
RC24299 (W0707-032) July 5, 2007
Computer Science

IBM Research Report

Scalable Semantic Retrieval through
Summarization and Refinement

Julian Dolby, Achille Fokoue-Nkoutche, Aditya Kalyanpur,
Edith Schonberg, Kavitha Srinivas

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Scalable Semantic Retrieval Through Summarization and Refinement

Abstract

Query processing of OWL-DL ontologies is intractable in the
worst case, but we present a novel technique that in practice
allows for efficient querying of ontologies with large Aboxes
in secondary storage. We focus on the processing ofinstance
retrieval queries, i.e., queries that retrieve individuals in the
Abox which are instances of a given conceptC. Our tech-
nique uses summarization and refinement to reduce instance
retrieval to a small relevant subset of the original Abox. We
demonstrate the effectiveness of this technique in Aboxes
with up to 7 million assertions. Our results are applicable
to the very expressive description logicSHIN , which cor-
responds to OWL-DL minus nominals and datatypes.
keywords: Reasoning, Description Logic, Ontology.

Introduction
Semantic retrieval is one of the important applications of on-
tologies and reasoning. Using reasoning to answer a query,
information which is not explicitly stored in a knowledge
base can be inferred, thus improving recall. Reasoning al-
gorithms that can be scaled to realistic databases are a key
enabling technology for semantic retrieval.

We focus in this paper on the scalable processing ofin-
stance retrievalqueries for OWL-DL knowledge bases in
secondary storage (excluding nominals and datatypes). An
OWL-DL knowledge base consists conceptually of three
components: the Tbox which contains terminological as-
sertions about concepts, the Rbox which contains assertions
about roles and role hierarchies, and the Abox which con-
tains membership assertions and role assertions between in-
dividuals. An instance query retrieves the individuals in the
Abox which are instances of a given conceptC, w.r.t. infor-
mation in the Tbox and Rbox.

It is well known that all queries over expressive-DL on-
tologies can be reduced to consistency detection (Horrocks
& Tessaris 2002), which is usually checked with a tableau
algorithm. As an example, a simple algorithm for instance
retrieval can be realized by testing if the addition of an as-
sertiona : ¬C for a given individuala results in an incon-
sistency. If the resulting Abox is inconsistent, thena is an
instance ofC. Of course, it is not practical to apply this
simple approach to every individual.

We propose a novel approach that uses summarization
and refinement to scale instance retrieval to large expres-
sive Aboxes in databases. Before processing any queries,
we create asummary AboxA′ (A.Fokoueet al. 2006) from
an original AboxA and store it in a database. A summary
Abox is created by aggregating individuals which are mem-
bers of the same concepts. Query processing is performed
onA′ rather thanA. By testing an individual in the summary
Abox, all individuals mapped to the summary are effectively
tested at the same time.

However, there is a catch. For a tested individuals in A′,
if the summary is found to be consistent, then we know that
all individuals mapped to that summary individuals are not
solutions. But if the summary is found to be inconsistent, it
is possible that either (a) a subset of individuals mapped to
the summarized individuals are instances of the query or (b)
the inconsistency is a spurious effect of the summarization.
We determine the answer throughrefinement, which selec-
tively expands the summary Abox to make it more precise.

Refinement is an iterative process that partitions the set
of individuals mapped to a single summary individual and
remaps each partition to a new summary individual. The
iteration ends when either the expanded summary is consis-
tent, or it can be shown that all individuals mapped to the
tested summary individual are solutions. Significantly, con-
vergence on the solution is based only on the structure of the
refined summary, without testing individuals inA.

With this summarize-and-refine technique, it is critical to
have an effective refinement strategy, which limits both the
number of refined individuals and the number of iterations.
Our refinement strategy is based on identifyingjustifications
for the inconsistency in the summary Abox, which is a min-
imal inconsistent subset of the summary (Kalyanpur 2006),
and selectively applying refinement to individuals in justifi-
cations. We test multiple individuals in the summary at the
same time, and process multiple justifications at each refine-
ment step. This approach proved effective on the UOBM
benchmark ontology (Maet al. 2006), where we demon-
strate that we process Abox queries with up to 7.4 million
assertions efficiently, whereas the state of the art reasoners
could not scale to this size.

In addition to guiding refinement, justifications are help-
ful for users to understand query results. Since our expla-
nations are at a summarized level, the information is more

useful than detailed information about each individual in an
Abox. Another key point is that our summarize-and-refine
technique can be treated as an optimization that any tableau
reasoner can employ to achieve scalable ABox reasoning.

The key contributions of this paper are as follows: (a) We
present a novel, tableau-based technique to use summariza-
tion and refinement for efficient instance retrieval for large
SHIN Aboxes in secondary storage. (b) We describe the
use of optimization techniques to selectively target partsof
the summary for refinement. (c) We show the application
of these techniques to the UOBM benchmark ontology with
SHIN expressivity, where we show dramatic reductions in
space and time requirements for instance retrieval.

Background
A key feature of our approach is the construction of a sum-
mary AboxA′ corresponding to the AboxA. An individual
in A′ represents individuals inA which are members of the
same concepts. Formally, an AboxA′ is a summary Abox
of aSHIN 1 Abox A if there is a mapping functionf that
satisfies the following constraints:

(1) if a : C ∈ A thenf(a) : C ∈ A′

(2) if R(a, b) ∈ A thenR(f(a), f(b)) ∈ A′

(3) if a ˙6=b ∈ A thenf(a) ˙6=f(b) ∈ A′

The imageof an individuala in A′ is the setIm of indi-
viduals inA such thatf(b) = a, b ∈ Im. If the summary
Abox A′ obtained by applying the mapping functionf to
A is consistent w.r.t. a TboxT and a RboxR, thenA is
consistent w.r.t.T andR. However, the converse does not
hold.

Let L be a mapping from each individual inA to a set of
concepts, such thata : C ∈ A iff C ∈ L(a). We callL(a)
theconcept setof a. In practice, we use acanonical function
f to create a summary Abox, which maps all non-distinct in-
dividuals that have identical concept sets to the same indi-
vidual inA′. More precisely, the converse of constraints (1)
and (3) hold for thecanonical summary, and:

(4) If R(a′, b′) ∈ A′ then there area andb in A such thata′ =
f(a), b′ = f(b) andR(a, b) ∈ A.

(5) If for all x ∈ A, (a ˙6=x) /∈ A, b ˙6=x /∈ A, andL(a) = L(b),
thenf(a) = f(b).

(6) f(a) ˙6=f(b) ∈ A′ impliesa is the only individual inA mapped
to f (a) (same forb).

In general, the canonical summary AboxA′ is dramatically
smaller than the original aboxA. It can be constructed
efficiently from A using conventional relational database
queries. It only needs to be computed once, persisted, and
then reused in subsequent queries. It is easily updated incre-
mentally and is thus resilient to changes inA.

Overview
We motivate our instance retrieval algorithm using an exam-
ple based on the UOBM ontology with an AboxA shown
in Figure 1. The individualsc1, c2 andc3 are instances of

1We assume without loss of generality thatA does not contain
an assertion of the forma=̇b

the conceptCourse, m1 andm2 are instances ofMan, w1
is an instance ofWoman, andh1 andh2 are instances of
Hobby. For now, we assume that the Tbox contains only
one axiom stating thatMan andWoman are disjoint con-
cepts and the Rbox is empty.

Figure 1: Example Abox

Figure 2: Summary Abox

Consider the query for the conceptPeopleWithHobby,
which is defined asPerson ⊓ ≥ 1likes. From Figure 1, it
is clear that the answer consists of the individualsp1 and
p3, which are the onlyPerson individuals inA which are
related to at least oneHobby individual by thelikes role.

Instead of reasoning onA directly, our algorithm reasons
on the canonical summary AboxA′ for A. The canonical
summary is shown in the left of Figure 2, where the sin-
gle individualsc1, c2, c3 are mapped toc′ in A′, m1 and
m2 are mapped tom′ in A′, and so on. Since the Rbox is
empty (i.e.,isTaughtBy is not functional),A′ is consis-
tent. By testing a summary individual, our goal is to draw
conclusions about all of the actual individuals inA mapped
to it. An individuals in A′ is tested by adding the assertion
s : ¬PeopleWithHobby to A′, and checking for consis-
tency using a tableau reasoner. To achieve scalability, we
test multiple individuals in the summary graph at the same
time.

Definition 1. LetA be an Abox. LetQ be a concept expression.
Let S be a subset of individuals inA such that for alls ∈ S,
s : ¬Q /∈ A. 2 We define the tested Abox w.r.t.A, Q and S,
denotedtested(A, Q, S), to be the Abox obtained fromA by adding
the assertions : ¬Q for eachs ∈ S. Formally, tested(A, Q, S) =
A ∪ {s : ¬Q|s ∈ S}.

2Note that we exclude individualss such thats : ¬Q belongs
to A′because they are obviously not solutions and it also allows
us to easily track assertions that were actually added to the tested
summary.

If the result of testing a single individuals is consistent,
then we know that none of the individuals in the image of
s is a query solution. However, if the result is inconsistent,
then we cannot conclude anything about individuals in the
image ofs. This situation arises because individuals are ag-
gregated based only on the similarity of their concepts, not
relationships.

In the example, addingc′ : ¬PeopleWithHobby is
consistent. Therefore,c1, c2, and c3 in A can be ex-
cluded. Similarly,m1, m2, w1, h1 and h2 can be im-
mediately excluded. When testingp′, the result of adding
p′ : ¬PeopleWithHobby to the summary is inconsistent.
In this case, not all individuals in the image ofp′ satisfy the
query, since they differ in their relationships.

Our approach for resolving summary Abox inconsisten-
cies is to iterativelyrefine the summary. Refinement in-
creases the size and precision of the summary, and preserves
the summary Abox properties(1)-(3) defined in the previous
section. Our strategy is to refine only individuals that are
part of a summary Aboxjustification, where a justification is
a minimal set of assertions which, when taken together, im-
ply a logical contradiction, thus making the entire Abox in-
consistent. In some cases, inconsistencies disappear through
refinement. Otherwise, when a justificationJ is precise we
typically know that we have converged on a solution. That
is, there is a tested individuals in J , such that all of the indi-
viduals in the image ofs are instances of the query. We say
that a tested individuals is tested inJ for queryQ if s : ¬Q
is an assertion inJ . (The topic of drawing a conclusions on
precise justifications is discussed in a later section.)

Definition 2. LetA′ be a summary Abox of an AboxA obtained
through the summary mappingf . LetQ be a queried concept,S be
a subset of individuals inA′ such that for allx ∈ S, x : ¬Q /∈ A′

and letH be a subset oftested(A′, Q, S). We say that an individual
s ∈ H is precisew.r.t. H iff the following conditions are satisfied:

1. for all individualst ∈ H and for all rolesR, R(s, t) ∈ H (resp.
R(t, s) ∈ H) implies that, for all individualsa ∈ A such that
f(a) = s, there is an individualb ∈ A such thatf(b) = t and
R(a, b) ∈ A (resp.R(b, a) ∈ A); and

2. for all individualst ∈ H, s ˙6=t ∈ H (resp. t ˙6=s ∈ H) implies
that, for all individualsa ∈ A such thatf(a) = s, there is
an individualb ∈ A such thatf(b) = t and a ˙6=b ∈ A (resp.
b ˙6=a ∈ A); and

3. There is an individuala ∈ A such thatf(a) = s; and

4. s : C ∈ H − {x : ¬Q|x ∈ S} implies that, for all individuals
a ∈ A such thatf(a) = s, a : C ∈ A

We say thatH is precise iff all its individuals are precise w.r.t.H.

Continuing with the example, there is a justificationJ
consisting ofp′ : ¬PeopleWithHobby, h′ : Hobby, and
likes(p′, h′), andp′ is tested inJ . Note thatp′ is not pre-
cise since it does not satisfy condition 1. Refinement re-
placesp′ by two individualspx

′ andpy
′, where the image of

px
′ is p1 andp3, and the image ofpy

′ is p2. The result of
this refinement is shown in the right of Figure 2. The tested
refined summary is still inconsistent, and there is now a pre-
cise justificationpx

′ : ¬PeopleWithHobby, h′ : Hobby,
andlikes(px

′, h′). EveryPerson in the image ofpx
′ likes

a Hobby. Thus, the image ofpx
′, namelyp1 andp3, are

solutions.

A high level outline of our algorithm is shown be-
low. More details are given in subsequent sections.

S←{x|x ∈ individuals in A′and x : ¬Q /∈ A′};
R←A′;
Results←∅;
while S 6= ∅ do

RT← tested(R, Q, S) (see Definition 1.) ;
if consistent(RT) then

returnResults;
end
FindJustifications in RT ;
T← individuals tested in preciseJustifications;
Results←Results ∪ Image(T);
S←S − T ;
Execute refinement strategy onR ;

end
returnResults ;

Refinement
This section describes justification-based refinement, and
some of the issues in deciding justification refinement order.
Definition 3. LetA′ andA′

R be summary Aboxes of an aboxA,
with resp. mapping functionsf andfR. LetI ′ be the set of individ-
uals inA′, andI

′

R be the individuals inA′

R. Lets be an individual
in A′. We say thatA′

R is a refinement ofA′ w.r.t. s iff there are
individualss1 . . . sn, n > 1, inA′

R such that:

1. I ′

R = (I ′ − {s}) ∪ {s1 . . . sn}

2. if f(a) 6= s, thenfR(a) = f(a)

3. if f(a) = s, thenfR(a) = si, for some1 ≤ i ≤ n.
4. for each1 ≤ i ≤ n, there is at least one individuala in A such

that fR(a) = si.

In the worst case, iterative refinement can expand a sum-
mary Abox into the original Abox, so an effective refinement
strategy is critical. The refinement step for an individuals
in a justificationJ is as follows. For eacha in the image
of s, definekey(a) w.r.t. J to be the set of role assertions
in J for which a has a corresponding role assertion in the
originalA. That is,key(a) =





R(t, s)

∣∣∣∣∣∣∣∣∣

f(a) = s∧
R(t, s) ∈J∧
∃b in A s.t.
R(b, a) ∈ A∧
f(b) = t





∪





R(s, t)

∣∣∣∣∣∣∣∣∣

f(a) = s∧
R(s, t) ∈J∧
∃b in A s.t.
R(a, b) ∈ A∧
f(b) = t





To refines, we partition its image so that all individuals
in a partition have the samekey w.r.t. J . Each partition
is mapped to a new summary individual, creating a refined
summary Abox. Conversely, if all individuals inA mapped
to a summary individuals have the same key w.r.t.J , then
s is precise w.r.t.J . Thus, justification-based refinement
leads to precise justifications in subsequent iterations.

In general, there can be multiple justifications corre-
sponding to different inconsistencies. For example, let us
add a constraint to Figure 1 that the roleisTaughtBy
is functional. The summary Abox in Figure 2 now con-
tains a spurious inconsistency, becausem′ andw′ will be
inferred to be the same individual because of the func-
tional property, butm′ andw′ are instances of the disjoint

conceptsMan and Woman respectively. The justifica-
tion for this inconsistency is:c′ : Course, m′ : Man,
w′ : Woman, isTaughtBy(c′,m′), isTaugtBy(c′, w′).
Figure 3 illustrates the application of a refinement step to
the refined summary in Figure 2. The individualc′ partic-
ipates in multiple role assertions, so it is replaced bycx

′

and cy
′. The individualsc1 and c3, which have the same

key {isTaughtBy(c′,m′)}, are mapped tocx
′. The indi-

vidual c2 is mapped tocy
′ because it has a differentkey

{isTaughtBy(c′, w′)}. After this refinement step, this spu-
rious inconsistency disappears.

Refinement Strategy
The justification refinement order is important. Here are
some sample heuristics:
• A single refinement candidates may belong to multiple

justifications. In such a case, we define itskey to be the
set of role assertions in all justifications thats belongs to.
However, this can lead to a large number ofkey combi-
nations, and to needless partitioning. We therefore give
preference to justifications that have no overlap.

• Smaller justifications are given priority over larger justifi-
cations.

• If there are two tested individuals inJ , it is possible that
the inconsistency is due to the interaction between two
¬Q type assertions. We therefore delay the refinement
of such justifications until no other justifications are left
in the summary, when it is more efficient to test each of
these individuals separately.

• Once a givenJ has been selected for refinement, we track
its transformation in successive iterations to avoid recom-
putation overhead, and to reach a conclusion as quickly as
possible.

• We give higher priority to justifications that pertain to the
query (i.e. those that contain a tested individual in the
justification.) In making the summary more precise by
refining query-pertinent justifications, spurious inconsis-
tencies may disappear.

Figure 3: Abox after second refinement

Computing Justifications
We use a technique calledtableau tracing(Baader & Hol-
lunder 1993) to compute justifications efficiently. This tech-
nique involves extending a tableau reasoner to track the ax-
ioms responsible for the firing of each expansion rule. How-
ever, to implement our refinement strategy, it is desirable

to find as many justifications as possible at each refinement
step. For this purpose we use Reiter’s Hitting Set Tree (HST)
algorithm as described in (Kalyanpur 2006), which recur-
sively removes axioms from justifications so that new justi-
fications can be found. However, since Reiter’s approach is
an exponential search algorithm, we have to impose a thresh-
hold on the search. Therefore we find a subset of the justi-
fications in a refinement step, and discover more in subse-
quent iterations.

As an optimization, we exploit similarities among justifi-
cations by forming justification patterns. Given a particular
justificationJ for the inconsistent summary, we generalize
it into a justification “pattern” by expressing it as a SPARQL
query where individuals in are treated as variables. Note
that we do not consider any of the Tbox or Rbox axioms
in J while creating this query, only looking at assertions
of the formC(a), R(a, b), a ˙6=b present inJ . We execute
this query against the summary ABox using a SPARQL en-
gine to retrieve other “isomorphic” justifications, and then
add the Tbox and Rbox axioms fromJ to each query re-
sult individually, to obtain valid new justifications. Since
this SPARQL query does not require any inferencing, the
queries are fast. This optimization dramatically reduces the
time taken to find additional similar justifications that would
normally have been found one at a time as part of the expo-
nential Reiter’s search.

Drawing Conclusions on Justifications
In this section, we present a set of conditions that are suf-
ficient to prove that all individuals mapped to a tested in-
dividual s in a precise justificationJ are solutions. These
conditions depend only on the structure ofJ .

Theorem 1. Let f be a summary function mapping an Abox
A, consistent w.r.t. to its TboxT and its RboxR, to its
summaryA′. Let Q be a concept expression and letS be
a subset of individuals inA′ such that for alls ∈ S, s :
¬Q /∈ A′. For an individualt ∈ S, all individualsa such
that f(a) = t are instances ofQ (i.e. (A, T ,R) |= a : Q) if
the following conditions hold:

1. there is an inconsistent subsetIC of tested(A′, Q, S), and
2. IC is precise, and
3. {s ∈ S | s : ¬Q ∈ IC} = {t}, and
4. IC is acylic (i.e. the undirected graph induced by role

and differentFrom assertions is acyclic)

Proof. The main idea behind the proof is that, assuming the
4 conditions are satisfied and viewingIC − {t : ¬Q} as a
pattern, for each individuala ∈ A such thatf(a) = t, there
is an instanceIa of the patternIC−{t : ¬Q} in A such that
a is associated with t. SinceIC is inconsistent, it follows
that Ia ∪ {a : ¬Q} is inconsistent, hencea is an instance
of Q (becauseIa is a subset ofA). The existence of the
instanceIa relies on Lemma 1 formulated in (blind anon
2007).

In our algorithm, the subsetIC of tested(A′, Q, S) is al-
ways a minimal justificationJ . Using the proof of Theo-
rem 1, ifJ is precise and acyclic, then we can view it as a

Figure 4: Example with Cycle

pattern, and conclude that there are corresponding patterns
in A which matchJ − {t : ¬Q}. However, ifJ is precise
and cyclic, we cannot draw this conclusion. Consider the
example in Figure 4, and letQ = ∃R.C andS = {t}. There
is a precise justificationJ = {t : ∀T.C,R(t, s), T (t, s), t :
¬Q}, but there is no pattern inA which matchesJ − {t :
¬Q}.

Fortunately, in many cases, we can efficiently transform
part of the summary Abox so that Theorem 1 is still applica-
ble. The next Theorem 2 allows us to apply deterministic
tableau expansion rules to a precise justification, and then
check for an acyclic justification. More specifically, apply-
ing deterministic tableau expansion rules to a precise jus-
tification results in a new precise inconsistent subset of a
summary of an Abox equivalent to the original Abox. For
example, consider the imageimL of L = J − {t : ¬Q} in
A. If we apply deterministic tableau rules toimL, the result
is îmL = imL ∪ {b1, b2 : C}. îmL is logically equivalent
to imL. L̂ = L ∪ {s : C} is a precise summary of̂imL ob-
tained by the application of deterministic tableau expansion
rules toL. Furthermore,tested(L̂, S,Q) has a precise and
acyclic justificationĴ = {R(t, s), s : C, t : ¬Q}, so that
we can now conclude thata1 anda2 are instances ofQ by
directly using Theorem 1.

Theorem 2. Let f be a summary function mapping an Abox
A to its summaryA′ andL be a subset ofA′. Let imL de-
note the image ofL in A (i.e. imL = {a : C ∈ A|f(a)
is in L} ∪ {R(a, b) ∈ A|f(a) and f(b) are individuals in
L} ∪ {a ˙6=b ∈ A|f(a) andf(b) are individuals inL}). LetL̂
denote the Abox obtained after the application of determin-
istic tableau expansion rules onL. If L is precise, then there
is an AboxîmL equivalent toimL such that̂L is a summary
of îmL andL̂ is precise.

Proof. See (blind anon 2007) for more details.

The following corollary generalizes the idea illustrated in
the previous example:

Corollary 1. Letf be a summary function mapping an Abox
A, consistent w.r.t. to its TboxT and its RboxR, to its
summaryA′. LetQ be a concept expression and letS be a
subset of individuals inA′ such that for alls ∈ S, s : ¬Q /∈
A′.

For an individualt ∈ S, all individualsa such thatf(a) =
t are instances ofQ (i.e. (A, T ,R) |= a : Q) if the following
conditions hold:

1. there is a precise subsetL of tested(A′, Q, S), and

2. the Abox̂L′ obtained after the application of deterministic
tableau expansion rules onL′ = L − {x : ¬Q|x ∈ S}

is such thattested(L̂′, Q, S) has an acyclic3 inconsistent
subsetIC, and

3. {s ∈ S | s : ¬Q ∈ IC} = {t}

Proof. Direct consequence of theorems 2 and 1

In general, applying deterministic rules on a subsetL of
a summary of a consistent AboxA may still be insufficient
to directly find solutions of the query inA. Consider the ex-
ample in Figure 4, and letQ = ∃R.D ⊓∃T.D andS = {t}.
J = {s : D,R(t, s), T (t, s), t : ¬Q} is a precise justifica-
tion. No deterministic rule is applicable toJ − {t : ¬Q}.
However, the two AboxesJ1 = J ∪ {t : ∀R.¬C} and
J2 = J ∪ {t : ∀T.¬C} corresponding to the two branches
resulting from the application of the non-deterministic⊔-
rule to satisfyt : ¬Q have acyclic precise inconsistent
subsets, which, according to the following Theorem 3, is
enough to conclude thata1 anda2 are instances ofQ.

Theorem 3. Let f be a summary function mapping an Abox
A, consistent w.r.t. to its TboxT and its RboxR, to its
summaryA′. LetQ be a concept expression and letS be a
subset of individuals inA′ such that for alls ∈ S, s : ¬Q /∈
A′. For an individualt ∈ S, all individualsa in A such that
f(a) = t are instances ofQ (i.e. (A, T ,R) |= a : Q) if the
following conditions hold:

1. there is an inconsistent subsetIC of tested(A′, Q, S), and
2. IC is precise, and
3. {s ∈ S | s : ¬Q ∈ IC} = {t}, and
4. there are conceptsC andD such thatt : C ⊔ D ∈ IC,

t : C /∈ IC andt : D /∈ IC), and
5. Each of the AboxesIC1 = IC ∪ {t : C} and IC2 =

IC ∪ {t : D} has at least one acylic inconsistent subset.

Proof. The proof relies on the simple observation that,
for an Abox A, (A ∪ {x : C ⊔ D}, T ,R) |= a : Q
is equivalent to (A ∪ {x : C}, T ,R) |= a : Q and
(A ∪ {x : D}, T ,R) |= a : Q. See (blind anon 2007) for
more details.

Unfortunately, despite all the techniques presented in
this section, there are precise cyclic justifications that
remain inconclusive. For example, in Figure 4, let
Q = ¬((∀R.∀T−1.A ⊓ ¬A) ⊔ (∀R.∀T−1.B ⊓ ¬B)) and
S = {t}. There is a precise cyclic justificationJ =
{R(t, s), T (t, s), t : ¬Q}. The previous technique does not
work becauseJ ∪ {t : ∀R.∀T−1.A ⊓ ¬A} andJ ∪ {t :
∀R.∀T−1.B⊓¬B} don’t have any acyclic inconsistent sub-
set. In fact,a1 anda2 are not solutions. In such cases, we

3Once again, acyclicity is defined w.r.t. to the undirected graph
induced by role and differentFrom assertions

Dataset type assertions role assertions
UOBM-1 25,453 214,177
UOBM-10 224,879 1,816,153
UOBM-30 709,159 6,494,950

Table 1: Dataset Statistics

Reasoner Dataset Avg. Time St.Dev Range
KAON2 UOBM-1 20.7 1.2 18-37
KAON2 UOBM-10 447.6 23.3 414.8-530
SHER UOBM-1 4.2 3.8 2.4-23.8
SHER UOBM-10 15.4 25.6 6.4-191.1
SHER UOBM-30 34.7 63.5 11.6-391.1

Table 2: Runtimes (sec)

refine an individualx in J by dividing the image set ofx ar-
bitrarily into two new summary graph individuals. In all of
the queries that we have processed so far, none have required
this fall-back.

Evaluation
Our algorithms are implemented in a system called SHER,
which includes additional optimizations (blind anon 2007).
We evaluated it on the UOBM benchmark which was mod-
ified to SHIN expressivity. We issued instance retrieval
queries for the 112 concepts in the ontology. The results are
reported for 1, 10, and 30 universities, which are referred to
as UOBM-1, UOBM-10 and UOBM-30. We compared our
results against KAON2 (U.Hustadt, Motik, & Sattler). (Pel-
let (Sirin & Parsia 2004) did not scale to even one univer-
sity.) For KAON2, we set all maximum cardinality restric-
tions to one because of KAON2 limitations. The runs were
made on a 64 bit AMD dual processor 8G RAM Linux ma-
chine. The Abox was stored in DB2 for SHER and MySQL
for KAON2.

The size of the datasets are given in Table 1. Table 2 sum-
marizes the running times in seconds. KAON2 ran out of
memory on UOBM-30. In 111 out of 112 queries SHER
and KAON2 had 100% agreement. The difference in the
one remaining was due to differences in the constraints used.
As can be seen, the average runtimes for SHER are signif-
icantly lower, usually by an order of magnitude, than those
for KAON2. For this particular example, SHER scaled in a
sublinear fashion.

Related Work and Conclusions
Optimized tableau algorithms exist for Aboxes in secondary
storage, but they either assume role-free Aboxes (Horrocks
et al. 2004), relatively inexpressive-DLs (Calvaneseet al.
2005), or require pre-processing of the Abox to make it role-
free (Li 2004). KAON2, which we included in our evalua-
tion, is a non-tableau based approach that relies on trans-
lating Description Logic to disjunctive datalog (Hustadt,
Motik, & Sattler 2004). Our summarization-and-refinement
strategy is an improvement over the divide-and-conquer (bi-
nary instance retrieval) approach (Haarslev & Moller 2002)
implemented in state-of-the-art tableau reasoners to testpo-

tential solutions to the query. Our approach provides a bet-
ter partitioning of tested individuals through summarization
and refinement, the ability to conclude directly that all tested
individuals are solutions without necessarily testing each of
them in isolation, and explanations for solutions.

References
A.Fokoue; A.Kershenbaum; L.Ma; E.Schonberg; and
K.Srinivas. 2006. The summary abox: Cutting ontologies
down to size.Proc. of the Int. Semantic Web Conf. (ISWC
2006)136–145.
Baader, F., and Hollunder, B. 1993. Embedding defaults
into terminological knowledge representation formalisms.
In Technical Report RR-93-20.
blind anon. 2007. Technical report: Scalable semantic
retrieval through summarization and refinement.
Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2005. Dl-lite: Tractable description logics
for ontologies.Proc. of AAAI.
Haarslev, V., and Moller, R. 2002. Optimization strate-
gies for instance retrieval.Proceedings of the international
workshop on description logics (DL 2002).
Horrocks, I., and Tessaris, S. 2002. Querying the semantic
web: a formal approach. In Horrocks, I., and Hendler, J.,
eds.,Proc. of the 1st Int. Semantic Web Conf. (ISWC 2002),
number 2342 in Lecture Notes in Computer Science, 177–
191. Springer-Verlag.
Horrocks, I.; Li, L.; Turi, D.; and Bechhofer, S. 2004. The
instance store: Dl reasoning with large numbers of individ-
uals.Proceedings of the 2004 Description Logic Workshop.
Hustadt, U.; Motik, B.; and Sattler, U. 2004. Reducing shiq
- description logic to disjunctive datalog programs.Proc. of
the 9th Int. Conf. on Knowledge Representation and Rea-
soning (KR 2004).
Kalyanpur, A. 2006.Debugging and Repair of OWL-DL
Ontologies. Ph.D. Dissertation, University of Maryland,
https://drum.umd.edu/dspace/bitstream/1903/3820/1/umi-
umd-3665.pdf.
Li, L. 2004. Reasoning with large numbers of individuals
moves on: extending the instance store.
Ma, L.; Yang, Y.; Qiu, Z.; Xie, G.; and Pan, Y. 2006.
Towards a complete owl ontology benchmark. InProc.
of the third European Semantic Web Conf.(ESWC 2006),
124–139.
Sirin, E., and Parsia, B. 2004. Pellet: An owl dl reasoner.
In Description Logics.
U.Hustadt; Motik, B.; and Sattler, U. Reducing shiq de-
scription logic to disjunctive datalog programs.Proc. of
9th Intl. Conf. on Knowledge Representation and Reason-
ing (KR2004)152–162.

