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Scalable Semantic Retrieval Through Summarization and Refinement

Abstract

Query processing of OWL-DL ontologies is intractable in the

worst case, but we present a novel technique that in practice

allows for efficient querying of ontologies with large Aboxes
in secondary storage. We focus on the processirigsténce
retrieval queries, i.e., queries that retrieve individuals in the
Abox which are instances of a given concépt Our tech-

nigue uses summarization and refinement to reduce instance

retrieval to a small relevant subset of the original Abox. We
demonstrate the effectiveness of this technique in Aboxes
with up to 7 million assertions. Our results are applicable
to the very expressive description logi¢{ZN\/, which cor-
responds to OWL-DL minus nominals and datatypes.

keywords: Reasoning, Description Logic, Ontology.

Introduction
Semantic retrieval is one of the important applicationsref o

We propose a novel approach that uses summarization
and refinement to scale instance retrieval to large expres-
sive Aboxes in databases. Before processing any queries,
we create aummary AboxA’ (A.Fokoueet al. 2006) from
an original AboxA and store it in a database. A summary
Abox is created by aggregating individuals which are mem-
bers of the same concepts. Query processing is performed
on A’ rather thand. By testing an individual in the summary
Abox, all individuals mapped to the summary are effectively
tested at the same time.

However, there is a catch. For a tested individuid A’,
if the summary is found to be consistent, then we know that
all individuals mapped to that summary individuadre not
solutions. But if the summary is found to be inconsistent, it
is possible that either (a) a subset of individuals mapped to
the summarized individualare instances of the query or (b)
the inconsistency is a spurious effect of the summarization

tologies and reasoning. Using reasoning to answer a query, We determine the answer througgfinementwhich selec-

information which is not explicitly stored in a knowledge
base can be inferred, thus improving recall. Reasoning al-

tively expands the summary Abox to make it more precise.
Refinement is an iterative process that partitions the set

gorithms that can be scaled to realistic databases are a keyof individuals mapped to a single summary individual and

enabling technology for semantic retrieval.
We focus in this paper on the scalable processin-of

stance retrievalqueries for OWL-DL knowledge bases in

remaps each partition to a new summary individual. The
iteration ends when either the expanded summary is consis-
tent, or it can be shown that all individuals mapped to the

secondary storage (excluding nominals and datatypes). An tested summary individual are solutions. Significantly)-co

OWL-DL knowledge base consists conceptually of three vergence on the solution is based only on the structure of the
components: the Thox which contains terminological as- refined summary, without testing individuals.it

sertions about concepts, the Rbox which contains assgrtion

With this summarize-and-refine technique, it is critical to

about roles and role hierarchies, and the Abox which con- haye an effective refinement strategy, which limits both the
tains membership assertions and role assertions between in number of refined individuals and the number of iterations.

dividuals. An instance query retrieves the individualshie t
Abox which are instances of a given concéptw.r.t. infor-
mation in the Thox and Rbox.

It is well known that all queries over expressive-DL on-

Our refinement strategy is based on identifyjurgtifications

for the inconsistency in the summary Abox, which is a min-

imal inconsistent subset of the summary (Kalyanpur 2006),
and selectively applying refinement to individuals in fisti

tologies can be reduced to consistency detection (Horrocks cations. We test multiple individuals in the summary at the
& Tessaris 2002), which is usually checked with a tableau same time, and process multiple justifications at each refine
algorithm. As an example, a simple algorithm for instance ment step. This approach proved effective on the UOBM
retrieval can be realized by testing if the addition of an as- penchmark ontology (Mat al. 2006), where we demon-
sertiona : -C' for a given individuala results in an incon-  gstrate that we process Abox queries with up to 7.4 million
sistency. If the resulting Abox is inconsistent, thefs an  assertions efficiently, whereas the state of the art reasone
instance ofC. Of course, it is not practical to apply this  ¢ouId not scale to this size.
simple approach to every individual. In addition to guiding refinement, justifications are help-
ful for users to understand query results. Since our expla-
nations are at a summarized level, the information is more



useful than detailed information about each individualnn a  the concepCourse, m1 andm?2 are instances ai/an, wl

Abox. Another key point is that our summarize-and-refine is an instance otV oman, andhl andh2 are instances of

technique can be treated as an optimization that any tableau Hobby. For now, we assume that the Tbox contains only

reasoner can employ to achieve scalable ABox reasoning. one axiom stating that/an andWoman are disjoint con-
The key contributions of this paper are as follows: (a) We cepts and the Rbox is empty.

present a novel, tableau-based technique to use summariza-

tion and refinement for efficient instance retrieval for targ

SHIN Aboxes in secondary storage. (b) We describe the

use of optimization techniques to selectively target pafts isTaughtBy isTaughtBy isTaughtBy
the summary for refinement. (c) We show the application
of these techniques to the UOBM benchmark ontology with @ @ @ @ @

SHIN expressivity, where we show dramatic reductions in ks
space and time requirements for instance retrieval.

likes
Background

A key feature of our approach is the construction of a sum- )

mary Abox.4’ corresponding to the Abax. An individual Figure 1: Example Abox
in A’ represents individuals il which are members of the

same concepts. Formally, an Abg¥ is a summary Abox

of aSHZIN ! Abox A if there is a mapping functiofi that

satisfies the following constraints:

(1) ifa:C e Athenf(a) : C € A’ ?%hmy @/ %hwy
() if R(a,b) € AthenR(f(a), £(b)) € A’ 6
@) if ab € Athenf(a)2f(b) € A’ Q k @

The imageof an individuala in A’ is the set/m of indi- likes

viduals in.A such thaff (b) = a,b € I'm. If the summary @ Summary
Abox A’ obtained by applying the mapping functidrno
A is consistent w.r.t. a Tbof and a RboxR, thenA is

Refined Summary

consistent w.r.t7 and’R. However, the converse does not Figure 2: Summary Abox
hold.

Let £ be a mapping from each individual /4 to a set of Consider the query for the conceptopleW ith H obby
concepts, such that: C € Aiff C' € L(a). We callL(a) which is defined a®erson M > 1likes. From Figure 1, it

theconcept sedf a. In practice, we use @anonical function ; . PR
f to create a summary Abox, which maps all non-distinct in- |53cleﬁr Lhat thtﬁ anszer consllsfjs_ 9(; thle [n(j!lwd#allﬁand
dividuals that have identical concept sets to the same indi- P3: Which are the onlyPerson individuals in.A which are
vidual in A’. More precisely, the converse of constraints (1) related to at least ond obby individual by thelikes role.

and (3) hold for thecanonical summaryand: Instead of reasoning aA directly, our algorithm reasons
on the canonical summary Aba#’ for A. The canonical

(4) If R(d",b) € A’ then there ares andb in A such thata’ = summary is shown in the’ left of Figure 2, where the sin-
f(a), b’ = £(b) andR(a,b) € A. gle individualscl, ¢2, ¢3 are mapped te’ in A’, m1 and
) Ifforall = € A, (afa) ¢ A, btz ¢ A, andL(a) = L(b), m2 are mapped ton’ in A’, and so on. Since the Rbox is

thenf(a) = £(b). empty (i.e.,isTaughtBy is not functional), A’ is consis-
. o ) o . tent. By testing a summary individual, our goal is to draw

(6) f(a)#£(b) € A’ impliesa is the only individual inA mapped conclusions about all of the actual individualsdnmapped
to f(a) (same fop). to it. An individuals in A’ is tested by adding the assertion

In general, the canonical summary Abgx is dramatically s ﬁpwpl@W“ngObby to A, an_(lj_ cherc;‘_king for Ic%r_llsis—
smaller than the original abox. It can be constructed Eggt(:}r/nldistlin?e Eilntdé}viggglsreigstﬁgesrhmr%:rc |e;\;e hS%.E: ?hé 'Sgn‘?ée
efficiently from A using conventional relational database P y grap

; X time.

queries. It only needs to be computed once, persisted, and

then reused in subsequent queries. Itis easily updategrincr Definition 1. Let.A be an Abox. Le® be a concept expression.

mentally and is thus resilient to changes4n Let S be a subset of individuals isl such that for alls € S,
s:=Q ¢ A. ? We define the tested Abox w.rt, Q and S,

Overview denotedested.A, @, S), to be the Abox obtained fros by adding

the assertions : =Q for eachs € S. Formally,tested A, Q, S) =

We motivate our instance retrieval algorithm using an exam- AU {s: -Qls € S}.

ple based on the UOBM ontology with an Abok shown

in Figure 1. The individualgl, ¢2 and¢3 are instances of 2Note that we exclude individualssuch thats : =Q belongs
B to A’because they are obviously not solutions and it also allows
lwe assume without loss of generality théaidoes not contain us to easily track assertions that were actually added to the tested

an assertion of the forma=b summary.



If the result of testing a single individualis consistent,
then we know that none of the individuals in the image of
s is a query solution. However, if the result is inconsistent,
then we cannot conclude anything about individuals in the
image ofs. This situation arises because individuals are ag-
gregated based only on the similarity of their concepts, not
relationships.

In the example, adding’ : —PeopleWithHobby is
consistent. Thereforegl, ¢2, and ¢3 in A can be ex-
cluded. Similarly,m1, m2, wl, hl and h2 can be im-
mediately excluded. When testing, the result of adding
p' : = PeopleWithHobby to the summary is inconsistent.
In this case, not all individuals in the image@fsatisfy the
query, since they differ in their relationships.

Our approach for resolving summary Abox inconsisten-
cies is to iterativelyrefine the summary. Refinement in-

A high level outline of our algorithm is shown be-
low. More details are given in subsequent sections.

S—{z|z € individuals in A'and z : =Q ¢ A'};
R—A";
Results—;
while S# () do
Rr+ tested(R, Q, S) (see Definition 1.) ;
if consistentRr) then
return Results;
end
Find Justi fications in Rr;
T~ individuals tested in precisusti fications;
Results—Results U Image(T);
S8 —T;
Execute refinement strategy éb;
end
return Results ;

creases the size and precision of the summary, and preserves

the summary Abox properties(1)-(3) defined in the previous
section. Our strategy is to refine only individuals that are
part of a summary Abojustification where a justification is

a minimal set of assertions which, when taken together, im-
ply a logical contradiction, thus making the entire Abox in-
consistent. In some cases, inconsistencies disappeagthro
refinement. Otherwise, when a justificatighis precise we
typically know that we have converged on a solution. That
is, there is a tested individuain 7, such that all of the indi-
viduals in the image of are instances of the query. We say
that a tested individual is tested in7 for queryQ if s : —=Q

is an assertion it . (The topic of drawing a conclusions on
precise justifications is discussed in a later section.)

Definition 2. Let.A’ be a summary Abox of an Abok obtained
through the summary mappifgLetQ be a queried concep§ be
a subset of individuals i’ such thatfor allz € S,z : =Q ¢ A’
and letH be a subset désted.A’, Q, S). We say that an individual
s € H is precisew.r.t. H iff the following conditions are satisfied:

1. for allindividualst € H and for all rolesR, R(s,t) € H (resp.
R(t,s) € H) implies that, for all individuals: € A such that
f(a) = s, there is an individuab € A such thatf(b) = ¢ and
R(a,b) € A(resp.R(b,a) € A); and

2. for all individualst € H, s#t € H (resp. t#s € H) implies
that, for all individualsa € A such thatf(a)A: s, there is
an individualb € A such thatf (b) = ¢ anda#b € A (resp.
b#a € A); and

3. There is anindividuak € A such thatf(a) = s; and

4. s: C € H— {z: =Q|x € S} implies that, for all individuals
a € Asuchthaff(a) =s,a:C € A

We say thafd is precise iff all its individuals are precise w.ri.

Continuing with the example, there is a justificatigh
consisting ofp’ : —~PeopleWithHobby, I/ : Hobby, and
likes(p', '), andyp’ is tested in7. Note thatp’ is not pre-
cise since it does not satisfy condition 1. Refinement re-
placesy’ by two individualsp,” andp,’, where the image of
ps’ 1S pl andp3, and the image of,’ is p2. The result of
this refinement is shown in the right of Figure 2. The tested
refined summary is still inconsistent, and there is now a pre-
cise justificationp,’ : ~PeopleWithHobby, h' : Hobby,
andlikes(p,’,h'). Every Person in the image ob,’ likes
a Hobby. Thus, the image op,’, namelypl andp3, are
solutions.

Refinement

This section describes justification-based refinement, and
some of the issues in deciding justification refinement order
Definition 3. Let. A’ and Az be summary Aboxes of an abdyx

with resp. mapping functiorsandfr. LetI’ be the set of individ-
ualsinA’, andI’; be the individuals imd’;. Lets be an individual

in A’. We say thatd’; is a refinement ofd’ w.r.t. s iff there are
individualsss . . .sn,n > 1, in A’r such that:

1L Ig={"—{s})U{s1...sn}

. iff(a) # s, thenfr (a) = f(a)

3. iff(a) = s, thenfr (a) = s;, for somel < i <mn.

. for eachl < ¢ < n, there is at least one individualin A such

thatfr (a) = s;.

In the worst case, iterative refinement can expand a sum-
mary Abox into the original Abox, so an effective refinement
strategy is critical. The refinement step for an individsial
in a justification.7 is as follows. For each in the image
of s, definekey(a) w.r.t. 7 to be the set of role assertions
in J for which a has a corresponding role assertion in the
original A. That is,key(a) =

N

f(a) = sA f(a) = sA
R(t,s) €eTN R(s,t) €TN

R(t,s)| Jbin As.t. U< R(s,t)| dbin As.t.
R(b,a) € AN R(a,b) € AN
f(b) =t f(b) =t

To refines, we partition its image so that all individuals
in a partition have the samieey w.r.t. 7. Each partition
is mapped to a new summary individual, creating a refined
summary Abox. Conversely, if all individuals idA mapped
to a summary individua$ have the same key w.r.{7, then
s is precise w.r.t. 7. Thus, justification-based refinement
leads to precise justifications in subsequent iterations.

In general, there can be multiple justifications corre-
sponding to different inconsistencies. For example, let us
add a constraint to Figure 1 that the ral€l'aughtBy
is functional. The summary Abox in Figure 2 now con-
tains a spurious inconsistency, becauseandw’ will be
inferred to be the same individual because of the func-
tional property, butn’ andw’ are instances of the disjoint



conceptsMan and Woman respectively. The justifica-
tion for this inconsistency isc’ : Course, m’ : Man,
w' : Woman, isTaughtBy(c',m’), isTaugtBy(c',w').
Figure 3 illustrates the application of a refinement step to
the refined summary in Figure 2. The individuélpartic-
ipates in multiple role assertions, so it is replacedchy
andc¢,’. The individualscl and¢3, which have the same
key {isTaughtBy(c',m’)}, are mapped te,’. The indi-
vidual ¢2 is mapped toc,” because it has a differefey
{isTaughtBy(d',w')}. After this refinement step, this spu-
rious inconsistency disappears.

Refinement Strategy

The justification refinement order is important.

some sample heuristics:

e A single refinement candidatemay belong to multiple
justifications. In such a case, we definefits; to be the
set of role assertions in all justifications tabelongs to.
However, this can lead to a large numberkef; combi-
nations, and to needless partitioning. We therefore give
preference to justifications that have no overlap.

Smaller justifications are given priority over larger jéisti
cations.

If there are two tested individuals ff, it is possible that
the inconsistency is due to the interaction between two
=@ type assertions. We therefore delay the refinement
of such justifications until no other justifications are left
in the summary, when it is more efficient to test each of
these individuals separately.

Once a givery/ has been selected for refinement, we track
its transformation in successive iterations to avoid recom
putation overhead, and to reach a conclusion as quickly as
possible.

We give higher priority to justifications that pertain to the
query (i.e. those that contain a tested individual in the
justification.) In making the summary more precise by
refining query-pertinent justifications, spurious incensi
tencies may disappear.

isTaughtBy

likes

Figure 3: Abox after second refinement

Here are

Computing Justifications

We use a technique callgdbleau tracindBaader & Hol-
lunder 1993) to compute justifications efficiently. Thishec
nique involves extending a tableau reasoner to track the ax-
ioms responsible for the firing of each expansion rule. How-
ever, to implement our refinement strategy, it is desirable

to find as many justifications as possible at each refinement
step. For this purpose we use Reiter’s Hitting Set Tree (HST)
algorithm as described in (Kalyanpur 2006), which recur-
sively removes axioms from justifications so that new justi-
fications can be found. However, since Reiter's approach is
an exponential search algorithm, we have to impose a thresh-
hold on the search. Therefore we find a subset of the justi-
fications in a refinement step, and discover more in subse-
guent iterations.

As an optimization, we exploit similarities among justifi-
cations by forming justification patterns. Given a partcul
justification 7 for the inconsistent summary, we generalize
it into a justification “pattern” by expressing it as a SPARQL
qguery where individuals in are treated as variables. Note
that we do not consider any of the Tbox or Rbox axioms
in J while creating this query, only looking at assertions
of the formC(a), R(a,b), a#b present in7. We execute
this query against the summary ABox using a SPARQL en-
gine to retrieve other “isomorphic” justifications, andrthe
add the Tbhox and Rbox axioms fropgi to each query re-
sult individually, to obtain valid new justifications. Sic
this SPARQL query does not require any inferencing, the
queries are fast. This optimization dramatically redubes t
time taken to find additional similar justifications that vidu
normally have been found one at a time as part of the expo-
nential Reiter’s search.

Drawing Conclusions on Justifications

In this section, we present a set of conditions that are suf-
ficient to prove that all individuals mapped to a tested in-
dividual s in a precise justificatiorl/ are solutions. These
conditions depend only on the structure of

Theorem 1. Letf be a summary function mapping an Abox
A, consistent w.rt. to its ThoX and its RboxR, to its
summaryA’. LetQ be a concept expression and Igéthe

a subset of individuals itd’ such that for alls € S, s :
-Q ¢ A’. For an individualt € S, all individualsa such
thatf(a) = t are instances of) (i.e. (4,7, R) E a: Q) if
the following conditions hold:

1. thereis an inconsistent subdet oftested.A’, @, S), and

2. IC is precise, and

3. {seS|s:=QeIC}={t},and

4. IC is acylic (i.e. the undirected graph induced by role
and differentFrom assertions is acyclic)

Proof. The main idea behind the proof is that, assuming the
4 conditions are satisfied and viewidg' — {t : =Q} as a
pattern, for each individual € A such thaff(a) = ¢, there

is an instancé, of the patteri’C — {¢ : =Q} in A such that

a is associated with t. SincEC' is inconsistent, it follows
that I, U {a : =Q} is inconsistent, hence is an instance

of @ (becausel, is a subset of4). The existence of the
instancel, relies on Lemma 1 formulated in (blind anon
2007). O

In our algorithm, the subséC of tested(A’, @, S) is al-
ways a minimal justification7. Using the proof of Theo-
rem 1, if 7 is precise and acyclic, then we can view it as a
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Figure 4: Example with Cycle

For anindividualt € S, all individualsa such thaf (a) =
tareinstances of) (i.e. (A,7,R) = a : Q) if the following
conditions hold:

1. there is a precise subsétof tested.A’, @, S), and
2. the Abox.’ obtained after the application of deterministic
tableau expansion rules obf = L — {z : =Q|z € S}

is such thatestedL’, @, S) has an acycli8 inconsistent
subset/C, and

3. {seS|s:=QeIC}={t}

Proof. Direct consequence of theorems 2 and 1 O

In general, applying deterministic rules on a subsetf
a summary of a consistent Abox may still be insufficient

pattern, and conclude that there are corresponding pattern to directly find solutions of the query i. Consider the ex-

in A which match7 — {t : -Q}. However, if 7 is precise
and cyclic, we cannot draw this conclusion. Consider the
example in Figure 4, and 16 = 3R.C andS = {t}. There
is a precise justificatio = {t : VI.C, R(t, s),T'(t, s),t :
—Q@}, but there is no pattern il which matches7 — {¢ :
ﬁQ}.

Fortunately, in many cases, we can efficiently transform
part of the summary Abox so that Theorem 1 is still applica-
ble. The next Theorem 2 allows us to apply deterministic

tableau expansion rules to a precise justification, and then

check for an acyclic justification. More specifically, apply

ing deterministic tableau expansion rules to a precise jus-
tification results in a new precise inconsistent subset of a

summary of an Abox equivalent to the original Abox. For
example, consider the image:L of L = 7 — {t : =Q} in

A. If we apply deterministic tableau rules#a L, the result
isimL =4mL U {bl,b2 : C}. imL is logically equivalent
toimL. L =L U {s : C} is a precise summary ofn.L ob-
tained by the application of deterministic tableau expamsi
rules toL. Furthermoretested(L, S, Q) has a precise and
acyclic justification7 = {R(t,s),s : C,t : =Q}, so that
we can now conclude thatl anda?2 are instances af) by
directly using Theorem 1.

Theorem 2. Letf be a summary function mapping an Abox
A to its summaryA’ and L be a subset ofl’. Letim L de-
note the image of in A (i.e. imL = {a : C € Alf(a)
isin L} U{R(a,b) € Alf(a) andf(b) are individuals in

L} U {a#b € Alf(a) andf(b) are individuals inL}). LetL
denote the Abox obtained after the application of determin-
istic tableau expansion rules dn If L is precise, then there

is an Aboxim L equivalent tamL such thatl is a summary
ofimL and L is precise.

Proof. See (blind anon 2007) for more details. O

The following corollary generalizes the idea illustratad i
the previous example:

Corollary 1. Letf be a summary function mapping an Abox
A, consistent w.rt. to its Tbo¥ and its RboxR, to its
summaryA’. Let( be a concept expression and lgbe a
subset of individuals ipd’ such that for alls € S, s : =Q ¢
A

ample in Figure 4, and |€) = 3R.DMN3T.D andS = {t}.

J ={s: D,R(t,s),T(t,s),t : =Q} is a precise justifica-
tion. No deterministic rule is applicable t6 — {t : —-Q}.
However, the two Aboxes/; = J U {t : VR.-C} and

Jo = J UA{t: VT.-C} corresponding to the two branches
resulting from the application of the non-deterministie
rule to satisfyt : —@Q have acyclic precise inconsistent
subsets, which, according to the following Theorem 3, is
enough to conclude thatl anda?2 are instances af.

Theorem 3. Letf be a summary function mapping an Abox
A, consistent w.r.t. to its TboZX and its RboxR, to its
summaryA’. Let@ be a concept expression and lebe a
subset of individuals i’ such that for alls € S, s : =Q ¢
A’. For an individualt € S, all individualsa in A such that
f(a) = t are instances of) (i.e. (4,7,R) |E a: Q) ifthe
following conditions hold:

1. thereis aninconsistent subdet oftested.A’, @, S), and

2. IC is precise, and

3. {seS|s:=QeIC}={t}, and

4. there are concepts' and D such thatt : C U D € IC,
t:C¢ICandt: D¢ IC) and

5. Each of the AboxesCy = IC U {t : C} andICy =
IC U {t: D} has at least one acylic inconsistent subset.

Proof. The proof relies on the simple observation that,
for an Abox A, (AU{z:CUD},T,R) E a:Q
is equivalent to (AU{z:C},7,R) E a:Q and
(AU{z:D},7,R) = a: Q. See (blind anon 2007) for
more details.

O

Unfortunately, despite all the techniques presented in
this section, there are precise cyclic justifications that
remain inconclusive. For example, in Figure 4, let
Q = ~((VRNT-LAN-A)U(VRVT-1.Brn-B)) and
S = {t}. There is a precise cyclic justificatiof =
{R(t,s),T(t,s),t: =Q}. The previous technique does not
work because7 U {t : VRVT1.An-A} andJ U {t :
VR.YT~'.Bn-B} don't have any acyclic inconsistent sub-
set. In fact,al anda2 are not solutions. In such cases, we

30nce again, acyclicity is defined w.r.t. to the undirected graph
induced by role and differentFrom assertions



Dataset type assertions role assertions
UOBM-1 | 25,453 214,177
UOBM-10 | 224,879 1,816,153
UOBM-30 | 709,159 6,494,950

Table 1: Dataset Statistics
Reasoner| Dataset Avg. Time | St.Dev | Range
KAON2 | UOBM-1 | 20.7 1.2 18-37
KAON2 | UOBM-10 | 447.6 23.3 414.8-530
SHER UOBM-1 | 4.2 3.8 2.4-23.8
SHER UOBM-10 | 15.4 25.6 6.4-191.1
SHER UOBM-30 | 34.7 63.5 11.6-391.1

Table 2: Runtimes (sec)

refine an individuak in 7 by dividing the image set of ar-
bitrarily into two new summary graph individuals. In all of

tential solutions to the query. Our approach provides a bet-
ter partitioning of tested individuals through summaiizat
and refinement, the ability to conclude directly that altées
individuals are solutions without necessarily testingheafc
them in isolation, and explanations for solutions.
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