
RC24294 (W0707-012) July 2, 2007
Computer Science

IBM Research Report

Scalable Semantic Retrieval through
Summarization and Refinement

Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Aaron Kershenbaum,
Edith Schonberg, Kavitha Srinivas

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

USA

Li Ma
IBM Research Division

China Research Laboratory
 Building 19, Zhouguancun Software Park

8 Dongbeiwang West Road, Haidian District
Beijing, 100094

P.R.China

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Scalable Semantic Retrieval Through Summarization and Refinement

Julian Dolby, Achille Fokoue, Aditya Kalyanpur,
Aaron Kershenbaum, Edith Schonberg, Kavitha Srinivas

IBM Watson Research Center
P.O.Box 704, Yorktown Heights, NY 10598, USA

dolby, achille,adityakal, aaronk, ediths, ksrinivs@us.ibm.com

Li Ma
IBM China Research Lab

Beijing 100094, China
malli@ cn.ibm.com

Abstract

Query processing of OWL-DL ontologies is intractable in the
worst case, but we present a novel technique that in practice
allows for efficient querying of ontologies with large Aboxes
in secondary storage. We focus on the processing ofinstance
retrieval queries, i.e., queries that retrieve individuals in the
Abox which are instances of a given conceptC. Our tech-
nique uses summarization and refinement to reduce instance
retrieval to a small relevant subset of the original Abox. We
demonstrate the effectiveness of this technique in Aboxes
with up to 7 million assertions. Our results are applicable
to the very expressive description logicSHIN , which cor-
responds to OWL-DL minus nominals and datatypes.
keywords: Reasoning, Description Logic, Ontology.

Introduction
Semantic retrieval is one of the important applications of on-
tologies and reasoning. Using reasoning to answer a query,
information which is not explicitly stored in a knowledge
base can be inferred, thus improving recall. Reasoning al-
gorithms that can be scaled to realistic databases are a key
enabling technology for semantic retrieval.

We focus in this paper on the scalable processing ofin-
stance retrievalqueries for OWL-DL knowledge bases in
secondary storage (excluding nominals and datatypes). An
OWL-DL knowledge base consists conceptually of three
components: the Tbox which contains terminological as-
sertions about concepts, the Rbox which contains assertions
about roles and role hierarchies, and the Abox which con-
tains membership assertions and role assertions between in-
dividuals. An instance query retrieves the individuals in the
Abox which are instances of a given conceptC, w.r.t. infor-
mation in the Tbox and Rbox.

It is well known that all queries over expressive-DL on-
tologies can be reduced to consistency detection (Horrocks
& Tessaris 2002), which is usually checked with a tableau
algorithm. As an example, a simple algorithm for instance
retrieval can be realized by testing if the addition of an as-
sertiona : ¬C for a given individuala results in an incon-
sistency. If the resulting Abox is inconsistent, thena is an
instance ofC. Of course, it is not practical to apply this
simple approach to every individual.

We propose a novel approach that uses summarization
and refinement to scale instance retrieval to large expres-

sive Aboxes in databases. Before processing any queries,
we create asummary AboxA′ (A.Fokoueet al. 2006b) from
an original AboxA and store it in a database. A summary
Abox is created by aggregating individuals which are mem-
bers of the same concepts. Query processing is performed
onA′ rather thanA. By testing an individual in the summary
Abox, all individuals mapped to the summary are effectively
tested at the same time.

However, there is a catch. For a tested individuals in A′,
if the summary is found to be consistent, then we know that
all individuals mapped to that summary individuals are not
solutions. But if the summary is found to be inconsistent, it
is possible that either (a) a subset of individuals mapped to
the summarized individuals are instances of the query or (b)
the inconsistency is a spurious effect of the summarization.
We determine the answer throughrefinement, which selec-
tively expands the summary Abox to make it more precise.

Refinement is an iterative process that partitions the set
of individuals mapped to a single summary individual and
remaps each partition to a new summary individual. The
iteration ends when either the expanded summary is consis-
tent, or it can be shown that all individuals mapped to the
tested summary individual are solutions. Significantly, con-
vergence on the solution is based only on the structure of the
refined summary, without testing individuals inA.

With this summarize-and-refine technique, it is critical to
have an effective refinement strategy, which limits both the
number of refined individuals and the number of iterations.
Our refinement strategy is based on identifyingjustifications
for the inconsistency in the summary Abox, which is a min-
imal inconsistent subset of the summary (Kalyanpur 2006),
and selectively applying refinement to individuals in justifi-
cations. We test multiple individuals in the summary at the
same time, and process multiple justifications at each refine-
ment step. This approach proved effective on the UOBM
benchmark ontology (Maet al. 2006), where we demon-
strate that we process Abox queries with up to 7.4 million
assertions efficiently, whereas the state of the art reasoners
could not scale to this size.

In addition to guiding refinement, justifications are help-
ful for users to understand query results. Since our expla-
nations are at a summarized level, the information is more
useful than detailed information about each individual in an
Abox. Another key point is that our summarize-and-refine

technique can be treated as an optimization that any tableau
reasoner can employ to achieve scalable ABox reasoning.

The key contributions of this paper are as follows: (a) We
present a novel, tableau-based technique to use summariza-
tion and refinement for efficient instance retrieval for large
SHIN Aboxes in secondary storage. (b) We describe the
use of optimization techniques to selectively target partsof
the summary for refinement. (c) We show the application
of these techniques to the UOBM benchmark ontology with
SHIN expressivity, where we show dramatic reductions in
space and time requirements for instance retrieval.

Background
We assume ontologies of SHIN expressiveness. SHIN is
equivalent to OWL-DL without nominals and datatype rea-
soning, as shown in Table 1. In the semantic definition of
SHIN, I= (∆I , .I) refers to an interpretation where∆I

is a non-empty set (the domain of the interpretation), and
the interpretation function.I maps every atomic conceptC
to a setCI ⊆ ∆I , every atomic roleR to a binary rela-
tion RI ⊆ ∆IX∆I , and every individuala to aI ∈ ∆I .
Trans(R) refers to a transitive role R.

An RBox R is a finite set of transitivity axioms of the
form Trans(R) and role inclusion axioms of the formR ⊑ P
whereR andP are roles.⊑∗ denotes the reflexive transitive
closure of the⊑ relation on roles. A TboxT is a set of
concept inclusion axioms of the formC ⊑ D whereC and
D are concept expressions. An AboxA is a set of axioms of
the forma : C, R(a, b), anda ˙6=b.

An interpretationI is a model of an AboxA w.r.t. a Tbox
T and a RboxR iff it satisfies all the axioms inA, R, and
T (see Table 2). An AboxA is said to be consistent w.r.t. a
TboxT and a RboxR iff there is a model ofA w.r.t. T and
R. If there is no ambiguity from the context, we simply say
thatA is consistent.

A key feature of our approach is the construction of a
summary AboxA′ corresponding to the AboxA (A.Fokoue
et al. 2006b). An individual inA′ represents individuals
in A which are members of the same concepts. Formally,
an AboxA′ is as summary Abox of aSHIN Abox A′

if there is a mapping functionf that satisfies the following
constraints:

(1) if a : C ∈ A thenf(a) : C ∈ A′

(2) if R(a, b) ∈ A thenR(f(a), f(b)) ∈ A′

(3) if a ˙6=b ∈ A thenf(a) ˙6=f(b) ∈ A′

If the summary AboxA′ obtained by applying the mapping
functionf toA is consistent w.r.t. a TboxT and a RboxR,
thenA is consistent w.r.t.T andR. However, the converse
does not hold.

Let L be a mapping from each individual inA to a set of
concepts, such thata : C ∈ A iff C ∈ L(a). We callL(a)
theconcept setof a. In practice, we use acanonical function
f to create a summary Abox, which maps all non-distinct in-
dividuals that have identical concept sets to the same indi-
vidual inA′. More precisely, the converse of constraints (1)
and (3) hold for the canonical summary, and:

(4) If R(a′, b′) ∈ A′ then there area andb in A such thata′ =
f(a), b′ = f(b) andR(a, b) ∈ A.

Definitions Semantics
C ⊓D CI ∩DI

C ⊔D CI ∪DI

¬C ∆I\CI

∃R.C {x|∃y. < x, y >∈ RI , y ∈ CI}
∀R.C {x|∀y. < x, y >∈ RI ⇒ y ∈ CI}
≤ nR {x| |{< x, y >∈ RI}| ≤ n}
≥ nR {x| |{< x, y >∈ RI}| ≥ n}
R− {< x, y > | < y, x >∈ RI}

Table 1: SHIN Description Logic Constructors

Axioms Satisfiability conditions
Trans(R) (RI)+ = RI

R ⊑ P < x, y >∈ RI ⇒< x, y >∈ P I

C ⊑ D CI ⊆ DI

a : C aI ∈ CI

R(a, b) < aI , bI >∈ RI

a ˙6=b aI 6= bI

Table 2: SHIN Description Logic Axioms

(5) If for all x ∈ A, a ˙6=x /∈ A, b ˙6=x /∈ A, andL(a) = L(b), then
f(a) = f(b).

(6) f(a) ˙6=f(b) ∈ A′ impliesa is the only individual inA mapped
to f (a) (same forb).

Overview
We motivate our instance retrieval algorithm using an exam-
ple based on the UOBM ontology with an AboxA shown in
Figure 1. The individualsc1, c2 andc3 are instances of the
conceptCourse; p1, p2 andp3 are instances ofPerson;
m1 and m2 are instances ofMan; w1 is an instance of
Woman, andh1 andh2 are instances ofHobby. For now,
we assume that the Tbox contains only one axiom stating
thatMan andWoman are disjoint concepts and the Rbox
is empty.

Figure 1: Example Abox

Consider the query for the conceptPeopleWithHobby,
which is defined asPerson ⊓ ≥ 1likes. From Figure 1, it
is clear that the answer consists of the individualsp1 and
p3, which are the onlyPerson individuals inA which are
related to at least oneHobby individual by thelikes role.

Instead of reasoning onA directly, our algorithm reasons
on the canonical summary AboxA′ for A. The canonical

Figure 2: Summary Abox

summary is shown in the left of Figure 2, where the sin-
gle individualsc1, c2, c3 are mapped toc′ in A′, m1 and
m2 are mapped tom′ in A′, and so on. Since the Rbox is
empty (i.e.,isTaughtBy is not functional),A′ is consis-
tent. By testing a summary individual, our goal is to draw
conclusions about all of the actual individuals inA mapped
to it. An individuals in A′ is tested by adding the assertion
s : ¬PeopleWithHobby to A′, and checking for consis-
tency using a tableau reasoner. To achieve scalability, we
test multiple individuals in the summary graph at the same
time.
Definition 1. LetA be an Abox. LetQ be a concept expression.
Let S be a subset of individuals inA such that for alls ∈ S,
s : ¬Q /∈ A. 1 We define the tested Abox w.r.t.A, Q and S,
denotedtested(A, Q, S), to be the Abox obtained fromA by adding
the assertions : ¬Q for eachs ∈ S. Formally, tested(A, Q, S) =
A ∪ {s : ¬Q|s ∈ S}.

If the result of testing a single individuals is consistent,
then we know that none of the individuals in the image of
s is a query solution. However, if the result is inconsistent,
then we cannot conclude anything about individuals in the
image ofs. This situation arises because individuals are ag-
gregated based only on the similarity of their concepts, not
relationships.

In the example, addingc′ : ¬PeopleWithHobby is
consistent. Therefore,c1, c2, and c3 in A can be ex-
cluded. Similarly,m1, m2, w1, h1 and h2 can be im-
mediately excluded. When testingp′, the result of adding
p′ : ¬PeopleWithHobby to the summary is inconsistent.
In this case, not all individuals in the image ofp′ satisfy the
query, since they differ in their relationships.

Our approach for resolving summary Abox inconsisten-
cies is to iterativelyrefine the summary. Refinement in-
creases the size and precision of the summary, and preserves
the summary Abox properties(1)-(3) defined in the previous
section. Our strategy is to refine only individuals that are
part of a summary Aboxjustification, where a justification is
a minimal set of assertions which, when taken together, im-
ply a logical contradiction, thus making the entire Abox in-
consistent. In some cases, inconsistencies disappear through
refinement. Otherwise, when a justificationJ is precise(as
defined below in Definition 2) we typically know that we
have converged on a solution. That is, there is a tested indi-
viduals in J , such that all of the individuals in the image of

1Note that we exclude individualss such thats : ¬Q belongs
to A′because they are obviously not solutions and it also allows
us to easily track assertions that were actually added to the tested
summary.

s are instances of the query. We say that a tested individual
s is tested inJ for queryQ if s : ¬Q is an assertion inJ .
(The topic of drawing a conclusions on precise justifications
is discussed in a later section.)

Definition 2. LetA′ be a summary Abox of an AboxA obtained
through the summary mappingf . LetQ be a queried concept,S be
a subset of individuals inA′ such that for allx ∈ S, x : ¬Q /∈ A′

and letH be a subset oftested(A′, Q, S). We say that an individual
s ∈ H is precisew.r.t. H iff the following conditions are satisfied:

1. for all individualst ∈ H and for all rolesR, R(s, t) ∈ H (resp.
R(t, s) ∈ H) implies that, for all individualsa ∈ A such that
f(a) = s, there is an individualb ∈ A such thatf(b) = t and
R(a, b) ∈ A (resp.R(b, a) ∈ A); and

2. for all individualst ∈ H, s ˙6=t ∈ H (resp. t ˙6=s ∈ H) implies
that, for all individualsa ∈ A such thatf(a) = s, there is
an individualb ∈ A such thatf(b) = t and a ˙6=b ∈ A (resp.
b ˙6=a ∈ A); and

3. There is an individuala ∈ A such thatf(a) = s; and
4. s : C ∈ H − {x : ¬Q|x ∈ S} implies that, for all individuals

a ∈ A such thatf(a) = s, a : C ∈ A

We say thatH is precise iff all its individuals are precise w.r.t.H.

Continuing with the example, there is a justificationJ
consisting ofp′ : ¬PeopleWithHobby, h′ : Hobby, and
likes(p′, h′), andp′ is tested inJ . Note thatp′ is not pre-
cise since it does not satisfy condition 1. Refinement re-
placesp′ by two individualspx

′ andpy
′, where the image of

px
′ is p1 andp3, and the image ofpy

′ is p2. The result of
this refinement is shown in the right of Figure 2. The tested
refined summary is still inconsistent, and there is now a pre-
cise justificationpx

′ : ¬PeopleWithHobby, h′ : Hobby,
andlikes(px

′, h′). EveryPerson in the image ofpx
′ likes

a Hobby. Thus, the image ofpx
′, namelyp1 andp3, are

solutions.
A high level outline of our algorithm is shown be-

low. More details are given in subsequent sections.
S←{x|x ∈ individuals in A′and x : ¬Q /∈ A′};
R←A′;
Results←∅;
while S 6= ∅ do

RT← tested(R, Q, S) (see Definition 1.) ;
if consistent(RT) then

returnResults;
end
FindJustifications in RT ;
T← individuals tested in preciseJustifications;
Results←Results ∪ Image(T);
S←S − T ;
Execute refinement strategy onR ;

end
returnResults ;

Refinement
This section describes justification-based refinement, and
some of the issues in deciding justification refinement order.

Definition 3. LetA′ andA′

R be summary Aboxes of an aboxA,
with resp. mapping functionsf andfR. LetI ′ be the set of individ-
uals inA′, andI

′

R be the individuals inA′

R. Lets be an individual
in A′. We say thatA′

R is a refinement ofA′ w.r.t. s iff there are
individualss1 . . . sn, n > 1, inA′

R such that:

1. I ′

R = (I ′ − {s}) ∪ {s1 . . . sn} wheres1 . . . sn /∈ I ′

2. if f(a) 6= s, thenfR(a) = f(a)

3. if f(a) = s, thenfR(a) = si, for some1 ≤ i ≤ n.

4. for each1 ≤ i ≤ n, there is at least one individuala in A such
that fR(a) = si.

In the worst case, iterative refinement can expand a sum-
mary Abox into the original Abox, so an effective refinement
strategy is critical. The refinement step for an individuals
in a justificationJ is as follows. For eacha in the image
of s, definekey(a) w.r.t. J to be the set of role assertions
in J for which a has a corresponding role assertion in the
originalA. That is,key(a) =





R(t, s)

∣∣∣∣∣∣∣∣∣

f(a) = s∧
R(t, s) ∈J∧
∃b in A s.t.
R(b, a) ∈ A∧
f(b) = t




∪





R(s, t)

∣∣∣∣∣∣∣∣∣

f(a) = s∧
R(s, t) ∈J∧
∃b in A s.t.
R(a, b) ∈ A∧
f(b) = t





To refines, we partition its image so that all individuals
in a partition have the samekey w.r.t. J . Each partition
is mapped to a new summary individual, creating a refined
summary Abox. Conversely, if all individuals inA mapped
to a summary individuals have the same key w.r.t.J , then
s is precise w.r.t.J . Thus, justification-based refinement
leads to precise justifications in subsequent iterations.

In general, there can be multiple justifications corre-
sponding to different inconsistencies. For example, let us
add a constraint to Figure 1 that the roleisTaughtBy
is functional. The summary Abox in Figure 2 now con-
tains a spurious inconsistency, becausem′ andw′ will be
inferred to be the same individual because of the func-
tional property, butm′ andw′ are instances of the disjoint
conceptsMan and Woman respectively. The justifica-
tion for this inconsistency is:c′ : Course, m′ : Man,
w′ : Woman, isTaughtBy(c′,m′), isTaugtBy(c′, w′).
Figure 3 illustrates the application of a refinement step to
the refined summary in Figure 2. The individualc′ partic-
ipates in multiple role assertions, so it is replaced bycx

′

and cy
′. The individualsc1 and c3, which have the same

key {isTaughtBy(c′,m′)}, are mapped tocx
′. The indi-

vidual c2 is mapped tocy
′ because it has a differentkey

{isTaughtBy(c′, w′)}. After this refinement step, this spu-
rious inconsistency disappears.

Refinement Strategy
The justification refinement order is important. Here are
some sample heuristics:

• A single refinement candidates may belong to multiple
justifications. In such a case, we define itskey to be the
set of role assertions in all justifications thats belongs to.
However, this can lead to a large number ofkey combi-
nations, and to needless partitioning. We therefore give
preference to justifications that have no overlap.

• Smaller justifications are given priority over larger justifi-
cations.

• If there are two tested individuals inJ , it is possible that
the inconsistency is due to the interaction between two
¬Q type assertions. We therefore delay the refinement
of such justifications until no other justifications are left
in the summary, when it is more efficient to test each of
these individuals separately.

• Once a givenJ has been selected for refinement, we track
its transformation in successive iterations to avoid recom-
putation overhead, and to reach a conclusion as quickly as
possible.

• We give higher priority to justifications that pertain to the
query (i.e. those that contain a tested individual in the
justification.) In making the summary more precise by
refining query-pertinent justifications, spurious inconsis-
tencies may disappear.

Figure 3: Abox after second refinement

Computing and Selecting Justifications
In order to compute justifications efficiently, we resort to a
technique known astableau tracing. The idea, initially pro-
posed in (Baader & Hollunder 1993) for the logicALC, and
later extended toSHIN (Kalyanpur 2006), involves modi-
fying the internals of a tableau reasoner by keeping track of
the axioms responsible for each of it’s operations and events.
Briefly, the process works as follows (the details are beyond
the scope of this report, see (Kalyanpur 2006)): DL-based
tableaux reasoners check consistency of an ABox by build-
ing an abstraction of a model for it, known as acompletion
graph, which is constructed by repeatedly applying a set of
expansion rules. If the ontology is inconsistent, it has no
model, and thus the completion graph containsclashesor
contradictions. In our problem, the goal is no longer con-
structing a model for the input, but identifying which axioms
in the input ABox are responsible for the contradictions that
prevent the model from being built. We do this by keeping
track of the axioms responsible for firing each of the expan-
sion rules (while building the graph), and finally examine
the axiom trace of the clash event to obtain a justification for
the inconsistent ABox.

However, while the above technique helps find a
single justification easily, finding additional justifica-
tions is not straightforward. This is because the non-
deterministic tableau algorithm typically terminates when an
inconsistency-revealing clash is found, whereas we need it
to explore any remaining choices and fire additional applica-
ble expansion rules in order to reveal more clashes (thereby

exposing more justifications) inherent in the ABox. This,
in effect, causes all the reasoner optimizations to be turned
off, which is computationally very expensive. In order to
resolve this problem, we use a workaround that involves the
classical Reiter’s Hitting Set Tree (HST) algorithm (Reiter
1987).

The basic principle behind the workaround strategy is to
iteratively discover additional justifications by starting with
a single justification, removing each of the axioms in the jus-
tification from the original ABox and then finding any new
justifications in the modified ABox (using the tableau trac-
ing procedure again). This process is repeated recursively
till no new justifications are found. By drawing an analogy
with Reiter’s HST algorithm, we can benefit from many of
the optimizations present therein (for details see (Kalyanpur
2006)).

The above technique provides a definite solution for find-
ing all justifications. However, there is a trade-off between
the time taken to compute all the justifications, which can be
large due to the exponential nature of Reiter’s search, versus
the reduction in refinement time achieved by finding all jus-
tifications at each iteration of the refinement process. To ad-
dress this trade-off, we impose a user-definable cut-off point
(upper-threshold) for the subroutine which computes justifi-
cations, and perform an empirical analysis to fix a threshold
value that works well in practice.

Drawing Conclusions on Justifications
In this section, we present a set of conditions that are suf-
ficient to prove that all individuals mapped to a tested in-
dividual s in a precise justificationJ are solutions. These
conditions depend only on the structure ofJ .

Theorem 1. Let f be a summary function mapping an Abox
A, consistent w.r.t. to its TboxT and its RboxR, to its
summaryA′. Let Q be a concept expression and letS be
a subset of individuals inA′ such that for alls ∈ S, s :
¬Q /∈ A′. For an individualt ∈ S, all individualsa such
that f(a) = t are instances ofQ (i.e. (A, T ,R) |= a : Q) if
the following conditions hold:

1. there is an inconsistent subsetIC of tested(A′, Q, S), and

2. IC is precise, and

3. {s ∈ S | s : ¬Q ∈ IC} = {t}, and

4. IC is acylic (i.e. the undirected graph induced by role
and differentFrom assertions is acyclic)

Proof. The main idea behind the proof is that, assuming the
4 conditions are satisfied and viewingIC − {t : ¬Q} as a
pattern, for each individuala ∈ A such thatf(a) = t, there
is an instanceIa of the patternIC−{t : ¬Q} inA such that
a is associated with t. SinceIC is inconsistent, it follows
thatIa ∪ {a : ¬Q} is inconsistent, hencea is an instance of
Q (becauseIa is a subset ofA).

The existence of the instanceIa relies on the following
Lemma 1 :

Lemma 1. Let f be a summary function mapping an Abox
A to its summaryA′. LetQ be a concept expression and let

S be a subset of individuals onA′ such that for alls ∈ S,
s : ¬Q /∈ A′.

If L is a non-empty acyclic precise subset of
tested(A′, Q, S), then, for each individualu of L and
a of A such thatf(a) = u, there exists a pair(I, ρ) such
that I is a subset ofA and ρ is a total mapping from
Indiv(L) to Indiv(I), whereIndiv(X) denotes the set of
individuals in an AboxX. Futhermore,(I, ρ) satifies the
following properties for all individualsr ands in L:

• (a) ρ(u) = a

• (b) if R(r, s) ∈ L thenR(ρ(r), ρ(s)) ∈ I

• (c) if r ˙6=s ∈ L thenρ(r) ˙6=ρ(s) ∈ I

• (d) if s : D ∈ (L− {x : ¬Q|x ∈ S}) thenρ(s) : D ∈ I

Proof. We prove Lemma 1 by induction on the number of
individuals inL.

First, we consider the case whereL has a single individual
u. Leta be an individual ofA such thatf(a) = u. We define
I asI = {a : D|u : D ∈ (L − {x : ¬Q|x ∈ S})} andρ
is the mapping from{u} to {a} such thatρ(u) = a. The
pair (I, ρ) satisfies the propeties (b) and (c) because, since
L is acyclic,u ˙6=u /∈ L andR(u, u) /∈ L. It satisfies (a) by
definition ofρ. It satifies (d) andI is a subset ofA as a direct
consequence of the fact thatu is precise (4th property in the
definition of a precise individual) andf(a) = u.

Next, we assume that if the number of individuals inL is
less than or equal ton (for n an integer such thatn ≥ 1),
then, for any(u, a) ∈ L × A such thatf(a) = u, there is a
pair (I, ρ) satisfying all the requirements of Lemma 1. We
prove that ifL hasn + 1 individuals such pairs still exist.

Let L be a non-empty acyclic subset oftested(A′, Q, S)
such that all itsn + 1 individuals are precise w.r.t.L. Let
u be an individual inL anda an individual inA such that
f(a) = u.

The proof consists of three important steps. First, we es-
tablish properties of individuals ofL directly ”‘connected”’
to u (we will relate them to individuals inA directly ”‘con-
nected”’ toa in the same way). Second, after removingu
from L and its connections to other individuals inL (i.e. all
role and differentFrom assertions relatingu to another indi-
vidual), we end up with disjoint subsets ofL containing less
thann + 1 individuals so that, by using the induction hy-
pothesis, we can show that there are pairs(I ′, ρ′) satisfying
all the requirements of Lemma 1 on these subsets ofL. Fi-
nally, using these pairs(I ′, ρ′), we show the existence of a
pair (I, ρ) satisfying all the requirements of Lemma 1 onL.

First, we consider the setConu of individuals ofL con-
nected tou in L by a role or differentFrom assertionConu =
{x|R(u, x) ∈ L or R(x, u) ∈ L or u ˙6=x ∈ L or x ˙6=u ∈ L}.
For an elementv ∈ Conu, sinceL is acylic, there is only one
connection, denoted[u, v], betweenu andv (this connection
is one of :R(u, v), R(v, u), u ˙6=v, or v ˙6=u). Regardless of
the exact nature of the connection (R(u, v), R(v, u), u ˙6=v,
or v ˙6=u), the fact thatu is precise inL implies that there is
an individualb inA such thatf(b) = v andb is connected to
a in the same wayv is connected tou (e.g. if R(u, v) ∈ L,
thenR(a, b) ∈ A). We define a mappingβ from Conu to

Indiv(A) as follows: for an elementv in Conu, β(v) is
chosen to be an individualb in A such thatf(b) = v and the
connection betwena andb in A is of the same nature as the
connection betweenu andv in L.

Now, we consider the subsetL′ of L obtained after re-
moving u and all connections relatingu to another indi-
vidual in L. Formally, L′ = L − ({R(u, x) ∈ L|x ∈

Conu} ∪ {R(x, u) ∈ L|x ∈ Conu} ∪ {u ˙6=x ∈ L|x ∈

Conu} ∪ {x ˙6=u ∈ L|x ∈ Conu} ∪ {u : D|u : D ∈ L}).
For an elementv ∈ Conu, we defineReachv as the set of
elements ofL′ that containsv and all elements reacheable
(ignoring directionality of role and differentFrom assertions)
from v in L′ . SinceL is acyclic, forv andw elements of
Conu, v 6= w implies thatReachv andReachw are dis-
joint. Furthermore, by definition ofL′ andReachv, for all
v ∈ Conu, u /∈ Reachv. For an individualv ∈ Conu, L′

v

denotes the greatest subset ofL′ containing only individuals
in Reachv. For all (v, w) ∈ Con2

u such thatv 6= w, since
Reachv andReachw are disjoint, it follows thatL′

v andL′
w

are also disjoint. Finally, letRest′ be the subset ofL′ de-
fined asRest′ = L′ − ∪v∈Conu

L′
v. By its definition,Rest′

cannot containu and is disjoint with anyL′
v.

For an elementv ∈ Conu, sinceL′
v is a non-empty

acyclic subset oftested(A′, Q, S) such that all itsk indi-
viduals (withk ≤ n) are precise w.r.t.L′

v, β(v) ∈ A and
f(β(v)) = v, it follows, from the induction hypothesis, that
there is a pair(Iv, ρv), whereIv is a subset ofA andρv

is a total mapping fromIndiv(L′
v) to Indiv(Iv), satisfying

ρv(v) = β(v) and all the properties (b) to (d) of Lemma 1.
AssumingRest′ is not empty, we choose, randomly, an in-
dividual denotedz in Rest′ (sincez is precise, we know that
there must be an individualza ∈ A such thatf(za) = z).
Likewise, there is a pair(Iz, ρz), whereIz is a subset ofA
andρz is a total mapping fromIndiv(Rest′) to Indiv(Iz),
satisfyingρz(z) = za and all the properties (b) to (d) of
Lemma 1.

From the pairs(Ix, ρx) obtained on all the disjoint subsets
of L′, we can now define the pair(I, ρ) satisfying all the
requirements of Lemma 1 forL. We defineI as follows:

I =

{
A if Rest′ = ∅
A ∪ Iz otherwise

whereA is defined as:

A = {a : D|u : D ∈ L− {x : ¬Q|x ∈ S}}⋃
{R(a, β(v))|R(u, v) ∈ L}⋃
{R(β(v), a)|R(v, u) ∈ L}⋃
{a ˙6=β(v)|u ˙6=v ∈ L} ∪ {β(v) ˙6=a|v ˙6=u ∈ L}⋃
v∈Conu

Iv

ρ is defined as the mapping fromIndiv(L) to Indiv(I)
as follows: for an individualx in L,

ρ(x) =

{
a if x = u
ρv(x) if x ∈ Reachv for somev ∈ Conu

ρz(x) otherwise (i.e.x ∈ Rest′)

It is obvious that, due to the properties satified by the pairs
(Ix, ρx) obtained on the disjoint subsets ofL′ and by the
definition ofβ, (I, ρ) defined previously satisfies all the re-
quirements of Lemma 1.

Figure 4: Example with Cycle

In our algorithm, the subsetIC of tested(A′, Q, S) is al-
ways a minimal justificationJ . Using the proof of Theo-
rem 1, ifJ is precise and acyclic, then we can view it as a
pattern, and conclude that there are corresponding patterns
in A which matchJ − {t : ¬Q}. However, ifJ is precise
and cyclic, we cannot draw this conclusion. Consider the
example in Figure 4, and letQ = ∃R.C andS = {t}. There
is a precise justificationJ = {t : ∀T.C,R(t, s), T (t, s), t :
¬Q}, but there is no pattern inA which matchesJ − {t :
¬Q}.

Fortunately, in many cases, we can efficiently transform
part of the summary Abox so that Theorem 1 is still applica-
ble. Theorem 2 allows us to apply deterministic tableau ex-
pansion rules to a precise justification, and then check for an
acyclic justification. More specifically, applying determinis-
tic tableau expansion rules to a precise justification results in
a new precise inconsistent subset of a summary of an Abox
equivalent to the original Abox. To motivate this transfor-
mation, consider the imageimL of L = J −{t : ¬Q} inA.
If we were to apply deterministic tableau rules toimL, the
result would beîmL = imL ∪ {b1, b2 : C}, which is logi-
cally equivalent toimL. Now observe that̂L = L ∪ {s : C}

is a precise summary of̂imL, and can be obtained by ap-
plying deterministic tableau expansion rules toL. Further-
more,tested(L̂, S,Q) has a precise and acyclic justification
Ĵ = {R(t, s), s : C, t : ¬Q}, so that we can now conclude
that a1 anda2 are instances ofQ by directly using Theo-
rem 1.

Theorem 2. Let f be a summary function mapping an Abox
A to its summaryA′ andL be a subset ofA′. Let imL de-
note the image ofL in A (i.e. imL = {a : C ∈ A|f(a)
is in L} ∪ {R(a, b) ∈ A|f(a) and f(b) are individuals in
L} ∪ {a ˙6=b ∈ A|f(a) andf(b) are individuals inL}). LetL̂
denote the Abox obtained after the application of determin-
istic tableau expansion rules onL. If L is precise, then there
is an AboxîmL equivalent toimL such that̂L is a summary
of îmL andL̂ is precise.

Proof. First, we observe that applying a determistic tableau
expansion rule on a Abox yields an equivalent Abox.

Assuming thatL is precise, we show that the application
of a deterministic tableau rule to an individuals in L yields
an aboxL̂ which is a precise summary of the Abox obtained

by applying the same deterministic rule on all the individuals
of imL mapped tos (i.e. individualsa such thatf(a) = s).

∃-rule: Let assume that the∃-rule is applied tos in order to satisfy
the constraints : ∃R.C ∈ L. The resulting Abox̂L is
such thatL̂ = L ∪ {R(s, t), t : C} where t is a new
individual not present inL.
By definition of the applicability of the∃-rule, there are
no R-neigborsy of s in L such thaty : C ∈ L. Let
a be an individual ofimL such thatf(a) = s. Since
s is precise w.r.t.L, a : ∃R.C ∈ imL. SinceL is a
summary ofimL, there are noR-neigborsb of a in imL
such thatb : C ∈ imL. So we can apply the∃-rule ona to
satisfya : ∃R.C ∈ imL. This will result in the creation
of a new individual, denoteβ(a), such thatβ(a) : C and
R(a, β(a)). Let îmL be the result of the application of the
∃-rule to all such individualsa. îmL = imL ∪ {β(a) :

C|f(a) = s} ∪ {R(a, β(a))|f(a) = s}. It follows thatL̂
is a precise summary of̂imL with the summary function
f̂ defined as follows: for all individuala in îmL,

f̂(a) =

{
f(a) if a ∈ Indiv(imL)
t otherwise

≥-rule: Similar to∃-rule.

∀-rule: Let assume that the∀-rule is applied tos in order to satisfy
the constraintss : ∀R.C ∈ L and t is a R-neighbor of
s (for simplicity of the presentation, in the remainder of
the proof, we assume thatt is aR-neighbor ofs because
S(s, t) ∈ L with S ⊑∗ R). The resulting Abox̂L is such
thatL̂ = L ∪ {t : C}.

Let îmL be the Abox obtained fromimL by applying the
∀-rule to satisfy the constrainta : ∀R.C ∈ imL to all
individualsa andb in imL such thatf(a) = s, f(b) = t
andS(a, b) (Note that sucha : ∀R.C ∈ imL becauses is
precise w.r.t.L ands : ∀R.C ∈ L).
Clearly thatîmL = imL ∪ {b : C|S(a, b) ∈ imL and
f(a) = s andf(b) = t}. For an individualb in imL such
thatf(b) = t, sincet is precise inL andS(s, t) ∈ L, there
exists an individuala such thatf(a) = s andS(a, b) ∈
imL. The application of∀-rule ona (a : ∀R.C must be in
imL sinces is precise w.r.t.L) insures thatb : C ∈ îmL,
which establishes that̂L is a precise summary of̂imL
with f as is summary function.

∀+-rule: Similar to∀-rule.

≤-rule: Let assume that the≤-rule is applied tos in order to sat-
isfy the constraintss :≤ 1R ∈ L and r and t are R-
neighbors ofs such thatr ˙6=t /∈ L andt ˙6=r /∈ L. It results
in the merger oft into r(for simplificity of the presenta-
tion, in the remainder of the proof, we assume, without
loss of generality, thatr and t areR-neighbors ofs be-
causeS(s, r) ∈ L andS(s, t) ∈ L with S ⊑∗ R). The
resulting AboxL̂ is such that
L̂ = (L−Rem) ∪Add
where,

Rem = {t : C ∈ L} ∪ {T (x, t) ∈ L|for a role T} ∪
{T (t, x) ∈ L|for a role T} ∪ { x ˙6=t ∈ L} ∪ {t ˙6=x ∈ L}
Add = {r : C|t : C ∈ L} ∪ {T (x, r)|T (x, t) ∈ L} ∪

{T (r, x)|T (t, x) ∈ L}∪{x ˙6=r|x ˙6=t ∈ L}∪{r ˙6=x|t ˙6=x ∈
L}

Let îmL be the Abox obtained fromimL by applying
the standard≤-rule to satisfy the constrainta :≤ 1R ∈
imL to all individualsa, b, c in imL such thatf(a) = s,
f(b) = r, f(c) = t, S(a, b) andS(a, c) (Note thata :≤
1R ∈ imL becauses is precise w.r.t.L ands :≤ 1R ∈ L.
Also b andc cannot be asserted to be distinct becausef(b)
andf(c) are not asserted to be distinct in the summary. So
≤-rule is applicable and its application mergesc andb.
Let f̂ be the mapping from̂imL to L̂ defined as follows:
for all individualsx in îmL,

f̂(x) =

{
f(x) if f(x) 6= t
r otherwise (i.e.f(x) = t)

L̂ is a precise summary of̂imL with f̂ as its summary
function as a direct consequence of the following facts:
– For an individualc in imL such thatf(c) = t, sincet is

precise inL andS(s, t) ∈ L, there exists an individual
a such thatf(a) = s andS(a, c) ∈ imL. Furthermore,
sinces is precise inL, s :≤ 1R ∈ L andS(s, r), there
exists an individualb such thatf(b) = r, a :≤ 1R ∈
imL andS(a, b) ∈ imL (once again,c andb cannot be
asserted to be distinct). Therefore, the application of
the≤-rule would have resulted in the merger ofc into
b.

– Likewise, for an individualb in imL such thatf(b) = r,
there area andc in mL such thatf(c) = t, S(a, b) ∈
imL andS(a, c) ∈ imL. Therefore, the application of
the≤-rule would have resulted in the merger ofc into
b.

⊓-rule: If the ⊓-rule is applied tos to satisfys : C ⊓ D ∈ L

, then L̂ = L ∪ {s : C, s : D}. Sinces is precise
w.r.t. L, all individualsa in imL such thatf(a) = s
are such thata : C ⊓ D. SinceL is a summary of
imL, the one of the assertionsa : C or a : D is not
in imL. So⊓-rule is applicable toa. Applying the
same⊓-rule on all these individualsa yields îmL =

imL ∪ {a : C|f(a) = s} ∪ {a : D|f(a) = s}. L̂

is obviously a precise summary of̂imL with f as its
summary function.

Unfol-rule: Similar to⊓-rule.
GCI-rule: Similar to⊓-rule.

The following corollary generalizes the idea illustrated in
the previous example:

Corollary 1. Letf be a summary function mapping an Abox
A, consistent w.r.t. to its TboxT and its RboxR, to its
summaryA′. LetQ be a concept expression and letS be a
subset of individuals inA′ such that for alls ∈ S, s : ¬Q /∈
A′.

For an individualt ∈ S, all individualsa such thatf(a) =
t are instances ofQ (i.e. (A, T ,R) |= a : Q) if the following
conditions hold:

1. there is a precise subsetL of tested(A′, Q, S), and

2. the Abox̂L′ obtained after the application of deterministic
tableau expansion rules onL′ = L − {x : ¬Q|x ∈ S}

is such thattested(L̂′, Q, S) has an acyclic2 inconsistent
subsetIC, and

3. {s ∈ S | s : ¬Q ∈ IC} = {t}

Proof. Direct consequence of theorems 2 and 1

In general, applying deterministic rules on a subsetL of
a summary of a consistent AboxA may still be insufficient
to directly find solutions of the query inA. Consider the ex-
ample in Figure 4, and letQ = ∃R.D ⊓∃T.D andS = {t}.
J = {s : D,R(t, s), T (t, s), t : ¬Q} is a precise justifica-
tion. No deterministic rule is applicable toJ − {t : ¬Q}.
However, the two AboxesJ1 = J ∪ {t : ∀R.¬D} and
J2 = J ∪ {t : ∀T.¬D} corresponding to the two branches
resulting from the application of the non-deterministic⊔-
rule to satisfyt : ¬Q have acyclic precise inconsistent
subsets, which, according to the following Theorem 3, is
enough to conclude thata1 anda2 are instances ofQ.

Theorem 3. Let f be a summary function mapping an Abox
A, consistent w.r.t. to its TboxT and its RboxR, to its
summaryA′. LetQ be a concept expression and letS be a
subset of individuals inA′ such that for alls ∈ S, s : ¬Q /∈
A′. For an individualt ∈ S, all individualsa inA such that
f(a) = t are instances ofQ (i.e. (A, T ,R) |= a : Q) if the
following conditions hold:

1. there is an inconsistent subsetIC of tested(A′, Q, S), and
2. IC is precise, and
3. {s ∈ S | s : ¬Q ∈ IC} = {t}, and
4. there are conceptsC andD such thatt : C ⊔ D ∈ IC,

t : C /∈ IC andt : D /∈ IC), and
5. Each of the AboxesIC1 = IC ∪ {t : C} and IC2 =

IC ∪ {t : D} has at least one acylic inconsistent subset.

Proof. The proof relies on the simple observation that,
for an Abox A, (A ∪ {x : C ⊔D}, T ,R) |= a : Q
is equivalent to (A ∪ {x : C}, T ,R) |= a : Q and
(A ∪ {x : D}, T ,R) |= a : Q

IC1 has an acyclic inconsistent subsetH. If we consider
a new queryQ′ = ¬(¬Q ⊓ C), thenIC1 is a precise subset
of tested(A′, Q′, S) (direct consequence of the fact that it is
a precise subset oftested(A′, Q, S)). SinceH is a precise
acyclic subset oftested(A′, Q′, S), Lemma 1 implies that,
for eacha in A such thatf(a) = t, there is an instanceIa

of the patternH − {t : ¬Q′} in A wherea is mapped to
t. SinceH is inconsistent, it follows thatIa ∪ {a : ¬Q′} is
also inconsistent. This establishes that, for eacha in A such
that f(a) = t, (A ∪ {a : C}, T ,R) |= a : Q. Likewise,
for eacha in A such thatf(a) = t, (A ∪ {a : D}, T ,R) |=

2Once again, acyclicity is defined w.r.t. to the undirected graph
induced by role and differentFrom assertions

a : Q. Therefore,(A ∪ {a : C ⊔D}, T ,R) |= a : Q, which
establishes(A, T ,R) |= a : Q becausea : C ⊔D ∈ A.

Note that condition (4) of Theorem 3 cannot be relaxed so
as to apply to any individualr in IC because, in general, in
the Abox, the solutiona1 that would be obtained from the in-
stance of the acyclic inconsistent subset ofIC1 = IC ∪{r :
C} might not be identical to the solutiona2 that would be
obtained from the instance of the acyclic inconsistent subset
of IC2 = IC ∪ {r : D}

Unfortunately, despite all the techniques presented in
this section, there are precise cyclic justifications that
remain inconclusive. For example, in Figure 4, let
Q = ¬((∀R.∀T−1.A ⊓ ¬A) ⊔ (∀R.∀T−1.B ⊓ ¬B)) and
S = {t}. There is a precise cyclic justificationJ =
{R(t, s), T (t, s), t : ¬Q}. The previous technique does not
work becauseJ ∪ {t : ∀R.∀T−1.A ⊓ ¬A} andJ ∪ {t :
∀R.∀T−1.B⊓¬B} don’t have any acyclic inconsistent sub-
set. In fact,a1 anda2 are not solutions. In such cases, we
refine an individualx in J by dividing the image set ofx ar-
bitrarily into two new summary graph individuals. In all of
the queries that we have processed so far, none have required
this fall-back.

Optimizations
As described earlier, for query answering we start by cre-
ating the summary AboxA′ of the original Abox in mem-
ory. The summary Abox is dramatically smaller than the
original Abox, but we can reduce the size of the summary
Abox built in memory much further by employing effective
filtering techniques described in (A.Fokoueet al. 2006b).
The basic idea is that we filter out role assertions that can-
not be responsible for the detection of an inconsistency in
the Abox, either because they cannot be used to propagate a
concept assertion, or because they cannot be involved in the
detection of an inconsistency due to a merger of Abox indi-
viduals. For the SHIN sub-language of DL, these are role
assertions where the roles are not specified in any universal
restriction or a maximum cardinality restriction inclos(A).
Note that theclos(A)includes the negated query, because
the queried concept is effectively a part of the knowledge
base. This filtering step reduces the size of the knowledge
base that is used as a starting point for query processing.
As described in earlier section, we iteratively apply refine-
ment to selectively increase the size of the knowledge base.
At each step of refinement, the refined knowledge base is
checked for consistency, to check if a conclusive inconsis-
tency exists. Prior to each consistency check, we also ap-
ply filtering based on a static tableau algorithm described
in (A.Fokoueet al. 2006a). This filtering step considers
whether a role assertion can be used in the detection of an
inconsistency based on the a conservative estimate of all
concepts that can ever be added to a given individual’s con-
cept set. This conservative estimate of the concept set of
an individual is obtained by the application of a modified
static tableau as described in the paper, and the step further
reduces the size of the knowledge base that is checked for
consistency at each refinement step.

Concept Simplification
One of the key optimizations in our query answering algo-
rithm, which helps simplify the summary even further, is to
replace concepts (types) present in the labels of the summary
individuals, that are found to be irrelevant for answering a
particular query, by their more generic super-types. We re-
fer to this process asconcept simplification.

Concept simplification is a two-step process. In the first
step, we expand the label of each summary individual by
unfolding concepts present in them recursively. For exam-
ple, if a conceptA is present in the label of a summary
individual x, and the axioms{A ⊑ B, B ⊑ C} ∈ Tu

(the unfoldable fragment of the TBox), then we set the label
L(x) ← {A,B,C}. In the second step, we examine con-
cepts across all the expanded labels and replace any atomic
concept(s) whose negation does not appear in theclosure
of the ABox (including the negation of the query) by⊤.
Note that this replacement of atomic concepts by⊤ is also
performed on nested complex expressions where the atomic
concepts appear. We describe the notion of ABox closure
(previously defined in (A.Fokoueet al. 2006b)) and show
how it is extended here.

Given an ABoxA, an RBoxR, and a TBoxT = Tu∪Tg,
where all the concepts appearing inT andA are in negation
normal form (NNF), the closure of a concept expressionC
(also in NNF) is the smallest set X containing C closed un-
der concept sub-expression, such that for a named concept
A, (1) if A ∈ X andA ⊑ D ∈ Tu, thenD ∈ X; (2) if
¬A ∈ X and¬A ⊑ D ∈ Tu, thenD ∈ X, and (3) if
∀P.C ∈ X and there is a role R withR ⊑∗ P and Trans(R),
then ∀R.C ∈ X. We define the closure ofA w.r.t. T
andR, denotedclos(A, T ,R), as

⋃
a:C∈A clos(C, T ,R)∪⋃

C⊑D∈Tg
clos(NNF (¬C ⊔D), T ,R).

Given a particular queryQ under consideration, we ex-
tend the closure of the ABox to include¬Q. Let us call
the resultant concept setclos(A, Q), i.e., clos(A, Q) ←
clos(A, T ,R) ∪ {¬Q}. In the second step, we check
whether a atomic concept in the expanded summary individ-
uals’ labels (i.e., expanded after unfolding in the first step)
and it’s negation are present in the setclos(A, Q). The ra-
tionale here is that query answering is done by a standard
proof-by-refutation technique, which involves building an
inconsistent ABox, and thus both, a concept and it’s nega-
tion, have to be present in the extended closureclos(A, Q)
for them to cause a contradiction. The absence of either one
(concept or it’s negation) implies that the concept is irrele-
vant from this particular query answering point of view, and
thus can be safely removed from the summary ABox without
affecting the soundness or completeness of the algorithm.

Computing Obvious Answers and Non-answers
We avoid testing individuals in the summary Abox that are
obvious answers or non-answers of the queried conceptQ.
An obvious non-answer ofQ is an individualt in the sum-
maryA′ already explicitly asserted to be an instance of¬Q
(i.e. t : ¬Q ∈ A′). An obvious answer ofQ is an indi-
vidual in the summaryA′ such that the intersection of all its
explicit concepts is subsumed byQ. An obvious answer al-

ways has a role-free justification. Without nominals, finding
obvious answer is a pure Tbox computation. All individ-
uals in the original AboxA mapped to an obvious answer
are instances ofQ because our summarization process does
not introduce extraneous concept assertions to the summary
(i.e. if t : C ∈ A′, then, for alla ∈ A such thatf(a) = t,
a : C ∈ A). Likewise, all individuals inA mapped to an
obvious non-answer cannot be inferred to be instances ofQ.

Treatment of Leaves in a Justification
The notion of precise justifications of an summary used in
practice is less restrictive that Definition 2. A precise subset
L of a summaryA′ is such that all its non-leaf individuals
and its tested leaves are precise w.r.t.L. Non-tested leaf
individuals are not required to be precise w.r.t.L.

All the results presented in this paper remain valid with
this less restrictive definition. In fact, ifimL is the im-
age of a precise, in the sense of the relaxed definion, sub-
setL of a summary andH is the set of individuals inimL
that make leaf individuals imprecise (w.r.t. Definition 2) ,
then, because our summarization does not produce extrane-
ous concept assertions, elements ofH are all isolated nodes
in imL. Furthermore, since our summarization does not pro-
duce extraneous role assertions (i.e. ifR(s, t) ∈ A′, then
there is at least one pair of individuals (a, b) in A such that
R(a, b) ∈ A, f(a) = s andf(b) = t)), it follows thatL is a
precise summary ofimL−H in the sense of Definition 2.

Partitioning
When the summary ABox contains islands, i.e., discon-
nected sub-graphs, we partition the summary and consider
each isolated sub-graph separately. Since our system cur-
rently works for the description logicSHIN , which does
not contain nominals, it is safe to partition the ABox without
affecting soundness and completeness of the query answer-
ing algorithm. Note that individuals in disconnected par-
titions can only interact via axioms in the TBox by using
nominals.

We found that the partitioning strategy works well in a
lot of realistic large ontologies where the class hierarchyis
spread out, typically observed when dealing with separate
domains or specializing in numerous areas. In such cases,
there exist a lot of disconnections between sub-ABoxes that
are tied into separate class hierarchies.

Partitioning also presents a great opportunity for paral-
lelization since the query answering algorithm can be ex-
ecuted on each separate partition simultaneously with the
results being combined at the end.

Individual Selection Strategy
Using our technique of query answering, one can either take
the approach of adding a negated query to a single individ-
ual in the summary Abox, and test it for consistency, or add
it to all individuals in the summary Abox and test it for con-
sistency. The advantage of adding it to all individuals in
the summary Abox is that we can try to find a large number
of justifications that are present in the summary Abox, and
target all individuals which are part of this justification for

Dataset type assertions role assertions
UOBM-1 25,453 214,177
UOBM-10 224,879 1,816,153
UOBM-30 709,159 6,494,950

Table 3: Dataset Statistics

further refinement. Because refinement is I/O intensive, it is
useful to refine as many individuals as possible in a single
pass.

Justification Patterns

We exploit similarities among justifications by forming jus-
tification patterns. Given a particular justificationJ for
the inconsistent summary, we generalize it into a justifica-
tion “pattern” by expressing it as a SPARQL query where
individuals in are treated as variables. Note that we do
not consider any of the Tbox or Rbox axioms inJ while
creating this query, only looking at assertions of the form
C(a), R(a, b), a ˙6=b present inJ . We execute this query
against the summary Abox using a SPARQL engine (or even
a straightforward pattern matcher) to retrieve other “isomor-
phic” justifications, and then add the Tbox and Rbox axioms
fromJ to each query result individually, to obtain valid new
justifications. Since this query pattern matching does not re-
quire any inferencing, the queries are fast. This optimization
dramatically reduces the time taken to find additional simi-
lar justifications that would normally have been found one
at a time as part of the exponential Reiter’s search.

Evaluation

Our algorithms are implemented in a system called SHER,
which includes additional optimizations (blind anon 2007).
We evaluated it on the UOBM benchmark which was mod-
ified to SHIN expressivity. We issued instance retrieval
queries for the 112 concepts in the ontology. The results
are reported for 1, 10, and 30 universities, which are re-
ferred to as UOBM-1, UOBM-10 and UOBM-30. We com-
pared our results against KAON2 (Hustadt, Motik, & Sattler
2004). (Pellet (Sirin & Parsia 2004) did not scale to even
one university.) For KAON2, we set all maximum cardinal-
ity restrictions to one because of KAON2 limitations. The
runs were made on a 64 bit AMD dual processor 8G RAM
Linux machine. The Abox was stored in DB2 for SHER and
MySQL for KAON2.

The size of the datasets are given in Table 3. Table 4 sum-
marizes the times taken (in seconds) by KAON2 and SHER
solely for query answering, i.e., in both cases, the times do
not include the knowledge base pre-processing and setup
costs. KAON2 ran out of memory on UOBM-30. In 111
out of 112 queries SHER and KAON2 had 100% agreement.
The difference in the one remaining was due to differences
in the constraints used. As can be seen, the average run-
times for SHER are significantly lower, usually by an order
of magnitude, than those for KAON2. For this particular
example, SHER scaled in a sublinear fashion.

Reasoner Dataset Avg. Time St.Dev Range
KAON2 UOBM-1 20.7 1.2 18-37
KAON2 UOBM-10 447.6 23.3 414.8-530
SHER UOBM-1 4.2 3.8 2.4-23.8
SHER UOBM-10 15.4 25.6 6.4-191.1
SHER UOBM-30 34.7 63.5 11.6-391.1

Table 4: Runtimes (sec)

Related Work and Conclusions
Optimized tableau algorithms exist for Aboxes in secondary
storage, but they either assume role-free Aboxes (Horrocks
et al. 2004), relatively inexpressive-DLs (Calvaneseet al.
2005), or require pre-processing of the Abox to make it role-
free (Li 2004). KAON2, which we included in our evalua-
tion, is a non-tableau based approach that relies on trans-
lating Description Logic to disjunctive datalog (Hustadt,
Motik, & Sattler 2004). Our summarization-and-refinement
strategy is an improvement over the divide-and-conquer (bi-
nary instance retrieval) approach (Haarslev & Moller 2002)
implemented in state-of-the-art tableau reasoners to testpo-
tential solutions to the query. Our approach provides a bet-
ter partitioning of tested individuals through summarization
and refinement, the ability to conclude directly that all tested
individuals are solutions without necessarily testing each of
them in isolation, and explanations for solutions.

References
A.Fokoue; A.Kershenbaum; L.Ma; C.Patel; E.Schonberg;
and K.Srinivas. 2006a. Using abstract evaluation in abox
reasoning. Proceedings of the Second Int. Workshop in
Scalable Semantic Web Knowledge Base Systems.

A.Fokoue; A.Kershenbaum; L.Ma; E.Schonberg; and
K.Srinivas. 2006b. The summary abox: Cutting ontolo-
gies down to size.Proc. of the Int. Semantic Web Conf.
(ISWC 2006)136–145.

Baader, F., and Hollunder, B. 1993. Embedding defaults
into terminological knowledge representation formalisms.
In Technical Report RR-93-20.

blind anon. 2007. Technical report: Scalable semantic
retrieval through summarization and refinement.

Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2005. Dl-lite: Tractable description logics
for ontologies.Proc. of AAAI.

Haarslev, V., and Moller, R. 2002. Optimization strate-
gies for instance retrieval.Proceedings of the international
workshop on description logics (DL 2002).

Horrocks, I., and Tessaris, S. 2002. Querying the semantic
web: a formal approach. In Horrocks, I., and Hendler, J.,
eds.,Proc. of the 1st Int. Semantic Web Conf. (ISWC 2002),
number 2342 in Lecture Notes in Computer Science, 177–
191. Springer-Verlag.

Horrocks, I.; Li, L.; Turi, D.; and Bechhofer, S. 2004. The
instance store: Dl reasoning with large numbers of individ-
uals.Proceedings of the 2004 Description Logic Workshop.

Hustadt, U.; Motik, B.; and Sattler, U. 2004. Reducing shiq
- description logic to disjunctive datalog programs.Proc. of
the 9th Int. Conf. on Knowledge Representation and Rea-
soning (KR 2004).
Kalyanpur, A. 2006.Debugging and Repair of OWL-DL
Ontologies. Ph.D. Dissertation, University of Maryland,
https://drum.umd.edu/dspace/bitstream/1903/3820/1/umi-
umd-3665.pdf.
Li, L. 2004. Reasoning with large numbers of individuals
moves on: extending the instance store.
Ma, L.; Yang, Y.; Qiu, Z.; Xie, G.; and Pan, Y. 2006.
Towards a complete owl ontology benchmark. InProc.
of the third European Semantic Web Conf.(ESWC 2006),
124–139.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence32:57–95.
Sirin, E., and Parsia, B. 2004. Pellet: An owl dl reasoner.
In Description Logics.

