulting from the removal of all R role as-
sertions relating images of u to images of v from the original Abox A. Formally
A1 = A−{R(a, b) ∈ A|f(a) = u and f(b) = v}. To show that these assertions re-
moved from A can also be removed by an execution of the naive algorithm 1, we
need to establish that for each removed assertion R(a, b) 4: there is a justification
J in the Abox such that

– R(a, b) ∈ J , and
– J does not contain any removed assertion besides R(a, b).

Theorem 1 Let f be a summary function mapping an Abox A, inconsistent
w.r.t. to its Tbox T and its Rbox R, to its summary A′. Let J ′ be a precise and
acyclic justification of A′. Let R(u, v) be a role assertion in J ′. For individuals
a and b in A such that f(a) = u and f(b) = v and R(a, b) ∈ A, the following
conditions hold: there is an inconsistent justification J of A such that:

3 We remove role assertions instead of concept assertions because concept assertions
produced by our text analytic tools have a higher accuracy than role assertions.

4 We focus on role assertions, but the proof for concept assertion removal is similar.



1. R(a, b) ∈ J , and
2. {R(x, y) ∈ A|f(x) = u and f(y) = v} ∩ J = {R(a, b)}

Proof. The main idea behind the proof is that, viewing J ′ as a pattern, for each
pair of individuals (a, b) in A such that f(a) = u, f(b) = v, and R(a, b) ∈ A,
there is an instance Iab of the pattern J ′ in A such that a is mapped to u and b

is mapped to v. In other words, Iab is isomorphic5 to J ′. Since J ′ is justification,
it follows that Iab is also a justification. Since J ′ is acyclic, it can always be
written as a disjoint union of three sets J ′ = J ′

u ∪{R(u, v)}∪ J ′

v where J ′

u is the
subset of J ′ containing the individual u but not v whereas J ′

v is the subset of
J ′ containing v but not u. If J ′

u and J ′

v are empty (i.e. J ′ consists of the single
edge R(u, v)), the existence of Iab is a direct consequence of the summarization
process.

We now consider the general case where J ′

u and J ′

v are not empty (if one of
them is empty the proof is similar to this general case). J ′

u and J ′

v must be acyclic
since there are subsets of an acyclic justification. Lemma 1 below establishes the
existence of a subset Ia (resp. Ib) of A isomorphic to J ′

u (resp. J ′

v) such that a

(resp. b) is mapped to u (resp. v) and each individual x of Ia (resp. Ib) is mapped

to the individual f(x) of J ′

u (resp. J ′

v). It follows that Iab
def
= Ia ∪ {R(a, b)} ∪ Ib

is a subset of A isomorphic to J ′ such that, for each individual x in Iab, x is
mapped to the individual f(x) of J ′. The isomorphism establishes property (1)
of the theorem, namely, Iab is a justification containing R(a, b). Property (2)
is a direct consequence of the fact that, for each x of Iab, x is mapped to the
individual f(x) of J ′.

Lemma 1 Let f be a summary function mapping an Abox A to its summary
A′.

If L is a non-empty acyclic precise subset of A′, then, for each individual u of
L and a of A such that f(a) = u, there exists a pair (I, ρ) such that I is a subset of
A and ρ is a total mapping from Indiv(L) to Indiv(I), where Indiv(X) denotes
the set of individuals in an Abox X. Furthermore, (I, ρ) satisfies the following
properties for all individuals r and s in L:

– (a) ρ(u) = a

– (b) if R(r, s) ∈ L then R(ρ(r), ρ(s)) ∈ I

– (c) if r ˙6=s ∈ L then ρ(r) ˙6=ρ(s) ∈ I

– (d) if s : D ∈ L then ρ(s) : D ∈ I

– (e) ρ(s) = x iff. f(x) = s

Proof. See proof of Lemma 1 in the technical report [6]. Note that property (e)
is satisfied by the ρ function presented in the proof.

For a precise cyclic justification J ′ in the summary, although, in most cases, it
can be directly concluded that it corresponds to a real inconsistency in the Abox

5 Two Aboxes are isomorphic iff. by renaming individuals in one Abox it becomes
identical to the other. The renaming must be such that two individuals with different
names in the original Abox are not assigned the same name.



[3], removing an assertion of J ′ from the summary might be too conservative
because the accurate image of the removed assertion in A might not correspond
to a set of Abox assertions that can be removed by an execution of the naive
justification-based consistent subset Algorithm 1.

Consider the following example:
A = {R(a1, a2), R(a2, a3), R(a3, a1), T (a1, b), a1, a2, a3 : Au∀R.∀R.∀R.¬A}
f(a1) = f(a2) = f(a3) = u, f(b) = v

A′ = {R(u, u), u : A u ∀R.∀R.∀R.¬A, T (u, v)} J ′ = A′ − {T (u, v)}
J ′ is a precise cyclic justification, and it can directly be shown, based on

the application of deterministic tableau rules to the summary (see [3] for more
details), that it represents to a real inconsistency in A. Removing R(u, u) creates
a consistent summary of a consistent subset of A. Unfortunately, this consistent
subset is not a justification-based consistent subset. Indeed, Definition 2 is not
satisfied since R(a1, a2) and R(a2, a3), have been removed, but they only appear
in a single justification, J ′.

To avoid removing more assertions than needed in the Abox, a conclusive
precise cyclic justification J ′ is further refined until at least one role assertion
becomes super precise, at which point it is removed.

Definition 3 A role assertion R(u, v) in a summary A′ of an Abox A is super
precise iff. {R(u, v)} is precise and |Image(u)| = |Image(v)| = 1 (i.e. only one
individual in the Abox is mapped to u or v).

Algorithm 2 represents our summarization and refinement based approach
to compute a justification-based consistent subset of a large and expressive Abox
A. It takes as input an inconsistent Abox A and its Tbox T and its Rbox R.
It returns a triple consisting of (1) a justification-based consistent subset of A,
(2) a summary of (1), and (3) a map associating a justification J ′ found in a
summary to its assertion that was selected for removal.

Theorem 2 Algorithm 2 computes a justification-based consistent subset of the
input Abox A

Proof. After each assertion removal in the summary A′, A′ is transformed to
a summary A′′. As a direct consequence of Theorem 1 and the definition of
super precise role assertion, A′′ is a summary of an Abox which can be created
from AccImage(A′) after several iterations of the naive algorithm 1 applied
to AccImage(A′). It follows that the final consistent summary A′

f returned by
Algorithm 2 is such that AccImage(A′

f ) is a justification-based consistent subset
of A.

3.3 Approximate Cleanup

Computing a justification-based consistent subset of an Abox A using Algorithm
2 can be expensive if the summmary A′ has precise cyclic justifications whose
accurate images in A are very large. The following example illustrates a worst
case situation: A = {R(a1, a2), R(a2, a3), ...., R(an, a1), a1 : A u ∀R.¬A}



JustificationBasedConsistentSubset(Abox A, Tbox T , Rbox R))
begin

A′ ← compute the summary Abox of A;
Results←∅;
while inconsistent(A′, T , R) do

Find Justifications in A′;
ACJ ← select precise acyclic justifications from Justifications;
CJ ← select precise conclusive cyclic justifications from Justifications

that have at least one super precise role assertion;
Results ← Results∪ removeAssertion(A′, ACJ) ;
Results ← Results∪ removeAssertionInCyclicJ(A′, CJ) ;
Justifications ← Justifications− (ACJ ∪ CJ) ;
Execute refinement on A′ using Justifications ;

end

return (AccImage(A′),A′, Results) ;
end

removeAssertion(SummaryAbox A′, SetOfJustifications JS)
begin

Results ← ∅;
for J in JS do

if hasRoleAssertions(J) then
Assertion ← select a role assertion from J ;

else
Assertion ← select a concept assertion from J ;

end

Remove Assertion from A′;
Results ← Results ∪ (J , Assertion);

end

return Results;
end

removeAssertionInCyclicJ(SummaryAbox A′, SetOfJustifications JS)
begin

Results ←∅;
for J in JS do

Assertion ← select a super precise role assertion from J ;
Remove Assertion from A′;
Results ← Results ∪ (J , Assertion);

end

return Results;
end

Algorithm 2: Summarization and Refinement based Justification-based Con-
sistent Subset Computation

R = {Trans(R)} (i.e. R is transitive) A′ = J ′ = {R(u, u), u : A u ∀R.¬A}

J ′ is a conclusive precise cyclic justification (it is conclusive based on the ap-
plication of deterministic tableau expansion rules on A′ -see [3] for more details).
However, the only precise justification with a super precise role assertion derived
from J ′ through iterative refinement is the whole Abox A (the length n of the
cycle in A could be very significant)! However, in our experimental evaluation,



we have not witnessed such an extreme situation. In general, conclusive precise
cyclic justifications have fairly small accurate images consisting at most of a few
dozen individuals.

An alternative strategy is to not require conclusive precise cyclic justifica-
tions in the summary to have a super precise role assertion which can then be
removed. We simply remove a selected role assertion from the justification. In
doing so, Algorithm 3 always produces a consistent subset of the input Abox A,
but this subset is no longer guaranteed to be a justification-based consistent sub-
set. However, when an role assertion R(u, v) is removed from a conclusive precise
cyclic justification in the summary, an upper bound of the number of correspond-
ing extraneous Abox assertions removed is given by |AccImage({R(u, v)})| − 1.
As shown in the experimental evaluation section, in practice, the upper bound
of the total number of extraneous removed assertions is a small fraction of the
total number of removed assertions. Thus, this approximation is quite precise in
practice.

ApproximateJustificationConsistentSubset(Abox A, Tbox T , Rbox R)
begin

A′ ← compute the summary Abox of A;
Results←∅;
while inconsistent(A′,T , R) do

Find Justifications in A′;
ACJ ← select precise acyclic justification from Justifications;
CJ ← select precise conclusive cyclic justifications from Justifications;
Results ← Results∪ removeAssertion(A′, ACJ ∪ CJ) ;
Justifications ← Justifications− (ACJ ∪ CJ) ;
Execute refinement on A′ using Justifications ;

end

return (AccImage(A′),A′, Results) ;
end

Algorithm 3: Summarization and Refinement based Approximation of
Justification-based Consistent Subset Computation

4 Explanation

In this section, we discuss the appropriate presentation of information about
justifications computed by algorithms presented in the previous section.

As shown in the experimental evaluation section, large Aboxes produced
by text analytic tools may have thousands of inconsistencies involving more
than one assertion. A justification in the summary can be viewed as a pattern
having one or more instances (or isomorphic justifications) in the actual Abox.
A summary justification provides a level of abstraction that represents all Abox
justifications isomorphic to it.



Furthermore, in our experiments, we have observed that many acyclic justi-
fications in the summary are isomorphic. Therefore, we can represent a group
of isomorphic summary justifications with a single justification, called an ab-
stract summary justification. An abstract summary justification abstracts out
the names of nodes in the summary, and represents all Abox justifications that
have the same pattern of role and concept assertions. Thus, it can be represented
as SPARQL query describing its patterns of role and concept assertions. This
SPARQL query can then be used to retrieve the set of triples that are involved
in the justifications.

For cyclic justifications in the summary such that all role assertions are su-
per precise, we can also group isomorphic justifications and represent them by
a single abstract justification, which can be associated with a SPARQL query.
However, if a cyclic justification has some edges that are not super precise, the
exact pattern represented by the justification is not known (e.g. if the justifi-
cation consists of just a single role assertion relating an individual to itself, it
definitely represents at least one simple cycle in the Abox, but the length of the
cycle is unknown). If the user wants more details on a cyclic justification with
role assertions that are not super precise, its accurate image in the Abox will
have to be retrieved.

5 Computational Experience

Our tests were conducted on a 64 bit AMD dual 1GMHz processor 8G RAM
Linux machine, and a maximum heap size of 1G. The datasets were stored
in a DB2 database. We tested the performance and scalability properties of
our approach (Algorithm 3) with 4 datasets generated from text analysis of
100, 500, 1500 and 3683 documents. Table 1 shows the characteristics of these
datasets from the perspective of the number of individuals (I) , the number of role
assertions (R.A.), the number of summary justifications found (J), the number of
abstract summary justifications (A.J.), the number of deleted assertions (D.A.),
the computed upper bound of the number of extra triples that would have been
removed for these datasets if all of these triples were eliminated (Max. E.D.A.),
and the time to find these justifications in minutes. The last column represents
the number of overlapping abstract justifications of each dataset with the 500
document dataset.

Dataset I R.A. J A.J. D.A. Max. E.D.A. Time AJ Overlap with 500

100 8,628 15,521 191 97 299 19 10 84

500 32,787 62,414 625 203 1,150 89 19 203

1500 104,507 195,206 1,570 360 3,910 359 37 169

3683 286,605 513,522 2,744 561 9,574 967 67 168

As shown in Table 1, the time to find justifications is linear. We compare
our results for detecting inconsistencies with a technique described in [1]. For



the purposes of this comparison, we focus on the 500 document dataset, because
this dataset was used by the triple-at-a-time technique [1] to validate the use of
inconsistency checking for cleansing data extracted from text. When a knowledge
base has justifications with multiple role assertions, the two techniques are not
likely to agree on the set of inconsistent triples because of different choices of role
assertions to remove. However, because a vast majority of justifications in the
500 document dataset have a single role assertion, each of the triples found to be
inconsistent by the triple-at-a-time technique are also found to be inconsistent
using our technique.

The column labeled Max. E.D.A., which represents an upper bound of the
number of extraneous assertions removed by our Algorithm 3, shows that the
approximate Algorithm 3 is quite precise: the number of extraneous assertions
is always less than 10% of the removed assertions and less that 0.1% of the total
number of assertions in the original dataset. Moreover, this upperbound is con-
servatively computed as indicated in section 3.3. In practice, the real number of
extraneous assertions might be much smaller. For example, while the computed
conservative upperbound of the number of extraneaous assertions for the 500
dataset is 89, the actual number was just 7. We removed all assertions removed
by the triple-at-a-time technique plus 7 additional assertions.

Finally, the last column of Table 1 indicates substantial overlap between
the justifications found in the different datasets. This suggests that patterns of
justifications found in small datasets can directly be searched and removed from
much larger datasets before starting Algorithm 2 or 3.

6 Sophisticated Cleanup techniques

The fully-automated cleanup strategy based on Algorithm 2 or 3 is inflexible
in that it randomly selects and removes assertions present in justifications. An
alternative is to make the process more flexible and interactive by allowing the
user to specify only a fragment of the error-causing assertions to be removed.

For this purpose, it would be desirable if the system could assist the user in
determining likely assertion candidates for removal, by using some sensible met-
rics for ranking assertions. [5] presents a set of strategies for ranking assertions
in justifications, including:

– the number of distinct justifications that an assertion appears in – higher
the frequency, lower the assertion rank, since it signifies that the assertion
is responsible for producing more errors,

– provenance information about the assertion such as it’s source – in this case,
the accuracy of the text analytic tools generating the assertion would be
relevant,

– using a history of previous error patterns to identify suspicious assertions –
which in our case amounts to storing abstract justifications from previous
cleanup sessions on similar Aboxes.



Given a set of ranked assertions, the user could then choose to remove only the
low priority assertions from the Abox. However, in doing so, the resultant Abox
is not guaranteed to be consistent (since the earlier approach only guarantees a
consistent Abox if the specific randomly selected assertions in the justifications
were removed). Thus, we would need to run Algorithm 2 or 3 over the modified
Abox again to obtain a new set of justifications, and repeat this process of
ranking and removing erroneous assertions iteratively till the entire Abox was
clean.

7 Related Work

Recently, there has been a lot of work on repairing inconsistencies in OWL-
DL Ontologies. Broadly, this work falls into two categories. The first approach,
described in [7], [5], involves identifying a single source of the inconsistency (jus-
tification) in the ontology by modifying the internals of the DL tableaux reasoner
(a technique known as tableau tracing), and then using Reiter’s Hitting Set Tree
Algorithm [8] to discover all justifications, in order to arrive at a maximal con-
sistent subset of the ontology. We employ the tableau tracing solution in [5] to
derive a single justification, However, given the exponential nature of Reiter’s
search, using it to fully repair an ontology containing hundreds or thousands of
inconsistency-causing justifications, as is in our case, is clearly not feasible.

The second approach is based on phrasing the problem as a belief revision as
done in [9], and then revising the knowledge base to get rid of the inconsistency
by rewriting the axioms to preserve semantics, e.g.,introducing disjunctions. On
a similar note, [10] proposes tolerating inconsistent theories and using a non-
classical form of inference to derive meaningful results from a consistent sub-
theory. These solutions do not fit in within the nature of our application given
the abundance of inconsistencies, and the fact that most of the errors are actual
noise (not partially correct, rewritable axioms) created by the text analytics
tools. Instead, we plan to use metrics for ranking erroneous axioms as suggested
in [5] to perform sophisticated cleanup (Section 6), based on factors related to
the text analytic process.

The other key difference, though, in terms of related work, is that none of the
approaches presented above can scale to very large Aboxes containing millions
of assertions. Our Abox summarization and refinement techniques have been
shown to scale Abox reasoning in a massive way [3].

To conclude, the solution in this paper is the first of its kind that provides
a scalable and efficient way to clean very large Aboxes containing numerous
inconsistencies.

8 Conclusions

Modern Natural Language Processing techniques are extremely scalable but gen-
erate noisy data. In previous work we have introduced the problem of cleaning



noisy data using semantic web technologies. While showing an overall improve-
ment in precision, the approach had scalability problems, as well as an order
dependency. We have been also investigating techniques for summarization and
refinement of Aboxes for scalability. In this paper we put the two together, and
introduce a new technique for justification-based consistent subset finding that
identifies patterns of inconsistent data in a scalable way.

We are only in the initial phases of putting together scalable inference with
scalable natural language processing, but the results presented here are ex-
tremely promising; early experiments show a linear increase in processing time
as the data increases. Due to the challenges of scaling formal evaluations, we have
only presented results that scale to an RDF graph of a few hundred thousand
nodes, as (random) subsets of this graph have been verified. In other experiments
we have managed to process millions of RDF nodes, and we have every reason to
believe this technique will scale at the same rate as our information extraction,
while improving precision of relation extraction by 8-15% or more.
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