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Abstract sive Aboxes in databases. Before processing any queries,
we create aummary AboxA’ (A.Fokoueet al. 2006b) from

an original AboxA and store it in a database. A summary
Abox is created by aggregating individuals which are mem-

Query processing of OWL-DL ontologies is intractable in the
worst case, but we present a novel technique that in practice
allows for efficient querying of ontologies with large Aboxes

in secondary storage. We focus on the processingsténce bers of the same concepts. Query processing is performed
retrieval queries, i.e., queries that retrieve individuals in the on A’ rather thand. By testing an individual in the summary
Abox which are instances of a given concéht Our tech- Abox, all individuals mapped to the summary are effectively
nique uses summarization and refinement to reduce instance  tested at the same time.

retrieval to a small relevant subset of the original Abox. We However, there is a catch. For a tested indivickuad A’,

demonstrate the effectiveness of this technique in Aboxes if the summary is found to be consistent, then we know that
L e, CurASsal e Spelceble  al individuals mapped 1o that summary ndividuaire not
responds to OWL-DL minus nominals and daitatypes. .SOIUUOUS' But if the summary IS founq to_b_e inconsistent, it
keywords: Reasoning, Description Logic, Ontology. is possible that either (a) a subset of individuals mapped to
' : the summarized individualare instances of the query or (b)
the inconsistency is a spurious effect of the summarization
Introduction We determine the answer througdgfinementwhich selec-
Semantic retrieval is one of the important applicationsref o tively expands the summary Abox to make it more precise.
tologies and reasoning. Using reasoning to answer a query,  Refinement is an iterative process that partitions the set
information which is not explicitly stored in a knowledge ~ ©f individuals mapped to a single summary individual and
base can be inferred, thus improving recall. Reasoning al- remaps each partition to a new summary individual. The
gorithms that can be scaled to realistic databases are a keyiteration ends when either the expanded summary is consis-
enabling technology for semantic retrieval. tent, or it can be shown that all individuals mapped to the
We focus in this paper on the scalable processinin-of tested summary individual are solutions. Significantly)-co
stance retrievalqueries for OWL-DL knowledge bases in  Vergence on the solution is based only on the structure of the
secondary storage (excluding nominals and datatypes). An refined summary, without testing individuals.in
OWL-DL knowledge base consists conceptually of three  With this summarize-and-refine technique, it is critical to
components: the Thox which contains terminological as- have an effective refinement strategy, which limits both the
sertions about concepts, the Rbox which contains asssrtion number of refined individuals and the number of iterations.
about roles and role hierarchies, and the Abox which con- Our refinement strategy is based on identifyjingfifications
tains membership assertions and role assertions between in for the inconsistency in the summary Abox, which is a min-
dividuals. An instance query retrieves the individualsiat  imal inconsistent subset of the summary (Kalyanpur 2006),
Abox which are instances of a given concéptw.r.t. infor- and selectively applying refinement to individuals in jfisti
mation in the Thox and Rbox. cations. We test multiple individuals in the summary at the
It is well known that all queries over expressive-DL on- same time, and process multiple justifications at each refine
tologies can be reduced to consistency detection (Horrocks ment step. This approach proved effective on the UOBM
& Tessaris 2002), which is usually checked with a tableau benchmark ontology (M&t al. 2006), where we demon-
algorithm. As an example, a simple algorithm for instance Strate that we process Abox queries with up to 7.4 million
retrieval can be realized by testing if the addition of an as- assertions efficiently, whereas the state of the art reasone

sertiona : —~C for a given individuale results in an incon- could not scale to this size.

sistency. If the resulting Abox is inconsistent, theis an In addition to guiding refinement, justifications are help-
instance ofC. Of course, it is not practical to apply this  ful for users to understand query results. Since our expla-
simple approach to every individual. nations are at a summarized level, the information is more

We propose a novel approach that uses summarization useful than detailed information about each individualrin a
and refinement to scale instance retrieval to large expres- Abox. Another key point is that our summarize-and-refine



technique can be treated as an optimization that any tableau
reasoner can employ to achieve scalable ABox reasoning.

The key contributions of this paper are as follows: (a) We
present a novel, tableau-based technique to use summariza
tion and refinement for efficient instance retrieval for &arg
SHIN Aboxes in secondary storage. (b) We describe the
use of optimization techniques to selectively target pafts
the summary for refinement. (c) We show the application
of these techniques to the UOBM benchmark ontology with
SHIN expressivity, where we show dramatic reductions in
space and time requirements for instance retrieval.

Background

We assume ontologies of SHIN expressiveness. SHIN is
equivalent to OWL-DL without nominals and datatype rea-
soning, as shown in Table 1. In the semantic definition of
SHIN, Z= (A%, %) refers to an interpretation wher?

is a non-empty set (the domain of the interpretation), and
the interpretation functiol? maps every atomic conceft

to a setC? C AZ, every atomic roleR to a binary rela-
tion RZ C ATXAZ, and every individuak to a* € AZ.
Trans(R) refers to a transitive role R.

An RBox R is a finite set of transitivity axioms of the
form Trans{) and role inclusion axioms of the forf C P
whereR and P are roles=* denotes the reflexive transitive
closure of theC relation on roles. A ThoX is a set of
concept inclusion axioms of the forta = D whereC and
D are concept expressions. An Abgis a set of axioms of
the forma : C, R(a,b), andab.

An interpretatior is a model of an Abox4 w.r.t. a Thox
7T and a RboxR iff it satisfies all the axioms i4, R, and
T (see Table 2). An Abo¥ is said to be consistent w.r.t. a
Thox 7 and a RboxR iff there is a model of4 w.r.t. 7 and
R. If there is no ambiguity from the context, we simply say
that.4 is consistent.

A key feature of our approach is the construction of a
summary AboxA’ corresponding to the AbaA (A.Fokoue
et al. 2006b). An individual inA’ represents individuals
in A which are members of the same concepts. Formally,
an Abox A’ is as summary Abox of $HIN Abox A’
if there is a mapping functiofi that satisfies the following
constraints:

(1) ifa:C e Athenf(a): C € A’
(2) if R(a,b) € AthenR(f(a),f(b)) € A’
(3) if a#b € Athenf(a)#f(b) € A’

If the summary Abox4’ obtained by applying the mapping
functionf to A is consistent w.r.t. a TboX and a RboxR,
thenA is consistent w.r.t7 andR. However, the converse
does not hold.

Let £ be a mapping from each individual i to a set of
concepts, such that: C' € Aiff C € L(a). We callL(a)
theconcept sedf a. In practice, we use @anonical function
f to create a summary Abox, which maps all non-distinct in-
dividuals that have identical concept sets to the same indi-
vidual in A’. More precisely, the converse of constraints (1)
and (3) hold for the canonical summary, and:

(4) If R(a’,b") € A’ then there are andb in A such thata’ =
f(a), b’ = f(b) andR(a,b) € A.

Definitions | Semantics

CcnbD ctnD*

CcubD ctuD*

-C AT\

JR.C {z]3y. < z,y >c RY,y € C7}
VR.C {z|Vy. < z,y >c R = y € C7}
<nR {z| {< z,y >€ RT}| <n}
>nR {z| {< z,y >€ RT}| > n}

R~ {<z,y>|<yxz>c R}

Table 1: SHIN Description Logic Constructors

Axioms | Satisfiability conditions
TransR) | (RH)T = RT

RCP | <z y>eRE=<ua,y>cP?
cch |[cTcD?

a:C at e C?

R(a,b) | <a,bF > RT

a#b at # bt

Table 2: SHIN Description Logic Axioms

(5) Ifforall z € A, a#x ¢ A, b#x ¢ A, andL(a) = L(b), then

£(a) = £(b).

(6) f(a)#f(b) € A’ impliesa is the only individual in4 mapped

to f(a) (same fob).

Overview

We motivate our instance retrieval algorithm using an exam-
ple based on the UOBM ontology with an Abgkshown in
Figure 1. The individualsl, ¢2 andc3 are instances of the
conceptCourse; pl, p2 andp3 are instances oPerson;

m1l andm2 are instances ofMan; wl is an instance of
Woman, andhl andh?2 are instances aff obby. For now,

we assume that the Thox contains only one axiom stating
that M an andWoman are disjoint concepts and the Rbox

is empty.
isTaughtBy isTaughtBy isTaughtBy
likes likes

() (2)

Figure 1: Example Abox

Consider the query for the conceptopleWith H obby,
which is defined a®?erson M > 1likes. From Figure 1, it
is clear that the answer consists of the individyalsand
p3, which are the onlyPerson individuals in. A which are
related to at least onE obby individual by thelikes role.

Instead of reasoning aA directly, our algorithm reasons
on the canonical summary Aba#’ for A. The canonical
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likes

)

isTaughtBy

Summary Refined Summary

Figure 2: Summary Abox

summary is shown in the left of Figure 2, where the sin-
gle individualscl, ¢2, ¢3 are mapped te’ in A’, m1 and
m2 are mapped ten’ in A’, and so on. Since the Rbox is
empty (i.e.,isTaughtBy is not functional),A’ is consis-
tent. By testing a summary individual, our goal is to draw
conclusions about all of the actual individualsAnmapped

to it. Anindividual s in A’ is tested by adding the assertion 4.

s : = PeopleWithHobby to A’, and checking for consis-
tency using a tableau reasoner. To achieve scalability, we
test multiple individuals in the summary graph at the same
time.

Definition 1. Let.A be an Abox. Le be a concept expression.
Let S be a subset of individuals il such that for alls € S,
s:—-Q ¢ A. ' We define the tested Abox w.rtl, Q and S,
denotedested.A, @, S), to be the Abox obtained frop by adding
the assertiors : —Q for eachs € S. Formally,tested.A, Q, S) =
AU{s:=Q|s € S}.

If the result of testing a single individualis consistent,
then we know that none of the individuals in the image of
s is a query solution. However, if the result is inconsistent,
then we cannot conclude anything about individuals in the
image ofs. This situation arises because individuals are ag-
gregated based only on the similarity of their concepts, not
relationships.

In the example, adding’ : —PeopleWithHobby is
consistent. Thereforegl, ¢2, and ¢3 in A can be ex-
cluded. Similarly,m1, m2, wl, hl and h2 can be im-
mediately excluded. When testing, the result of adding
p' : = PeopleWithHobby to the summary is inconsistent.
In this case, not all individuals in the image@fsatisfy the
query, since they differ in their relationships.

Our approach for resolving summary Abox inconsisten-
cies is to iterativelyrefine the summary. Refinement in-

creases the size and precision of the summary, and preserves

the summary Abox properties(1)-(3) defined in the previous
section. Our strategy is to refine only individuals that are
part of a summary Abojustification where a justification is

a minimal set of assertions which, when taken together, im-
ply a logical contradiction, thus making the entire Abox in-
consistent. In some cases, inconsistencies disappeagtiro
refinement. Otherwise, when a justificatighis precise(as
defined below in Definition 2) we typically know that we
have converged on a solution. That is, there is a tested indi-
vidual s in 7, such that all of the individuals in the image of

INote that we exclude individualssuch thats : —Q belongs
to A’because they are obviously not solutions and it also allows

s are instances of the query. We say that a tested individual
s is tested in7 for query@ if s : =@ is an assertion i/ .
(The topic of drawing a conclusions on precise justification
is discussed in a later section.)

Definition 2. Let.A’ be a summary Abox of an Abok obtained
through the summary mappifg Let@ be a queried concep§ be
a subset of individuals i’ such that for alle € S,z : -Q ¢ A’
and letH be a subset dbsted.A’, Q, S). We say that an individual
s € H is precisew.r.t. H iff the following conditions are satisfied:

1. for allindividualst € H and for all rolesR, R(s,t) € H (resp.
R(t,s) € H) implies that, for all individuals: € A such that
f(a) = s, there is an individuab € A such thatf(b) = ¢ and
R(a,b) € A(resp.R(b,a) € A); and

for all individualst € H, s#t € H (resp. t#s € H) implies
that, for all individualsa € A such thatf(a) = s, there is
an individualb € A such thatf(b) = ¢t anda#b € A (resp.
b#a € A); and

2.

3. There is anindividuad € A such thatf(a) = s; and

s:C € H—{z:—-Q|z € S} implies that, for all individuals
a € Asuchthaff(a) =s,a: C e A

We say thaf{ is precise iff all its individuals are precise w.rH.

Continuing with the example, there is a justificatioh
consisting ofp’ : —PeopleWithHobby, h' : Hobby, and
likes(p',h'), andp’ is tested in7. Note thatp’ is not pre-
cise since it does not satisfy condition 1. Refinement re-
places’ by two individualsp,’ andp,’, where the image of
P’ is pl andp3, and the image op,’ is p2. The result of
this refinement is shown in the right of Figure 2. The tested
refined summary is still inconsistent, and there is now a pre-
cise justificationp,’ : —PeopleWithHobby, h' : Hobby,
andlikes(p,’, h'). Every Person in the image ofp,’ likes
a Hobby. Thus, the image op,’, namelypl andp3, are
solutions.

A high level outline of our algorithm is shown be-

low. More details are given in subsequent sections.
S—{z|z € individuals in A'and z : =Q ¢ A'};
R—A’;
Results«—(;
while S# () do

Rr« tested(R, @, S) (see Definition 1.) ;
if consistentRr) then
return Results;
end
Find Justi fications in Rr;
T+~ individuals tested in precisusti fications;
Results—Results U Image(T);
S—S —T;
Execute refinement strategy éb;
end
return Results ;

Refinement

This section describes justification-based refinement, and
some of the issues in deciding justification refinement order

Definition 3. Let. A’ and A’z be summary Aboxes of an abdyx
with resp. mapping functiorfsandfr. LetI’ be the set of individ-
ualsinA’, andI’; be the individuals imd’;. Lets be an individual

us to easily track assertions that were actually added to the testedin A’. We say thatd’; is a refinement ofd’ w.r.t. s iff there are

summary.

individualsss . .. sn,n > 1, in A’r such that:



=" —{s})U{s1...sp}wheresy...s, ¢ I’
. iff(a) # s, thenfr (a) = f(a)
. iff(a) = s, thenfr(a) = s;, for somel < ¢ < n.

. foreachl < i < n, there is at least one individualin A such
thatfR(a) = S;.

In the worst case, iterative refinement can expand a sum-
mary Abox into the original Abox, so an effective refinement
strategy is critical. The refinement step for an individsal
in a justification.7 is as follows. For each in the image
of s, definekey(a) w.r.t. J to be the set of role assertions
in J for which a has a corresponding role assertion in the
original A. That is,key(a) =

A W DN P

f(a) = sA f(a) = sA
R(t,s) eTNA R(s,t) €TN

R(t,s)| Jbin As.t. U< R(s,t)| dbin As.t.
R(b,a) € AN R(a,b) € AN
f(b) =t f(b) =t

To refines, we partition its image so that all individuals
in a partition have the samecy w.r.t. 7. Each partition
is mapped to a new summary individual, creating a refined
summary Abox. Conversely, if all individuals idA mapped
to a summary individuaé have the same key w.r.{7, then
s is precise w.r.t. 7. Thus, justification-based refinement
leads to precise justifications in subsequent iterations.

In general, there can be multiple justifications corre-
sponding to different inconsistencies. For example, let us
add a constraint to Figure 1 that the role€l'aughtBy
is functional. The summary Abox in Figure 2 now con-
tains a spurious inconsistency, becauseand w’ will be
inferred to be the same individual because of the func-
tional property, butn’ andw’ are instances of the disjoint
conceptsMan and Woman respectively. The justifica-
tion for this inconsistency isc’ : Course, m’ : Man,

w' : Woman, isTaughtBy(c',m’), isTaugtBy(c',w").
Figure 3 illustrates the application of a refinement step to
the refined summary in Figure 2. The individuélpartic-
ipates in multiple role assertions, so it is replacedchy
andc¢,’. The individualscl and¢3, which have the same
key {isTaughtBy(c',m’)}, are mapped te,’. The indi-
vidual ¢2 is mapped toc,” because it has a differefey
{isTaughtBy(c',w')}. After this refinement step, this spu-
rious inconsistency disappears.

Refinement Strategy

The justification refinement order is important.
some sample heuristics:

¢ A single refinement candidatemay belong to multiple
justifications. In such a case, we definefitg, to be the
set of role assertions in all justifications tiabelongs to.
However, this can lead to a large numberkef; combi-
nations, and to needless partitioning. We therefore give
preference to justifications that have no overlap.

e Smaller justifications are given priority over larger jfisti
cations.

single justification easily,
tions is not straightforward.
deterministic tableau algorithm typically terminates wias

e If there are two tested individuals iff, it is possible that
the inconsistency is due to the interaction between two
=() type assertions. We therefore delay the refinement
of such justifications until no other justifications are left
in the summary, when it is more efficient to test each of
these individuals separately.

e Once a giveryy has been selected for refinement, we track
its transformation in successive iterations to avoid recom
putation overhead, and to reach a conclusion as quickly as
possible.

e We give higher priority to justifications that pertain to the
query (i.e. those that contain a tested individual in the
justification.) In making the summary more precise by
refining query-pertinent justifications, spurious incaensi
tencies may disappeatr.

isTaughtBy

likes

Figure 3: Abox after second refinement

Computing and Selecting Justifications
In order to compute justifications efficiently, we resort to a

technique known ambleau tracing The idea, initially pro-

posed in (Baader & Hollunder 1993) for the logiCC, and
later extended t&HZN (Kalyanpur 2006), involves modi-

fying the internals of a tableau reasoner by keeping track of
the axioms responsible for each of it's operations and svent

Briefly, the process works as follows (the details are beyond

the scope of this report, see (Kalyanpur 2006)): DL-based
tableaux reasoners check consistency of an ABox by build-

ing an abstraction of a model for it, known as@mpletion

graph, which is constructed by repeatedly applying a set of
expansion rules If the ontology is inconsistent, it has no

model, and thus the completion graph contaiteshesor

contradictions. In our problem, the goal is no longer con-
structing a model for the input, but identifying which axism

in the input ABox are responsible for the contradictiong tha
prevent the model from being built. We do this by keeping

Here are track of the axioms responsible for firing each of the expan-
sion rules (while building the graph), and finally examine
the axiom trace of the clash event to obtain a justification fo
the inconsistent ABox.

However, while the above technique helps find a
finding additional justifica-

This is because the non-

inconsistency-revealing clash is found, whereas we need it

to explore any remaining choices and fire additional applica

ble expansion rules in order to reveal more clashes (thereby



exposing more justifications) inherent in the ABox. This,

S be a subset of individuals a4’ such that for alls € S,

in effect, causes all the reasoner optimizations to be trne s: -Q ¢ A’

off, which is computationally very expensive. In order to

If L is a non-empty acyclic precise subset of

resolve this problem, we use a workaround that involves the tested.A’, @, S), then, for each individuaki of L and

classical Reiter’'s Hitting Set Tree (HST) algorithm (Reite
1987).

The basic principle behind the workaround strategy is to
iteratively discover additional justifications by stagiwith
a single justification, removing each of the axioms in the jus
tification from the original ABox and then finding any new
justifications in the modified ABox (using the tableau trac-

ing procedure again). This process is repeated recursively

till no new justifications are found. By drawing an analogy
with Reiter's HST algorithm, we can benefit from many of
the optimizations present therein (for details see (Kgbyan
2006)).

The above technique provides a definite solution for find-
ing all justifications. However, there is a trade-off betwee
the time taken to compute all the justifications, which can be
large due to the exponential nature of Reiter’s searchugers
the reduction in refinement time achieved by finding all jus-
tifications at each iteration of the refinement process. To ad
dress this trade-off, we impose a user-definable cut-ofitpoi
(upper-threshold) for the subroutine which computesfiusti
cations, and perform an empirical analysis to fix a threshold
value that works well in practice.

Drawing Conclusions on Justifications

In this section, we present a set of conditions that are suf-
ficient to prove that all individuals mapped to a tested in-
dividual s in a precise justificatio/ are solutions. These
conditions depend only on the structure of

Theorem 1. Letf be a summary function mapping an Abox
A, consistent w.r.t. to its ThoZ and its RboxR, to its
summaryA’. Let@ be a concept expression and Igtbe

a subset of individuals ipd’ such that for alls € S, s :
-Q ¢ A’. For an individualt € S, all individualsa such
thatf(a) = t are instances of) (i.e. (A, 7,R) E a: Q) if
the following conditions hold:

1. there is an inconsistent subdet oftested.A’, @, S), and

2. IC is precise, and

3. {seS|s:=QeIC}={t},and

4. IC is acylic (i.e. the undirected graph induced by role
and differentFrom assertions is acyclic)

Proof. The main idea behind the proof is that, assuming the
4 conditions are satisfied and viewidg' — {t : -Q} as a
pattern, for each individual € A such thaf'(a) = ¢, there
is an instancé, of the patter’C — {¢ : =@} in A such that
a is associated with t. SincBC' is inconsistent, it follows
thatl, U {a : -Q} is inconsistent, henceis an instance of
Q (becausd, is a subset of4).

The existence of the instandg relies on the following
Lemmal: O

Lemma 1. Letf be a summary function mapping an Abox
A toits summary4d’. Let@ be a concept expression and let

a of A such thatf(a) = u, there exists a pai(/, p) such

that 7 is a subset of4 and p is a total mapping from

Indiv(L) to Indiv(I), whereIndiv(X) denotes the set of
individuals in an AboxX. Futhermore,(I,p) satifies the

following properties for all individuals ands in L:

° (@)p(u) =a
e (b)if R(r,s) € LthenR(p(r),p(s)) € I

e ()ifr#s € Lthenp(r)#p(s) € I
e d)ifs:De(L—{x:-QlxreS})thenp(s): Del

Proof. We prove Lemma 1 by induction on the number of
individuals inL.

First, we consider the case whdréas a single individual
u. Leta be an individual ofd such thaf(a) = u. We define
IT'asI ={a:Dlu:D e (L—{x:-Qlr € S})}andp
is the mapping from{u} to {a} such thatp(u) = a. The
pair (I, p) satisfies the propeties (b) and (c) because, since
Lis acyclic,uu ¢ L andR(u,u) ¢ L. It satisfies (a) by
definition of p. It satifies (d) and is a subset of as a direct
consequence of the fact thats precise (4th property in the
definition of a precise individual) arf{a) = u.

Next, we assume that if the number of individualdirs
less than or equal te (for » an integer such that > 1),
then, for any(u,a) € L x A such thaf(a) = u, there is a
pair (I, p) satisfying all the requirements of Lemma 1. We
prove that ifL hasn + 1 individuals such pairs still exist.

Let L be a non-empty acyclic subset telsted.A’, Q, S)
such that all its» + 1 individuals are precise w.r.tL. Let
u be an individual inL. anda an individual in.A such that
f(a) = u.

The proof consists of three important steps. First, we es-
tablish properties of individuals df directly "connected™
to u (we will relate them to individuals it directly ™con-
nected” toa in the same way). Second, after removing
from L and its connections to other individualsin(i.e. all
role and differentFrom assertions relatingo another indi-
vidual), we end up with disjoint subsets bfcontaining less
thann + 1 individuals so that, by using the induction hy-
pothesis, we can show that there are pgifsp’) satisfying
all the requirements of Lemma 1 on these subsefs. dfi-
nally, using these pairdl’, p’), we show the existence of a
pair (I, p) satisfying all the requirements of Lemma 1 bn

First, we consider the séton,, of individuals of L con-
nected ta: in L by a role or differentFrom assertiaron,,
{z|R(u,z) € Lor R(z,u) € Loru#xz € Lorxz#u € L}.
For an element € Con,,, sinceL is acylic, there is only one
connection, denotefd, v], between: andv (this connection
is one of : R(u,v), R(v,u), u#v, or v#u). Regardless of
the exact nature of the connectioR(, v), R(v, u), u#v,
or v£u), the fact that: is precise inL implies that there is
an individualb in A such thaf (b) = v andb is connected to
a in the same way is connected ta (e.g. if R(u,v) € L,
thenR(a,b) € A). We define a mapping from Con,, to



Indiv(A) as follows: for an element in Con,, B(v) is
chosen to be an individuélin A such thaf (b) = v and the
connection betwen andb in A is of the same nature as the
connection between andv in L.

Now, we consider the subsét of L obtained after re-
moving v and all connections relating to another indi-
vidual in L. Formally, L’ = L — ({R(u,z) € Llx €
Cony} U{R(z,u) € Llz € Con,} U {u#tx € Ljz €
Cony} U{z#u € Llz € Cony} U{u : Dju : D € L}).
For an element € Con,, we defineReach, as the set of
elements ofZ’ that containy and all elements reacheable
(ignoring directionality of role and differentFrom assents)
fromwv in L’ . SincelL is acyclic, forv andw elements of
Cony, v # w implies thatReach,, and Reach,, are dis-
joint. Furthermore, by definition of’ and Reach,,, for all
v € Cony, u ¢ Reach,. For an individuab € Con,,, L,
denotes the greatest subsef6tontaining only individuals
in Reach,,. For all (v,w) € Con? such that # w, since
Reach,, and Reach,, are disjoint, it follows thatf.! andL!,
are also disjoint. Finally, leRest’ be the subset of’ de-
fined asRest’ = L' — Uyecon, L,,. By its definition,Rest’
cannot containw and is disjoint with anyl./ .

For an elemenv € Con,, since L] is a non-empty
acyclic subset ofested.A’, @, S) such that all itsk indi-
viduals (withk < n) are precise w.r.tL!, f(v) € A and
f(6(v)) = v, it follows, from the induction hypothesis, that
there is a painl,, p,), wherel, is a subset of4 and p,
is a total mapping fromdndiv(L!) to Indiv(1,), satisfying
pv(v) = B(v) and all the properties (b) to (d) of Lemma 1.
AssumingRest’ is not empty, we choose, randomly, an in-
dividual denoted in Rest’ (sincez is precise, we know that
there must be an individuakk € A such thaff(za) = 2).
Likewise, there is a paifl., p.), wherel, is a subset of4
andp. is a total mapping fronindiv(Rest’) to Indiv(I,),
satisfyingp.(z) = za and all the properties (b) to (d) of
Lemma 1.

From the pairg,, p.,) obtained on all the disjoint subsets
of L', we can now define the pail, p) satisfying all the
requirements of Lemma 1 fdr. We definel as follows:

j A if Rest’ =0
— )1 AUI, otherwise

whereA is defined as:

A= {a:Dlu:DeL—{x:-Q|zeS}}
U{R(a, B(v))|R(u,v) € L}
WU{R(B(v), a)|R(v,u) € L}
U{a#ﬁ(vjﬂu;«év € LY U {B(v)#£a|v#u € L}
veCon, ~V
p is defined as the mapping frofmdiv(L) to Indiv(I)
as follows: for an individuak in L,

a ifc=u
plx) = { pv(x) if € Reach, for somev € Con,,
p.(x) otherwise (i.ex € Rest’)

Itis obvious that, due to the properties satified by the pairs

(I, p.) obtained on the disjoint subsets bf and by the
definition of 3, (I, p) defined previously satisfies all the re-
quirements of Lemma 1. O

Figure 4: Example with Cycle

In our algorithm, the subséC of tested(A’, Q, S) is al-
ways a minimal justification7. Using the proof of Theo-
rem 1, if 7 is precise and acyclic, then we can view it as a
pattern, and conclude that there are corresponding pattern
in A which matchy — {t : -Q}. However, ifJ is precise
and cyclic, we cannot draw this conclusion. Consider the
example in Figure 4, and 1€ = 3R.C andS = {t}. There
is a precise justificatio = {t : VI.C, R(t, s),T'(t, s),t :
—Q}, but there is no pattern il which matches7 — {¢ :

Fortunately, in many cases, we can efficiently transform
part of the summary Abox so that Theorem 1 is still applica-
ble. Theorem 2 allows us to apply deterministic tableau ex-
pansion rules to a precise justification, and then checkrfor a
acyclic justification. More specifically, applying detenis-
tic tableau expansion rules to a precise justification tesul
a new precise inconsistent subset of a summary of an Abox
equivalent to the original Abox. To motivate this transfor-
mation, consider the imagexL of L = 7 —{t : =Q} in A.

If we were to apply deterministic tableau rulesital, the
result would bemL = imL U {b1,b2 : C}, which is logi-
cally equivalent tam.L. Now observe that = L U {s : C'}

is a precise summary o‘ﬁz\L, and can be obtained by ap-
plying deterministic tableau expansion rules/to Further-
more,tested(f, S, Q) has a precise and acyclic justification
J ={R(t,s),s: C,t:-Q}, so that we can now conclude
thatal anda2 are instances of) by directly using Theo-
rem 1.

Theorem 2. Letf be a summary function mapping an Abox
A to its summaryd’ and L be a subset ofl’. Letim L de-
note the image of in A (i.e. imL = {a : C € Alf(a)
isin L} U{R(a,b) € Alf(a) andf(b) are individuals in

L} U {a#b € A|f(a) andf(b) are individuals inL}). LetL
denote the Abox obtained after the application of determin-
istic tableau expansion rules dn If L is precise, then there

is an Aboxim L equivalenttamL such thatl is a summary

ofimL and L is precise.

Proof. First, we observe that applying a determistic tableau
expansion rule on a Abox yields an equivalent Abox.

Assuming thatl is precise, we show that the application
of a deterministic tableau rule to an individugin L yields

an aboxZ which is a precise summary of the Abox obtained



by applying the same deterministic rule on all the individua
of im L mapped tas (i.e. individualsa such thaf (a) = s).

3-rule:

>-rule:
V-rule:

Y -rule:
<-rule:

Let assume that therule is applied ta in order to satisfy
the constraint : JR.C' € L. The resulting AboxL is
such thatL = L U {R(s,t),t : C} wheret is a new
individual not presentird.

By definition of the applicability of th&-rule, there are
no R-neigborsy of s in L such thaty : C € L. Let
a be an individual ofimL such thatf(a) = s. Since
s is precise w.r.t. L, a : 3R.C € imL. Sincel is a
summary ofimL, there are ndr-neigborsb of a in imL
suchthab : C € imL. So we can apply theé-rule ona to
satisfya : 3R.C' € imL. This will result in the creation
of a new individual, denotg(a), such that3(a) : C and
R(a, 5(a)). LetimL be the result of the application of the
3-rule to all such individuala. imL = imL U {f3(a) :
Clf(a) = s} U{R(a, B(a ))\f( ) = s}. It follows that L
is a precise summary afnL with the summary function

¥ defined as follows: for all individuat in i?n\L,

f

| f(a) ifae Indiv(imL)
(a) = t otherwise

Similar to3-rule.

Let assume that thérule is applied ta in order to satisfy
the constraints : VR.C' € L andt is a R-neighbor of
s (for simplicity of the presentation, in the remainder of
the proof, we assume thats a R-neighbor ofs because

S(s,t) € L with S C* R). The resulting AboxL is such
thatL = LU {t: C}.
LetimL be the Abox obtained frorm L by applying the

V-rule to satisfy the constraint : VR.C' € imL to all
individualsa andb in imL such thaff(a) = s, f(b) = ¢t

Rem = {t : C € L} U{T(z,t) € Liforarole T} U
{T(t,x) € Liforarole Ty U{ z#t € L} U {t#x € L}

Add ={r : Clt : C € L} U{T(z,r)[T(z,t) € L} U
{7}1(7' ,x)|T(t,x) € LYU{x#r|e#t € L} U {rz|t#s

Let imL be the Abox obtained frommL by applying
the standard<-rule to satisfy the constraint :< 1R €
imL to all individualsa, b, ¢ in imL such thaff(a) = s,

f(b) = r, £f(c) = ¢, S(a,b) andS(a,c) (Note thata :<

1R € imL because is precise w.r.tL ands :< 1R € L.
Also b andc cannot be asserted to be distinct bec#ise
andf(c) are not asserted to be distinct in the summary. So
<-rule is applicable and its application mergeandb.

Let f be the mapping fronimL to L defined as follows:
for all individualsz in imL,

?(x) _ { f(x) iff(x)#t

r otherwise (i.ef(z) = t)

Lisa precise summary afnL with fas its summary
function as a direct consequence of the following facts:

— For anindividuak in imL such thaf (c) = ¢, sincet is
precise inL andS(s,t) € L, there exists an individual
a such thaf (a) = s andS(a, ¢) € imL. Furthermore,
sinces is precise inL, s :< 1R € L andS(s, ), there
exists an individuab such thatf(b) = r, a :< 1R €
imL andS(a,b) € imL (once againg andb cannot be
asserted to be distinct). Therefore, the application of
the <-rule would have resulted in the mergerwointo
b.

— Likewise, for an individuab in im L such thaf (b) = r,
there arex andc in mL such thaff(c) = ¢, S(a,b) €
imL andS(a,c) € imL. Therefore, the application of
the <-rule would have resulted in the mergerwinto
b.

andS(a, b) (Note that sucl : VR.C € imL because is r-rule: If the M-rule is applied tos to satisfys : C M D € L

precise w.r.tL ands : VR.C € L).

Clearly thatimL = imL U {b : C|S(a,b) € imL and
f(a) = sandf(b) = t}. For an individuab in imL such
thatf (b) = t, sincet is precise inL andS(s, t) € L, there
exists an individuak such thatf(a) = s andS(a,b) €

imL. The application of/-rule ona (a : VR.C'must be in
imL sinces is precise w.r.tL) insures thab : C € sz

which establishes that is a precise summary ofnl
with f as is summary function.

,thenL = LU {s : C,s : D}. Sinces is precise
w.r.t. L, all individualsa in imL such thaf(a) = s

are such that : C 1 D. SinceL is a summary of
imL, the one of the assertions: C ora : D is not
in ¢imL. SonM-rule is applicable ta:. Applying the

sameri-rule on all these individuals yields imL =
imL U {a : C|f(a) = s} U{a : D|f(a) = s}. L
is obviously a precise summary ohL with f as its
summary function.

Similar toV-rule. Unfol-rule: Similar ton-rule.
Let assume that the-rule is applied tos in order to sa¢CI-rule: Similar tori-rule.

isfy the constraints :< 1R € L andr andt are R-
neighbors ofs such that-#t ¢ L andt£r ¢ L. It results

in the merger ot into r(for simplificity of the presenta-
tion, in the remainder of the proof, we assume, without
loss of generality, that and¢ are R-neighbors ofs be-
causeS(s,r) € L andS(s,t) € L with S C* R). The
resulting AboxL is such that

L = (L — Rem)U Add

where,

O

The following corollary generalizes the idea illustrataed i
the previous example:

Corollary 1. Letf be a summary function mapping an Abox
A, consistent w.rt. to its Tbo¥ and its RboxR, to its
summaryA’. Let(Q be a concept expression and lebe a
subset of individuals itd’ such that for alls € S, s : =Q ¢
A



For anindividualt € S, all individualsa such thaf (a) =
tareinstancesaf) (i.e. (4,7, R) | a : Q) if the following
conditions hold:

1. there is a precise subsétof tested.A’, Q, S), and

2. the Abox.’ obtained after the application of deterministic
tableau expansion rules off = L — {z : =Q|z € S}

is such thatestecqf’, Q, S) has an acycli¢ inconsistent
subset/C, and

3.{seS|s:=QelIC}={t}
Proof. Direct consequence of theorems 2 and 1 O

In general, applying deterministic rules on a subseif
a summary of a consistent Abox may still be insufficient
to directly find solutions of the query id. Consider the ex-
ample in Figure 4, and |€) = 3R.DM3T.D andS = {t}.
J ={s: D,R(t,s),T(t,s),t : =Q} is a precise justifica-
tion. No deterministic rule is applicable t6 — {t : —-Q}.
However, the two Aboxes/; = J U {¢t : VR.-D} and
Jo = J U {t : YT.-D} corresponding to the two branches
resulting from the application of the non-deterministie
rule to satisfyt : —@Q have acyclic precise inconsistent
subsets, which, according to the following Theorem 3, is
enough to conclude thafl anda2 are instances af.

Theorem 3. Letf be a summary function mapping an Abox
A, consistent w.r.t. to its ThoZ and its RboxR, to its
summaryA’. Let(@ be a concept expression and lebe a
subset of individuals ipd’ such that for alls € S, s : =Q ¢
A’. For anindividualt € S, all individualsa in A such that
f(a) = t are instances of) (i.e. (4,7,R) | a: Q) if the
following conditions hold:

1. thereis aninconsistent subdét oftested.A’, @, S), and

2. IC is precise, and

3. {seS|s:=QeIC}={t} and

4. there are concept§’ and D such thatt : C U D € IC,
t:C ¢ ICandt: D¢ IC),and

5. Each of the AboxesCy, = IC U {t : C} andICy =
IC U {t: D} has at least one acylic inconsistent subset.

Proof. The proof relies on the simple observation that,
for an Abox A, (AU{z:CUD},T,R) E a:Q
is equivalent to (AU{z:C},7,R) | a:@Q and
(AU{z: D}, T,R)Ea:Q

1C4 has an acyclic inconsistent subgét If we consider
anew quen®’ = —(-Q M C), thenIC is a precise subset
of testedA’, ', S) (direct consequence of the fact that it is
a precise subset @ésted.A’, Q, S)). SinceH is a precise
acyclic subset ofested.A’, @', S), Lemma 1 implies that,
for eacha in A such thaff(a) = ¢, there is an instancg,
of the patternd — {¢t : —-Q’} in A wherea is mapped to
t. SinceH is inconsistent, it follows thaf, U {a : =Q'} is
also inconsistent. This establishes that, for eagh.A such
thatf(a) = ¢, (AU{a:C},7,R) E a:Q. Likewise,
for eacha in A such thaf(a) = ¢, (AU {a: D},7,R) |

20nce again, acyclicity is defined w.r.t. to the undirected graph
induced by role and differentFrom assertions

a: Q. Therefore(AU{a: CUD}7T,R) Ea:Q,which
establishe$A,7,R) Ea: @ because : CLU D € A.
O]

Note that condition (4) of Theorem 3 cannot be relaxed so
as to apply to any individual in IC because, in general, in
the Abox, the solutior, that would be obtained from the in-
stance of the acyclic inconsistent subsef©f = IC' U {r :

C'} might not be identical to the solutiom, that would be
obtained from the instance of the acyclic inconsistentsubs
of ICy =IC U{r: D}

Unfortunately, despite all the techniques presented in
this section, there are precise cyclic justifications that
remain inconclusive. For example, in Figure 4, let
Q = —((YRYT-'.AN-A)U (YRYT-'.BN-B)) and
S = {t}. There is a precise cyclic justificatiof =
{R(t,s),T(t,s),t : =Q}. The previous technique does not
work because7 U {t : VRVTL.An-A} andJ U {t :
VR.NYT~'.Br—-B} don't have any acyclic inconsistent sub-
set. In fact,al anda2 are not solutions. In such cases, we
refine an individuak in 7 by dividing the image set of ar-
bitrarily into two new summary graph individuals. In all of
the queries that we have processed so far, none have required
this fall-back.

Optimizations
As described earlier, for query answering we start by cre-
ating the summary Abox’ of the original Abox in mem-
ory. The summary Abox is dramatically smaller than the
original Abox, but we can reduce the size of the summary
Abox built in memory much further by employing effective
filtering techniques described in (A.Fokoeeal. 2006b).
The basic idea is that we filter out role assertions that can-
not be responsible for the detection of an inconsistency in
the Abox, either because they cannot be used to propagate a
concept assertion, or because they cannot be involved in the
detection of an inconsistency due to a merger of Abox indi-
viduals. For the SHIN sub-language of DL, these are role
assertions where the roles are not specified in any universal
restriction or a maximum cardinality restrictiondfos(.A).
Note that theclos(.A)includes the negated query, because
the queried concept is effectively a part of the knowledge
base. This filtering step reduces the size of the knowledge
base that is used as a starting point for query processing.
As described in earlier section, we iteratively apply refine
ment to selectively increase the size of the knowledge base.
At each step of refinement, the refined knowledge base is
checked for consistency, to check if a conclusive inconsis-
tency exists. Prior to each consistency check, we also ap-
ply filtering based on a static tableau algorithm described
in (A.Fokoueet al. 2006a). This filtering step considers
whether a role assertion can be used in the detection of an
inconsistency based on the a conservative estimate of all
concepts that can ever be added to a given individual’s con-
cept set. This conservative estimate of the concept set of
an individual is obtained by the application of a modified
static tableau as described in the paper, and the step furthe
reduces the size of the knowledge base that is checked for
consistency at each refinement step.



Concept Simplification

One of the key optimizations in our query answering algo-
rithm, which helps simplify the summary even further, is to
replace concepts (types) presentin the labels of the suynmar
individuals, that are found to be irrelevant for answering a
particular query, by their more generic super-types. We re-
fer to this process asncept simplification

Concept simplification is a two-step process. In the first
step, we expand the label of each summary individual by
unfolding concepts present in them recursively. For exam-
ple, if a conceptA is present in the label of a summary
individual z, and the axiom§A C B, B C C} € T,
(the unfoldable fragment of the TBox), then we set the label
L(z) — {A, B,C}. In the second step, we examine con-

ways has a role-free justification. Without nominals, firgdin
obvious answer is a pure Tbox computation. All individ-
uals in the original Abox4 mapped to an obvious answer
are instances af) because our summarization process does
not introduce extraneous concept assertions to the summary
(i.e. ift : C € A, then, for alla € A such thaff(a) = ¢,

a: C € A). Likewise, all individuals in4 mapped to an
obvious non-answer cannot be inferred to be instancéks of

Treatment of Leaves in a Justification

The notion of precise justifications of an summary used in
practice is less restrictive that Definition 2. A precisesatb
L of a summaryA’ is such that all its non-leaf individuals
and its tested leaves are precise w.it. Non-tested leaf

cepts across all the expanded labels and replace any atomicindividuals are not required to be precise w.Lt.

concept(s) whose negation does not appear inctbsure
of the ABox (including the negation of the query) By.
Note that this replacement of atomic conceptsibis also

All the results presented in this paper remain valid with
this less restrictive definition. In fact, #imL is the im-
age of a precise, in the sense of the relaxed definion, sub-

performed on nested complex expressions where the atomic set of a summary and{ is the set of individuals imL

concepts appear. We describe the notion of ABox closure
(previously defined in (A.Fokouet al. 2006b)) and show
how it is extended here.

Given an ABoxA4, an RBoxR, and a TBoxI' = 7, U7,
where all the concepts appearingZirand.A are in negation
normal form (NNF), the closure of a concept expresgion
(also in NNF) is the smallest set X containing C closed un-

that make leaf individuals imprecise (w.r.t. Definition 2) ,
then, because our summarization does not produce extrane-
ous concept assertions, elementgioére all isolated nodes

in im L. Furthermore, since our summarization does not pro-
duce extraneous role assertions (i.e.Rifs,t) € A’, then
there is at least one pair of individuals, ¢) in A such that
R(a,b) € A, f(a) = sandf(b) =t)), it follows thatL is a

der concept sub-expression, such that for a named conceptprecise summary afnL — H in the sense of Definition 2.

A (1)ifAe XandAC D € 7,,thenD € X; (2) if

-A € Xand—-A C D € 7,,thenD € X, and (3) if
VP.C € X and thereis arole Rwitlkk C* P and Trans(R),
thenvVR.C € X. We define the closure ol w.rt. 7

andR, denotedtlos(A, 7, R), as,.cc 4 clos(C,T,R) U

UCEDeTg clos(NNF(-CUD), T,R).

Given a particular query) under consideration, we ex-
tend the closure of the ABox to includeq). Let us call
the resultant concept selos(A, Q), i.e., clos(A,Q) —
clos(A,T,R) U {-Q}. In the second step, we check
whether a atomic concept in the expanded summary individ-
uals’ labels (i.e., expanded after unfolding in the firsp¥te
and it's negation are present in the skts(.A, Q). The ra-

Partitioning

When the summary ABox contains islands, i.e., discon-
nected sub-graphs, we partition the summary and consider
each isolated sub-graph separately. Since our system cur-
rently works for the description logi§HZN, which does
not contain nominals, it is safe to partition the ABox withou
affecting soundness and completeness of the query answer-
ing algorithm. Note that individuals in disconnected par-
titions can only interact via axioms in the TBox by using
nominals.

We found that the partitioning strategy works well in a
lot of realistic large ontologies where the class hierarishy

tionale here is that query answering is done by a standard spread out, typically observed when dealing with separate

proof-by-refutation technique, which involves building a
inconsistent ABox, and thus both, a concept and it's nega-
tion, have to be present in the extended clostwe(A, Q)

for them to cause a contradiction. The absence of either one

(concept or it's negation) implies that the concept is @rel
vant from this particular query answering point of view, and
thus can be safely removed from the summary ABox without
affecting the soundness or completeness of the algorithm.

Computing Obvious Answers and Non-answers

We avoid testing individuals in the summary Abox that are
obvious answers or non-answers of the queried con@ept
An obvious non-answer daf is an individualt in the sum-
mary A’ already explicitly asserted to be an instance-Gf
(i.e. t : =Q € A’). An obvious answer of) is an indi-
vidual in the summaryd’ such that the intersection of all its
explicit concepts is subsumed k) An obvious answer al-

domains or specializing in numerous areas. In such cases,
there exist a lot of disconnections between sub-ABoxes that
are tied into separate class hierarchies.

Partitioning also presents a great opportunity for paral-
lelization since the query answering algorithm can be ex-
ecuted on each separate partition simultaneously with the
results being combined at the end.

Individual Selection Strategy

Using our technique of query answering, one can either take
the approach of adding a negated query to a single individ-
ual in the summary Abox, and test it for consistency, or add
it to all individuals in the summary Abox and test it for con-
sistency. The advantage of adding it to all individuals in
the summary Abox is that we can try to find a large number
of justifications that are present in the summary Abox, and
target all individuals which are part of this justificatioor f



Dataset type assertions role assertions
UOBM-1 | 25,453 214,177
UOBM-10 | 224,879 1,816,153
UOBM-30 | 709,159 6,494,950

Table 3: Dataset Statistics

further refinement. Because refinement is 1/O intensivs, it i
useful to refine as many individuals as possible in a single
pass.

Justification Patterns

We exploit similarities among justifications by forming jus
tification patterns. Given a particular justificatigh for

the inconsistent summary, we generalize it into a justifica-
tion “pattern” by expressing it as a SPARQL query where
individuals in are treated as variables. Note that we do
not consider any of the Thox or Rbox axioms jhwhile
creating this query, only looking at assertions of the form
C(a), R(a,b),as#b present ing. We execute this query
against the summary Abox using a SPARQL engine (or even
a straightforward pattern matcher) to retrieve other “isom
phic” justifications, and then add the Thox and Rbox axioms
from 7 to each query result individually, to obtain valid new
justifications. Since this query pattern matching does ot r
quire any inferencing, the queries are fast. This optinorat
dramatically reduces the time taken to find additional simi-
lar justifications that would normally have been found one
at a time as part of the exponential Reiter’s search.

Evaluation

Our algorithms are implemented in a system called SHER,
which includes additional optimizations (blind anon 2Q07)
We evaluated it on the UOBM benchmark which was mod-
ified to SHZN expressivity. We issued instance retrieval
gueries for the 112 concepts in the ontology. The results
are reported for 1, 10, and 30 universities, which are re-
ferred to as UOBM-1, UOBM-10 and UOBM-30. We com-
pared our results against KAON2 (Hustadt, Motik, & Sattler
2004). (Pellet (Sirin & Parsia 2004) did not scale to even
one university.) For KAON2, we set all maximum cardinal-
ity restrictions to one because of KAON2 limitations. The
runs were made on a 64 bit AMD dual processor 8G RAM
Linux machine. The Abox was stored in DB2 for SHER and
MySQL for KAONZ2.

The size of the datasets are given in Table 3. Table 4 sum-
marizes the times taken (in seconds) by KAON2 and SHER
solely for query answering, i.e., in both cases, the times do

not include the knowledge base pre-processing and setup

costs. KAON2 ran out of memory on UOBM-30. In 111
out of 112 queries SHER and KAON2 had 100% agreement.
The difference in the one remaining was due to differences

in the constraints used. As can be seen, the average run-

times for SHER are significantly lower, usually by an order
of magnitude, than those for KAON2. For this particular
example, SHER scaled in a sublinear fashion.

Reasoner| Dataset Avg. Time | St.Dev | Range
KAON2 | UOBM-1 | 20.7 1.2 18-37
KAON2 | UOBM-10 | 447.6 23.3 414.8-530
SHER UOBM-1 | 4.2 3.8 2.4-23.8
SHER UOBM-10 | 15.4 25.6 6.4-191.1
SHER UOBM-30 | 34.7 63.5 11.6-391.1

Table 4: Runtimes (sec)

Related Work and Conclusions

Optimized tableau algorithms exist for Aboxes in secondary
storage, but they either assume role-free Aboxes (Horrocks
et al. 2004), relatively inexpressive-DLs (Calvanesteal.
2005), or require pre-processing of the Abox to make it role-
free (Li 2004). KAON2, which we included in our evalua-
tion, is a non-tableau based approach that relies on trans-
lating Description Logic to disjunctive datalog (Hustadt,
Motik, & Sattler 2004). Our summarization-and-refinement
strategy is an improvement over the divide-and-conquer (bi
nary instance retrieval) approach (Haarslev & Moller 2002)
implemented in state-of-the-art tableau reasoners tgtest
tential solutions to the query. Our approach provides a bet-
ter partitioning of tested individuals through summaiizat
and refinement, the ability to conclude directly that altees
individuals are solutions without necessarily testingheaic
them in isolation, and explanations for solutions.
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