
RC24296 (W0603-061) March 8, 2006
Computer Science

IBM Research Report

An Open Source Environment for Cell Broadband
Engine System Software

Michael Gschwind
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

David Erb, Sidney Manning, Mark Nutter
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Open Source Environment for Cell Broadband Engine System

Software

Michael Gschwind, IBM T.J. Watson Research Center
David Erb, Sid Manning, and Mark Nutter, IBM Austin

Abstract

The Cell Broadband Engine provides the first imple-
mentation of a chip multiprocessor with a significant
number of general-purpose programmable cores tar-
geting a broad set of workloads. Open source soft-
ware played a critical role in the development of the
Cell software stack.

1 Introduction

Computer architects rarely introduce new architec-
tures because incumbent architectures offer signifi-
cant advantages due to tool maturity, programmer fa-
miliarity, and software availability. New architectures
are usually a response to tectonic shifts in technol-
ogy and market conditions. Thus, the original Sys-
tem/360 architecture was the first architecture to re-
spond to mass production of systems. RISC systems
corresponded to the introduction of VLSI manufac-
turing and the advent of single-chip microprocessors.

As the era of pure CMOS frequency scaling ends,
architects must again respond to massive technologi-
cal changes by more efficiently exploiting density scal-
ing. The Cell Broadband Engine (Cell BE) answers
these challenges by providing the first implementa-
tion of a chip multiprocessor with a significant num-
ber of general-purpose programmable cores targeting
a broad set of workloads, including intensive multi-
media and scientific processing.

Jointly developed beginning in 2000 by IBM, Sony,
and Toshiba (STI) for the PlayStation 3 as well as
other data-processing-intensive environments, Cells
design goal was to improve performance an order of

magnitude over that of desktop systems shipping in
2005 [10, 9, 6]. To meet that goal, designers had to
optimize performance against area, power, volume,
and cost in a manner not possible with legacy archi-
tectures. Thus, the design strategy was to exploit
application parallelism through numerous cores that
support established application models, thereby en-
suring good programmability as well as programmer
efficiency [4].

The resulting Cell design is a heterogeneous, multi-
core chip capable of massive floating-point processing
optimized for computation-intensive workloads and
rich broadband media applications. The Cell Broad-
band Engine design consists of one 64-bit Power pro-
cessor element (PPE), eight accelerator processors
called Synergistic Processor Elements (SPEs), a high-
speed memory controller, a high-bandwidth element
interconnect bus, and high-speed memory and I/O
interfaces, all integrated on-chip.

2 Software Challenges

When we first outlined the Cell systems basic notions,
we immediately realized that this revolutionary mi-
croprocessor design could substantially enhance ap-
plication performance, but the task at hand was mas-
sive. Developing a new architecture has a set of risks
that microprocessor design teams rarely face. Fail-
ure to verify that a new architecture responds to the
needs that led to its conception, or to provide a satis-
factory software stack to early adopters, usually will
result in the failure of an architecture launch and its
eventual demise.

In addition to the traditional challenge of defin-

1

ing a new microarchitecture, the design team faced
the challenge of ensuring that the architecture can ef-
ficiently operate across a wide range of applications.
Given the many innovations in Cell, it was important
to provide early proof-of-concept to test and refine
concepts that form the basis of the Cell BE Archi-
tecture (CBEA) as it is known today and its first
implementation, the Cell Broadband Engine.

3 Cell BE Architecture
Overview

We created the Cell Broadband Engine Architec-
ture (CBEA) to address the needs of applications
as they embrace chip multiprocessing. Rather than
merely replicating a core multiple times on a chip,
the Cells heterogeneous architecture offers a mix of
execution elements optimized for a spectrum of func-
tions. Applications execute on this system, rather
than a collection of individual cores, by partition-
ing the application and executing each component
on the most appropriate execution element. While
supporting different execution elements, the archi-
tecture also ensures efficient data sharing by provid-
ing a common system view of addressing, data types,
and system functions across the heterogeneous exe-
cution elements. Based on this common system view,
a Cell BE application process can consist of threads
(lightweight processes) on both types of processor el-
ements.

As Figure 1 shows, the Cell Broadband Engine,
the first implementation of the CBEA [10], includes
a Power Architecture processor and eight attached
processor elements. An internal high-performance el-
ement interconnect bus integrates the processor ele-
ments.

With a clock speed of 3.2 GHz, the Cell processor
has a theoretical peak performance of 204.8 Gflop/s
(single precision) and 14.6 Gflop/s (double precision).
The element interconnect bus supports a peak band-
width of 204.8 Gbytes/s for intrachip data trans-
fers, the memory interface controller provides a peak
bandwidth of 25.6 Gbytes/s to main memory, and
the I/O controller provides peak bandwidth of 25

Gbytes/s inbound and 35 Gbytes/s outbound.

3.1 Power Processor Element

The Power processor element (PPE) consists of a 64-
bit, multithreaded Power Architecture processor with
two concurrent hardware threads. The PPE sup-
ports the Power Architecture vector multimedia ex-
tensions to accelerate multimedia applications using
SIMD execution units. The processor has a mem-
ory subsystem with separate first-level 32-Kbyte in-
struction and data caches, and a 512-Kbyte unified
second-level cache. By using a Power Architecture
processor as the base building block of the CBEA,
we leveraged our decade-long experience with this
mature and tuned architecture, as well as a stable
software environment.

3.2 Synergistic Processor Element

The eight on-chip synergistic processor elements
(SPEs) provide a significant portion of compute
power in a Cell system [7]. An SPE consists of a
new processor – the synergistic processor unit (SPU)
– designed to accelerate a wide range of workloads by
providing an efficient data-parallel architecture and
the synergistic memory flow controller (MFC), pro-
viding coherent data transfers to and from system
memory.

The SPU cannot access main memory directly;
the SPU obtains instructions and data from its 256-
Kbyte local store and it must issue DMA commands
to the MFC to bring data into the local store or write
results back to main memory. In parallel to MFC
data transfers, the SPU processes data stored in its
private local store.

The local store provides each SPU with private
data access capability, guaranteed data availability,
and deterministic access latency. The local store ar-
chitecture offers logic simplicity, as cache-hit and co-
herence logic do not affect the critical memory access
operations during load and store operations, allowing
faster and more compact implementations. All data
accesses with load and store operations refer directly
to physical locations within an SPEs local store with-
out further address translation.

2

Figure 1: Cell Broadband Engine system diagram.
The system includes a Power Architecture proces-
sor and eight attached processor elements; an inter-
nal high-performance element interconnect bus inte-
grates the processor elements.

3.3 Memory Flow Controller

To access global data shared between threads execut-
ing on the PPE and other SPEs, each SPE includes an
MFC, which performs data transfers between SPU-
local storage and system memory. The MFC provides
the SPEs with access to system memory by support-
ing high-performance direct memory access (DMA)
data transfer between the system memory and the
local store. Data transfers can range in size from a
single byte to 16-Kbyte blocks.

The MFC transfers copy between local store and
system memory. An MFC transfer request specifies
the local store location as the physical address in
the local store. It specifies the system memory ad-
dress as a Power Architecture virtual address, which
the MFCs memory management logic translates to
a physical address based on system-wide page tables
that the Power Architecture specification provides.

Using the same virtual addresses to specify system
memory locations independent of processor element
type enables seamless data sharing between threads
executing on both the PPE and SPE. An application

executing on Cell can pass a PPE-generated pointer
to code executing on the SPE and use it to specify the
source or target in an MFC transfer request. Using
full memory translation also ensures data protection
between processes, as a thread can only access the
system memory mapped into the associated processs
virtual memory space.

Finally, using virtual addressing makes traditional
operating system services such as demand paging
available to SPE threads. When an SPE thread refer-
ences paged-out memory via its associated MFC, the
MFCs memory management unit generates a page-
fault exception and delivers it to the PPE. The PPE
then services the page fault on behalf of the SPE.
When the page fault service has completed, the PPE
restarts the MFC transfer that caused the page fault.

3.4 Memory Management

Multiple SPEs can share an address space with PPE
threads in a Cell BE application, but at the same time
other SPEs can reference different virtual memory
spaces associated with respective applications execut-
ing concurrently in the system. To support this, each
MFC includes a memory management unit (MMU)
to provide address translation of system addresses in
transfer requests. The MFC participates in the mem-
ory coherence protocols to ensure page table coher-
ence.

Because each SPE contains an independent MMU,
an SPE can execute independently from the PPE.
However, the SPE is optimized for user-level data
processing. Only the PPE performs privileged oper-
ations such as handling page faults, changing memory
translation, and so forth, providing a centralized sys-
tem control function. The Cell BE supports this by
forwarding all exception-type events to the PPE via
the on-chip interrupt controller.

Each MFC can be programmed to perform mem-
ory transfers either from the local SPU by plac-
ing commands in a 16-deep command queue using
so-called SPU channel instructions or from remote
nodes via memory-mapped I/O (MMIO). In addi-
tion to DMA transfers, the MFCs can also partici-
pate in the Power Architecture load-and-reserve and
store-conditional lock synchronization and execute

3

memory-synchronizing operations. Finally, the MFC
supports list commands corresponding to an MFC
program specifying a sequence of transfer requests.

3.5 Element Interconnect Bus

The element interconnect bus (EIB) provides high
bandwidth communication with a peak bandwidth of
204.8 Gbytes/s for intrachip data transfers among the
PPE, the SPEs, and the memory and I/O interface
controllers. The EIB has separate communication
paths for commands (requests to transfer data to or
from another element on the bus) and data. The EIB
command path consists of a star-network to perform
coherence actions. The EIB data network consists of
four data ringstwo rings running clockwise, two rings
running counterclockwise [3].

4 Developing an Open Source

Strategy

To succeed, modern technology solutions require
rapid deployment in the marketplace. To address
this challenge, the design team turned to open source
software to accelerate the development of an ecosys-
tem for the Cell architecture. Open source software
allowed us to rapidly deploy an environment to be
used both for architecture exploration and as an early
adopter platform for the development of architecture
verification suites, libraries, middleware, and sample
applications.

The Cell open source software strategy had four
phases:

• initial proof-of-concept focused on validating the
design goals, compilation concepts, and pro-
gramming paradigms developed in conjunction
with the architecture definition;

• formative software phase supporting early
adopter code for libraries, middleware, and ap-
plications;

• programming model innovation phase using a
richer set of primitives, tools, and environments

to explore the most efficient software develop-
ment paradigms for the new platform; and

• transition to a full-fledged Cell ecosystem
available to a steadily growing community
of Cell developers via software develop-
ment kit distributions. The Cell SDK is
publicly available on IBM alphaWorks at
www.alphaworks.ibm.com/tech/cellsw.

Open source also was used to provide an environ-
ment in which to deploy proprietary tools targeted at
specific high-leverage points in the Cell BE software
stack, such as autoparallelizing compilers based on
the IBM proprietary XL C [4]. While XL C provides
a significant value proposition beyond open source
tool suites, it integrates with open source assemblers,
linkers, debuggers, and libraries in a seamless mixed
environment.

Our choice of an open source platform in many
ways mirrors the emergence of UNIX operating sys-
tems concurrently with the introduction of RISC-
based systems. At the time proprietary systems were
often coded in assembly for a specific legacy sys-
tem, and hardware developers turned to the more
or less freely available portable UNIX operating sys-
tem.1 In many ways, the UNIX operating systems
and its associated program development environment
of those days have become optimized for commer-
cial target markets and highly tuned to respond to
specific customer and market requirements making
them harder to port to a new platform than a more
generic portable multi-architecture platform offered
by the GNU software development environment and
the Linux kernel.

Adopting open source allowed us to reduce the de-
velopment cycle by leveraging a wide developer base
with open source tool skills, leveraging tools designed
for portability across platforms and providing early
prototyping ability. During the exploratory phase,
development occurred independent of the open source

1The history of UNIX and UNIX licenses is a long and
storied one. Suffice it to say that AT&T and its USL licensed
code on a reasonable and non-discriminatory basis, and the
BSD distribution from the University of California at Berkeley
had an active developer community in many ways similar to
Linux today. [11]

4

community at large, and we were able to make de-
cisions based solely on the technology needs of the
emerging architecture. Later, public distributions
reflected changes made as part of the open source
community adoption process and involved compro-
mises to accommodate the cross-platform nature of
the open source projects.

Open source tools were deployed in a proprietary
execution environment, based on execution-driven
simulators for the SPU and a Cell BE full-system
simulator based on Mambo [1].

5 Anatomy of a Cell Applica-
tion

A Cell application executes in a heterogeneous archi-
tecture consisting of PPE and SPE cores, respectively
implementing the Power Architecture and Synergistic
Processor Architecture. To match this mix of proces-
sor elements, a Cell application consists of two classes
of instruction streams corresponding to the different
architectures.

In the current software architecture model, each
Cell application consists of a process that can have as-
sociated PPE and SPE threads that are dispatched to
the corresponding processors. When an application
starts, the operating system initiates a single PPE
thread, and control resides in the PPE. The PPE
thread can then create further application threads
executing on both the PPE and SPEs, supported by
a thread management library based on the pthreads
model.

SPE thread management includes additional func-
tions, such as moving a Cell applications SPE compo-
nent into an SPEs local store, transferring application
data to and from the local store, and initiating exe-
cution of a transferred executable at a specified start
address as part of thread creation.

Once an application has initiated the SPE threads,
execution can proceed independently and in parallel
on PPE and SPE cores. While the PPE accesses
memory directly using load and store instructions,
application components executing on the SPE use
the MFC to perform data transfers to the SPE local

store before accessing application data with load and
store instructions. The MFC is accessible from the
PPE via a memorymapped I/O interface and from
the SPU via a channel interface.

The CBEA allows a variety of programming mod-
els, including an accelerator model based on a remote
procedure call, function pipelines, and autonomous
SPE execution. The simplest use of the SPE is the ac-
celerator model where the PPE transfers the working
set as part of the invocation and offloads a compute-
intensive function onto one or more SPEs. Developers
can also compose function pipelines where each SPE
performs a set of functions on a data stream and then
copies its output to the next pipeline stage imple-
mented on another SPE via the MFC. Autonomous
SPE execution occurs when the application starts an
SPE thread, and the thread uses its MFC to indepen-
dently transfer its input data set to the local storage
and copy result data to the system memory.

In these programming models, the PPE typically
uses its cache-based memory hierarchy to execute
several control functions, such as workload dispatch
to multiple SPE dataprocessing threads, load balanc-
ing and partitioning functions, and a range of control-
dominated application code.

5.1 Data-intensive processing

The SPE programming model is particularly opti-
mized for the processing of data-processing-intensive
applications, where the application transfers a block
of data to the SPE local store and the SPU operates
upon it. Computation results are stored back to the
local store and eventually transferred back to system
memory or directly to an I/O device by the MFC.

This processing model using SPEs to perform
dataintensive regular operations is particularly well
suited for media processing and numerically inten-
sive data processing [12]. Both the SPE and PPE
offer data-parallel SIMD compute capabilities to fur-
ther increase the processing performance of data-
processing-intensive applications. While these facili-
ties increase the data processing throughput potential
of each processor element, the key is exploiting the
10 execution thread contexts on each Cell BE chip
(two PPE threads and eight SPEs).

5

5.2 Data multibuffering

To hide the memory access latency to the slow exter-
nal memory, data transfers are best performed using
data multibuffering (double buffering or even triple
buffering). With double buffering, software pipelin-
ing is performed at the memory transfer level: The
SPU operates on one data set in one data buffer,
while the MFC transfers the next data set into an-
other data buffer. Data multibuffering maps onto and
exploits the computetransfer parallelism in each SPE
with its independent SPU execution and MFC data
transfer threads [5].

5.3 Application loading

Figure 2 illustrates application execution on the het-
erogeneous cores in the Cell BE. Initially, the image
of an integrates executable, i.e., an executable con-
taining multiple instruction streams for the hetroge-
neous processor elements [8], resides in external stor-
age. The executable is stored in an object file format
such as extensible linking format (ELF), consisting
of text (read-only) and data (read/ write) sections.
In addition to instructions and read-only data, the
text section also contains copies of one or more SPE
execution images specifying the operation of one or
more SPE threads.

To start the application, the operating system
loads the Power Architecture object file, and (1) ex-
ecution of the Power Architecture program thread
begins. The application then initiates execution of
application threads on the SPEs. To accomplish this,
the application PPE must first transfer a thread ex-
ecution image to an SPEs local store. (2) The PPE
initiates a transfer of a thread execution image by
programming the MFC to perform a system memory-
to-local storage block transfer, which is queued in the
MFC command queues. (3) The MFC schedules the
MFC request and performs a coherent data transfer.

The PPE can repeat these steps to transfer mul-
tiple additional memory-image segments containing
either SPE application code, SPE libraries shared be-
tween threads, or SPE application data. When it has
transferred the image, (4) the PPE issues an MFC
request to start SPU execution. (5) The SPU starts

.text:
pu_main:

…
spu_create_thread (0, spu0, spu0_main);
…
spu_create_thread(1, spu1, spu1_main);
…

printf:
…

spu0:

spu1:

.data:
…
…

EIB

PPE

PXUL1

PPU

16B/cycle

L2
32B/cycle

SPE

.text:

spu0_main:

…

…

.data:

…

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

.text:

spu0_main:

…

…

.data:

…

.text:

spu1_main:

…

…

.data:

…

��

�

�

�

System memory

Figure 2: Execution start of an integrated Cell
Broadband Engine application. (1) Power Architec-
ture image loads and executes; (2) PPE thread ini-
tiates MFC transfer; (3) MFC data transfer occurs;
(4) PPE instructs MFC to initiate SPU execution at
specified address; and (5) MFC starts SPU execution.

execution at a specified address.
In addition to integrated executables consisting of

PPE and SPE threads, Cell also can execute tradi-
tional unmodified Power Architecture executables for
compatibility with industry-standard Power Archi-
tecture processors, as well as a new class of Synergis-
tic Processor executables called spulets. A spulet is a
Synergistic Processor Element-only program execut-
ing in a protected virtualized environment provided
by the Power Architecture protection and translation
model.

6 Compiling for a Pervasively
Dataparallel Architecture

The first tool to provide any proof-of-concept proto-
typing capability for Cell systems, in particular the
novel SPU architecture, was an execution-driven ISA
simulator based on a preliminary architecture spec-
ification proposal. To simplify the development and

6

prototyping flow, this simulator read assembly source
code, and early library deployment occurred by load-
ing multiple assembly source files.

The GNU C compiler (GCC) provided the first
testing ground for the open source strategy and of-
fered an early confirmation and proof-of-concept of
many ideas introduced in the Cell BE. Before the fi-
nal proposal was complete, we started development
of a compiler based on GCC to demonstrate and ex-
plore the concepts introduced in the SPUin particu-
lar, its SIMD-based architecture and the scalar lay-
ering used to implement a pervasively data-parallel
computing architecture. This configuration also pro-
vided the first programming environment for library
development and the first mediaprocessing and en-
cryption/decryption kernels that validated the newly
defined architectures performance on these critical
functions.

To implement a compiler showing the feasibility of
concepts the SPU architecture introduced, we lever-
aged the entire GCC front end, including the Power
Architecture SIMD extension interface, and rewrote
a back end from the ground up to support this new
computing concept. This allowed us to quickly sup-
port the entire semantics of the C language, its GCC
extensions, and the SIMD vector-programming in-
trinsic interface.

6.1 Scalar layering

One major concept of the Synergistic Processor Ar-
chitecture that we needed to validate was scalar layer-
ing. Unlike prior architectures, the SPU architecture
does not provide separate resources to support exe-
cution of scalar computations; instead, the compiler
generates code sequences to compute scalar results
with the SIMD data paths. We refer to an architec-
ture using SIMD execution resources for scalar oper-
ations as a pervasively data-parallel computer archi-
tecture.

In the SPU architecture, all instructions take their
operands from a unified 128-bit-wide vector register
file with 128 architected registers. Compilers and
programmers can use these instructions either to im-
plement data-parallel SIMD operations or to produce
scalar results by performing a wide result and using

only the result returned in a single slot. To support
scalar layering, instructions that use a single scalar
input also read their operand from a 128-bit register
and use the value from the “preferred slot”, the vec-
tor registers first 32-bit vector element slot. This in-
cludes memory operations, which expect the memory
address in the preferred slot, and branch instructions
that can access a condition value or target address in
the preferred slot.

In the SPU, all memory accesses operate on aligned
quadwords, which must reside at addresses that are
multiples of 16 bytes. To facilitate reading and writ-
ing of data values shorter than a quadword, the ar-
chitecture supports efficient extract and merge oper-
ations, and memory accesses to retrieve an aligned
quadword ignore the low-order four bits. Using
a quadword-based memory interface simplifies the
data-alignment logic and reduces operation latency.
If the program is to perform access to a data value
smaller than a quadword, the loworder bits indicate
the data location within the quadword. The com-
piler expands such functionality and generates code
to extract and format data explicitly using the sim-
ple SIMD RISC primitives that the architecture pro-
vides.

Although this alignment sequence requires several
instructions, it reduces the overall data-flow latency
because properly aligned scalar and vector data do
not require alignment in most cases. For misaligned
vector data, the compiler can optimize data-access
patterns across loop iterations to generate more ef-
ficient alignment sequences. This new architectural
concept eliminates the separate scalar execution units
typically found in processors to support execution of
scalar operations. Scalar layering reduces SPE area
and design complexity and increases the number of
SPEs that can be placed on a same-sized chip, which
improves overall system performance.

6.2 Compiler prototype

By leveraging the GCC infrastructure, we could con-
centrate on developing compiler support for the novel
SIMD RISC architecture features rather than under-
taking the lengthy and costly process of developing
an entire compiler from scratch. Using this compiler,

7

we demonstrated the feasibility of generating appro-
priate sequences to implement data alignment in soft-
ware instead of in hardware and demonstrated that
hardware complexity reduction and efficient instruc-
tion scheduling result in an overall faster implemen-
tation.

The GCC also served as a vehicle to prototype an
application binary interface (ABI) by experimenting
with calling conventions and stack frame layouts and
prototyping a first set of support libraries. The SPU
ABI adopts the preferred- slot concept for passing
scalar variables as function arguments and results
and for allocating scalar variables in globally allo-
cated registers as the default location for scalar data
within a register file. Advanced compilers with in-
traprocedural optimization capabilities can optimize
placement of scalar data in any slot.

To provide a consistent language interface for
programmers between the PPE and SPE code, we
adopted the same language interface to vector data
types for the SPE as was already provided for the
PPE. Similar to the Power Architecture vector speci-
fication, the SPU programming model also uses poly-
morphic intrinsics where the data type specifies the
intrinsic operationmuch as the operator + specifies
either integer or floating-point operation based on its
operands data type.

6.3 Seeding Cell application develop-
ment

The development of the GCC-based SPU compiler
proved the viability of the SPU architecture con-
cept. Library and application developers adopted the
compiler soon after it could compile the first pro-
grams and before full functionality became available.
This had the desired effects of seeding a high-level-
language (HLL)- based library and kernel develop-
ment effort (which evolved into the SDK distribu-
tion), as well as giving valuable feedback from appli-
cation developers to the Cell software and architec-
ture teams.

By providing an early high-level development en-
vironment, the open source strategy also addressed
a form of Clayton Christensens innovators dilemma
[2] by preventing the emergence of a tuned assembly

code base. Invariably, such an assembly code base
would have outperformed any nascent, unoptimized
HLL codes, drawing attention and efforts from the
development of the HLL code, slowing or even com-
pletely forestalling development of the HLL library
code. Using HLLs ultimately provides advantages in
terms of programmer productivity and ease of adop-
tion of new algorithms and data structures; thus, it
delivers significant returns in performance or func-
tionality.

Cell GCC became available in 2001, and we used
it for all code development for the first two years un-
til the XLC compiler became available. GCC-based
compilers continue to be an important part of the
Cell BE software ecosystem.

7 Heterogeneous Architecture

Tools

Supporting software development in a heterogeneous
architecture represents a set of challenges surpass-
ing traditional application build environments. Inte-
grating tools across different architectures is key to
allowing programmers to focus on application devel-
opment and ensuring their productivity. To address
this need for a cohesive application development and
build environment, we used a multipronged approach,
reflecting the options available for different tools.

The initial tool environment started out hand in
hand with the architecture definition work. A small
team concentrated on developing key functionality
and exploring the new architecture. The first pro-
gramming support specific to the Cell BE targeted
the SPU to explore the new architecture. Software
and hardware development occurred in parallel, and
we developed the SPU specification, compiler, and
simulator infrastructure in parallel as we explored dif-
ferent design choices.

As the architecture evolved and the developers
wrote longer programs, they needed a more robust
development environment. We accomplished this by
porting the GNU binutils to the SPU, providing a
robust assembler, linkage, and binary manipulation
utilities.

8

At the same time, integration between PPE and
SPE to support advanced application development
became more pressing. Ideally, this environment
would provide a single, common interface for PPE
and SPE program build with the ability to specify the
target processor element on the command line. In a
next step, a compiler would then automatically build
Cell applications, partition the program into func-
tions to be executed on the PPE and SPEs, respec-
tively, and insert thread synchronization and data
transfer as necessary for the correct execution of the
program.

7.1 Integrated compilation

We defined the compiler to share a common vector
programming model and support migration of appli-
cation source code between the different processor el-
ement types. Based on the common type system to
represent vector data, we provided low-level intrin-
sics to access the specific architecture features of the
two processor elements.

To compile an application for a Cell BE processor,
portions of the program must be compiled specifically
for each processor type. To accomplish this, compil-
ers are provided for both processor element targets
with separate executables for PPE and SPE, which
are built from common source code. This makes tra-
ditional compiler optimizations and newly developed
SIMD vectorization support available for both pro-
cessor elements. To provide a common compilation
interface for PPE and SPE, the compiler driver can
invoke the proper executable for each target type
based on a specified target architecture.

7.2 Building integrated executables

The GNU binutils provide a highly portable binary
utilities tool chain with architecture versioning sup-
port. Thus, we chose to provide assembler and linker
support for both PPE and SPE targets with a sin-
gle binary. The linker generates object files in ELF
format for both PPE and SPE. Finally, as Figure 2
shows, we developed an embedder program to build
an integrated executable by including SPE executa-
bles in PPE executables, such that a thread executing

on a PPE can initiate a thread executing the code the
SPE binary specifies.

The embedder reads one or more fully compiled
and linked SPE ELF binaries and embeds the SPE
program in the integrated Cell executable in ELF for-
mat. The resulting PPE executable contains the PPE
code, multiple embedded SPE executables, and man-
agement functions for transferring the SPE code to
an SPE.

To embed an SPE executable in a PPE program,
the embedder reads the fully linked SPE executable,
extracts the memory image (both instruction and
data), and generates C code containing data arrays
corresponding to the memory image (data and text
segment). It then invokes the PPE compiler to gen-
erate an object file with the data array holding the
executable, which can be linked to PPE object files
to give a single Power Architecture executable con-
taining SPU object modules.

8 Using Linux in Heteroge-
neous Architectures

The Linux operating system played a central role in
the STI development process. We based the initial
port to the Cell BE on the Linux 2.4 kernels 64-bit
Power Architecture distribution and bootstrapped it
on the Mambo full system simulator long before the
design was finished. A key advantage of this approach
was that it allowed exploration of heterogeneous exe-
cution models and evaluation of software support for
proposed architecture functionality.

Porting Linux to the Cell BE involved address-
ing two important challenges. From a programming
model perspective, we had to explore programming
paradigms to enable applications to efficiently use
the SPEs; from an operating system design per-
spective, the engineering challenge revolved around
the dramatic break with the kernels expectation-
snamely, that each processor would be handling its
own memory-mapping needs. While centralizing sys-
tem management functions (such as virtual memory
management) is one of the enablers of Cells efficiency,
special consideration must be given to this aspect in

9

porting legacy operating systems.
We experimented with several generations of SPE

enablement in Linux to derive the most efficient and
programmer- friendly model. From a programma-
bility perspective, a key challenge was making SPEs
easily accessible without imposing numerous con-
straints that would complicate application develop-
ment. As we addressed these issues, we provided
several experimental prototypes to early adopters to
gather feedback. Based on real-world programming
requirements and feedback from those developers, we
evolved a generic and flexible SPE thread model. We
based this model on the familiar pthreads concepts
using the Linux 2.6.3 kernel source base and provid-
ing a heterogeneous lightweight thread model where a
system call could spawn an SPU process, as Figure 3
shows.

8.1 Fault handling

From an operating system design perspective, a key
challenge was to handle exceptions delivered on be-
half of SPEs. This was a novel architectural mech-
anism, which had not been planned for in the inter-
nal Linux architecture. This model broke with tradi-
tional operating system kernels in one significant way:
In normal symmetric multiprocessor system kernels,
exceptions are associated with the currently sched-
uled process and can deliver only a single exception
to the operating system at a time. In contrast, a
Cell system could simultaneously deliver eight SPE
exceptions to a single PPE, which also must handle
its own PPE-related exceptions.

To address page-fault handling, we adopted an in-
novative deferred SPE exception approach in which
the exception handler collects and preserves the rel-
evant SPE fault information. A new deferred SPE
page-fault handler then uses this information, execut-
ing in a kernel thread and implementing a Power Ar-
chitecturecompliant page-fault handling routineac-
quiring spinlocks, sleeping, and so forth, as needed.
Because the kernel thread executes the pagefault code
at noninterrupt priority, it can spin on locks or sleep
while waiting on a page transfer from external storage
without causing deadlocks that might be introduced
if multiple page-fault handlers were active simultane-

ously.

Application Source
& Libraries

PPE object files SPE object files

Physical SPEs

Cell Broadband Engine-aware OS (Linux)
SPE Virtualization / Scheduling Layer

New SPE lwp/threadsExisting PPE
lwp/threads

Physical PPE

PPE
T1 T2 SPESPE SPE SPE

SPESPE SPE SPE

Figure 3: Application development and execution
for a heterogeneous chip multiprocessor such as the
Cell BE. An application program and libraries are
partitioned into a set of functions executing on the
PPE and SPE and compiled into object files for the
PPE and SPE, respectively. The object files are then
linked into an integrated executable (shown in Fig-
ure 2). The PPE object files contain code for several
PPE software threads, and the SPE files contain code
for several SPE software threads. When the applica-
tion executes on a Cell-aware operating system (such
as Cell Linux), it creates software threads using the
thread library and the operating system services pro-
viding software threads (“lightweight processes” or
LWPs) for the PPE and SPE. The operating system
then maps the software threads to the available hard-
ware threads in a Cell system. In the first implemen-
tation, each Cell BE chip offers two PPE hardware
threads using hardware multithreading in the PPE
core and eight single-threaded SPEs.

8.2 Thread management

To support a flexible SPE programming environ-
ment and provide a familiar programming abstrac-
tion, we created an SPE thread management API
similar to the Posix pthreads library. This API

10

supports both the creation and termination of SPE
tasks and atomic update primitives for ensuring mu-
tual exclusion. The API can access SPEs using a
virtualized model wherein the OS dynamically as-
signs SPE threads to the first available SPE. This
API completely virtualizes SPEs and the number of
SPEs provided in a specific CBEA implementation
or hypervisor-created partition. Optionally, applica-
tions can use a program-specified affinity mask to as-
sign SPE threads to specific SPEs.

Interelement thread communication and synchro-
nization architecture features (mailboxes, signal de-
livery, and so on) can be accessed either through a
set of system calls or by allowing the user application
to map an SPEs memorymapped control block into
its application space. In the CBEA, the SPE con-
trol block actually consists of three separate control
blocks corresponding to functions to be accessed by
a user space application, an operating system, and a
hypervisor. Using the user-accessible function con-
trol block, an application can perform direct MMIO
operations between processor elements to communi-
cate between SPEs and remote elements (either SPEs
or the PPE) and avoid the overhead associated with
system calls.

When the application requests creation of a thread,
the SPE thread library requests the OS to allocate
an SPE and creates SPE threads from SPE ELF ob-
ject format files wrapped into an integrated Cell exe-
cutable. To offload a portion of thread initialization
onto the SPE, the PPE can use a miniloader exe-
cuting on the SPE to perform SPE program loading.
The miniloader, a 256-bit SPE program, downloads
the application ELF segments from the host threads
effective address space to the SPU local store. Using
an SPE-side miniloader is advantageous because it
offloads the PPE from having to pace program loads
and it can use the SPE miniloader to preinitialize
registers with application/OS parameter values.

This is attractive because multiple SPEs can load
threads simultaneously, and SPEs have deeper fetch
queues to hold multiple block transfer requests asso-
ciated with loading a thread. In addition, commu-
nication within a processor elements scope – that is,
between the SPU and its associated MFC – is more
efficient than interprocessor element communication

between the MFC in an SPE and the PPE using
MMIO.

8.3 Debugging integrated executables

The Cell BE requires an advanced debugging envi-
ronment to allow developers to track applications ex-
ecuting on up to nine cores in a heterogeneous envi-
ronment. Application developers working on a Cell
BE application need to be able to follow the flow of
control from one processor element to another pro-
cessor element, from the PPE to a task spawned on
the SPE, or from one SPE to the next.

The Cell debugging environment is built on the
GNU debugger (GDB) and is the Cell debugging so-
lution for both the GCC open source compiler and the
IBM proprietary XL C compiler. The Cell debugging
environment, however, goes far beyond a simple port
of the GDB debugging tool. To take advantage of the
Cell BEs unique characteristics, the environment ex-
ploits additional system services to offer application
debugging in a heterogeneous multicore architecture.
When a Cell BE application spawns an SPE thread,
GDB will follow that newly created SPE thread with
the ability to properly interpret executables for the
SPU architecture.

As both PPE and SPE debuggers are based on the
common GDB source, PPE and SPE debuggers of-
fer a consistent user interface. Initially, starting a
thread instantiated a new processor-element-specific
instance of the debugger; more recent versions sup-
port PPE and SPE debugging with a single hetero-
geneous debugger. Unless the developer selects an
assembly language view of the program, the source-
level debugger makes Cells heterogeneous architec-
ture completely transparent, allowing the developer
to concentrate on the application behavior without
regard to underlying instruction set architecture.

As shown in Figure 4, the Cell multicore debugging
environment is based on several components:

• a GUI tracking multiple threads on the PPE and
SPEs (an alternative text-based debugging envi-
ronment is also available);

• GDB as the debugger engine, allowing develop-
ers to follow the execution of code across the

11

Figure 4: The Cell debugging environment creates a window for each thread in a multithreaded application,
and auto-configures for each processor element type. The source level debugging environment abstracts the
heterogeneous instruction set architecture used by the cores and allows the programmer to concentrate on
the application.

PPE and SPEs, set breakpoints, and display
data values stored in registers and memory; and

• debugging support in the system software stack
that allows GDB sessions to gain control of a
thread when it is initiated as well as interfaces
to implement state inspection and modification.

The heterogeneous debugger architecture depends
on support in the ABI – specifically, the thread cre-
ation interfaces provided in libspe.a, the SPU support

library. Thus, all applications built with the standard
Cell BE libraries automatically benefit from trans-
parent heterogeneous debug support. To accomplish
this, libspe.a and the dynamic library loader (ld.so)
include support (during SPE thread creation) to al-
low ppu-gdb to obtain control at predictable points
and retrieve information necessary to debug code in
a newly created SPE thread. We have also included
support for the debug environment in the SPU linker
(spu-ld) by generating context information. This al-

12

lows the debugger to find the symbol tables and other
debugging information for each SPE thread when an
application developer initiates an spu-gdb session.

The architecture, operating systems, and Cell sys-
tem ABIs tightly integrate heterogeneous debug sup-
port. As an example, programmers can set arbitrary
breakpoints in an SPU program at the source level.
The GDB then translates this breakpoint into a lo-
cation in the SPU local store and inserts an SPU
‘stopd’ instruction. When the SPU attempts to ex-
ecute this instruction, the SPE delivers an interrupt
to the PPE. In response to this interrupt, the kernel
will perform a context save of the SPU thread state
and send a SIGSTOP signal to the tracing process,
allowing the debugger to take control when the ap-
plication reaches a breakpoint.

The SPU GDB supports access to both the pro-
gram state of user programs in the SPU and access
to SPE state to provide a comprehensive view of ap-
plication execution in a Cell system. In addition to
SPU application state, this includes other SPE state
corresponding to programinitiated operations such as
mailbox communications, DMA transfers maintained
in the MFC, and so forth.

9 Conclusions

We used open source software across the entire sys-
tem stack to explore novel architecture concepts and
their software enablement. We architected the soft-
ware stack to present a high-level language program-
ming environment abstracting specific architecture
choices. The software environment allows applica-
tion developers to focus on exploiting application par-
allelism to deliver the superior Cell performance as
actual application performance. Using open source
software has allowed accelerating architecture valida-
tion and debugging in a full-fledged software environ-
ment. In addition to being highly useful during the
later stages of architecture definition and refinement,
this approach also has provided an environment for
early Cell adopters.

We have benefitedin real-world applications and in
real timefrom the feedback of Cell adopters in ex-
ploring programming abstractions for an integrated

heterogeneous environment as pioneered by the Cell
Broadband Engine Architecture. Many of the tools
that formed the basis of the Cell BE infrastructure
are still in use today, while others have served as a
testbed and will coexist with commercial tools in a
rich Cell software ecosystem. Adopting an open soft-
ware strategy has allowed us to accelerate the mar-
ket deployment of a new architecture offering inno-
vations to improve efficiency and performance across
the entire architecture stack by prototyping innova-
tive software solutions while building on a familiar
environment.

Finally, the Cell BE software environment allows
application programmers to deliver high performance
by focusing on applications, not the architecture or
an unfamiliar tools environment. The true success
of the Cell software environment is to allow the de-
velopment of new, previously unseen applications for
the Cell BE.

Acknowledgments

The authors thank Jim Kahle, Mike Day, and Ted
Maeurer for their leadership and support. They
also thank Peter Hofstee, Ted Maeurer, Dan Prener,
Valentina Salapura, and John-David Wellman for
their many insightful comments and suggestions dur-
ing the preparation of this article.

References

[1] Patrick Bohrer et al. Mambo - a full system
simulator for the PowerPC architecture. ACM
SIGMETRICS Performance Evaluation Review,
31(4), March 2004.

[2] Clayton Christensen. The Innovator’s Dilemma.
McGraw-Hill, 1997.

[3] S. Clark et al. Cell broadband engine intercon-
nect and memory interface. In Hot Chips 17,
Palo Alto, CA, August 2005.

[4] Alexandre Eichenberger et al. Optimizing com-
piler for the Cell processor. In Proc. of PACT
2005, 2005.

13

[5] Michael Gschwind. Chip multiprocessing and
the Cell Broadband Engine. In ACM Computing
Frontiers 2006, Ischia, Italy, May 2006.

[6] Michael Gschwind, H. Peter Hofstee, Brian
Flachs, Martin Hopkins, Yukio Watanabe, and
Takeshi Yamazaki. Synergic processing in Cell’s
multicore architecture. IEEE Micro, 26(2),
March 2006.

[7] Michael Gschwind, Peter Hofstee, Brian Flachs,
Martin Hopkins, Yukio Watanabe, and Takeshi
Yamazaki. A novel SIMD architecture for the
CELL heterogeneous chip-multiprocessor. In
Hot Chips 17, Palo Alto, CA, August 2005.

[8] Michael Gschwind, Kathryn O’Brien, Kevin
O’Brien, and Valentina Salapura. Method
and apparatus for creating and executing inte-
grated executables in a heterogeneous architec-
ture. US Patent Application 20040083462A1,
October 2002.

[9] Peter Hofstee. Power efficient processor archi-
tecture and the Cell processor. In 11th Interna-
tional Symposium on High-Performance Com-
puter Architecture. IEEE, February 2005.

[10] James Kahle, Michael Day, Peter Hofstee,
Charles Johns, Theodore Maeurer, and David
Shippy. Introduction to the cell multiproces-
sor. IBM Journal of Research and Development,
49(4/5):589–604, September 2005.

[11] Peter Salus. A Quarter Century of UNIX.
Addison-Wesley, 1994.

[12] S. Williams et al. The potential of the cell pro-
cessor for scientific computing. In Proc. ACM
Computing Frontiers 2006, pages 9–20, May
2006.

14

