
RC24300 (W0707-044) July 5, 2007
Computer Science

IBM Research Report

Dual Encryption for Query Integrity Assurance

Haixun Wang, Jian Yin, Chang-Shing Perng, Philip S. Yu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Dual Encryption for Query Integrity Assurance

Haixun Wang Jian Yin Chang-Shing Perng Philip S. Yu

Abstract

In database outsourcing, an enterprise contracts its
database management tasks to an outside database service
provider to eliminate in-house hardware, software, and ex-
pertise needs for running DBMSs. This represents an at-
tractive paradigm, especially for parties with limited abili-
ties in managing their own data. Typically, the client appli-
cations want to obtain quality assurance (e.g., data authen-
ticity and query completeness) of the outsourced database
service at a low cost. Previous work on database outsourc-
ing has focused on issues such as communication overhead,
secure data access, and data privacy. Recent work has in-
troduced the issue of query integrity assurance, but usu-
ally, to obtain such assurance incurs a high cost. In this
paper, we present a new method called dual encryption to
provide low-cost query integrity assurance for outsourced
database services. Dual encryption enables “cross exami-
nation” of the outsourced data, which consists of the origi-
nal data stored under a certain encryption scheme, and an-
other small percentage of the original data stored under a
different encryption scheme. We generate queries against
the additional piece of data and analyze their results to ob-
tain integrity assurance. Our scheme is provable secure,
that is, it is impossible to break our scheme unless some
security primitives can be broken. Experiments on commer-
cial workloads show the effectiveness of our approach.

1 Introduction
Economic analysis shows that in the past five years,

the cost of sending a terabyte of data across large geo-
graphic areas dip by 75%. The breakthrough helps accel-
erate the trend of information technology outsourcing. Re-
cently, there is a growing interest in outsourcing database
management tasks to an outside database service provider.
The new paradigm has the apparent benefits of reducing in-
house hardware, software, and human expertise costs for
running DBMSs, and enabling businesses to concentrate on
their core tasks.

Database outsourcing presents many challenges. These
include traditional issues such as performance, scalability,
and ease-of-use, which have been the topics of decades of
database research, but have now gained a new dimension
in the database outsourcing paradigm. The first concern

raised by outsourcing is data security. We must ensure that
the service provider, while providing query support to its
clients, does not have access to the plain text content of the
database. Several recent work [2, 18] addressed the issue of
supporting encrypted queries over encrypted databases.

Data privacy is just one aspect of security. An equally
important issue orthogonal to privacy is integrity. In the
paradigm of database outsourcing, we use the term integrity
or query integrity to refer to the validity of query results, in
other words, we want to ensure that the results returned by
the service provider for a user query are correct and com-
plete. While the integrity of an individual tuple can be se-
cured with a digital signature, query integrity has higher risk
of being compromised. For example, attackers can return a
subset instead of the complete set of tuples that satisfy a
user query. In this paper, we aim at providing query in-
tegrity assurance at a low cost. To achieve this, we build
on top of previous methods that support encrypted queries
over encrypted databases. Closely related to our work is
Sion et al’s approach [25]. However, the adversary model
in their approach is a little bit weak in the sense that they
assume that the only goal of an attacker is to save some
computation resource by processing the queries on an in-
complete and hence small subset of the data instead of the
whole dataset. In other words, the challenge token approach
is ineffective if an adversary is willing to compute the com-
plete query results and then delete some data from the query
result before returning it to database clients. Such an ad-
versary can be a malicious database service provider that
tries to provide misleading query results or a hacker that
breaks into the outsourced database machine which is not
securely administrated.Moreover, the challenge token ap-
proach requires modifications in the DBMSs for query exe-
cution proofs.

Overview of Our Approach Our approach, in its sim-
plest form, is similar to cross examination. The intuition is
the following. Imagine we give the encrypted dataset T to
two service providers A and B, and we assume they do not
have any inter-communication. For every query q, we en-
crypt it and send it to both A and B. The results returned
by A and B should be exactly the same after decryption.
If they are not, then we know at least one of the service
providers is not doing an honest job.

A clear advantage of the new scheme is that it does not
require locally mirroring the outsourced database. Besides,

1

the solution is conceptually straightforward, so is the anal-
ysis of integrity assurance. However, its success heavily
depends on the assumption that the two service providers
have no communication with each other. It becomes unre-
alistic, because in many cases, nothing more than minimal
communication between A and B can defeat this approach.
For instance, if A and B collaborate to return empty results
to whatever queries they receive, then the user of the service
cannot tell if it is true that no data satisfies the query. Al-
though this attack is easy to foil, other problems may not be
easy to solve. For instance, for a query q, A finds the correct
answer ρA, and B finds the correct answer ρB . If A and B
know that they are answering the same query, then A can re-
place T with ρA, and B can replace T with ρB , and execute
later queries against ρA and ρB . Since the answers from A
and B will always be the same, the user of the service can-
not detect the breach of the query integrity. Furthermore,
besides that the assumption of no communication between
the two service providers is unrealistic, storing data at two
service providers doubles storage, and other data manage-
ment cost.

In this paper, we propose a new scheme called Dual En-
cryption for providing query integrity assurance. We select
a small subset of T and encrypt it using two different keys.
We show that we can use the two different encryptions to
provide query integrity. In generally, it is difficult to ar-
gue the security of a scheme by showing that the scheme
can withstand many types of secure attacks as it is diffi-
cult to exhaustively enumerate all the possible security at-
tacks. To overcome this difficulty, we show that our scheme
is provable secure. That is, the security of our scheme can
be reduced to the security of some basic security primitives
such as DES and any computational efficient algorithm that
can break our scheme can also be used as a procedure to
construct a computational efficient algorithm to break those
security primitives. As those security primitives are being
tested for many years and generally assumed to be secure
in the security communities, our scheme is secure. Our ap-
proach incurs very small overhead, as our analysis indicates
that with 10% of the data for dual encryption, we can al-
ready provide good integrity assurance.

Paper Organization The rest of the paper is organized
as follows. In Section 2 we lay out the problem definition
and study some background assumptions of database out-
sourcing. Section 3 analyzes a naı̈ve approach for solving
this problem. We present the dual encryption approach in
Section 4. In Section 5, we show that our scheme, if imple-
mented properly, is provable secure. We report experimen-
tal results in Section 6, and review related work in Section 7.
We draw our conclusion in Section 8.

2 Problem and Background

In this section, we formalize the problem and introduce
some background issues related to database outsourcing.

2.1 Problem Setting
A database owner outsources its data storage and man-

agement duty to a service provider. The encrypted data is
accessed by multiple clients through secure channels. Be-
sides normal data management services, the user of the ser-
vice often want assurances of the quality of the service. In
this paper, we focus on query integrity assurances, that is,
how do users obtain assurances as to whether the query re-
sults are correct and complete?

Note that the users (e.g., cellphone or PDA devices)
may have very limited computation power and data stor-
age capacity, which means, i) they cannot execute expen-
sive queries locally, and ii) they cannot store any significant
amount of the outsourced data locally. Thus, the only way
of obtaining any integrity assurance of the query results is
through asking queries and analyzing results. To make it
possible, we rely on two things. First, the database owner
can embed additional information in the outsourced data.
Second, the clients may construct additional queries against
the original data as well as the embedded information stored
at the service provider. We require that the storage overhead
and the query overhead are kept at minimum.

client service
provider

...

...

T

owner

Ts

dataTransform()

queries Q
queryRewrite(Q)

answers &
assurance

Figure 1. Database Outsourcing

In Figure 1, we illustrate the setting of the database out-
sourcing environment. Let T denote the data to be out-
sourced. The data T is to be pre-processed, encrypted and
stored at the service provider. We use dataTransform() to
denote the pre-processing and encryption process, and we
use Ts = dataTransform(T) to denote the data stored at
the service provider.

We rewrite a set of queries Q = {q1, · · · , qu} against
T to queries against Ts. Let queryRewrite() denote
the query rewriting process, and queryRewrite(Q) =
{r1, · · · , rv} denote the queries sent to Ts. The service
provider, on receiving {r1, · · · , rv}, returns results R =
{ρ(r1), · · · , ρ(rv)} to the client, where ρ(ri) is the result
for query ri. From R, the client will derive the results of Q
as well as the confidence of their integrity.

2

Thus, the problem of query integrity assurance
comes to the following. Construct the two functions,
dataTransform() and queryRewrite(), such that for a
batch of queries, the confidence that the results returned by
the service provider are correct and complete is beyond a
user-specified level, and the overhead of data storage and
query processing is as low as possible.

2.2 Background

In this section, we introduce some known issues and
techniques related to the database outsourcing problem.

Querying Encrypted Data

Encryption is a well established technology for protecting
sensitive data [15, 24, 27]. The data at the service provider
is encrypted. This creates a lot of challenges for providing
query support over encrypted data. For example, to support
range queries, we must ensure that the encryption of nu-
merical values are order-preserving so that we do not have
to decrypt the data before evaluating the queries. We also
need to provide index so that queries over encrypted data
can be carried out in an efficient way. This has been a focus
of much recent work. For instance, Hacıgümüş et al [18]
explored techniques to execute SQL queries over encrypted
data. It is later improved by OPES [2], which returns exact
answer instead of superset of answers that require filtering
on the client side.

Our approach builds on top of existing techniques that
support querying over encrypted databases. We assume the
underlying encryption scheme already takes care of issues
such as privacy protection, and is robust to a variety of at-
tacks (such as data distribution attacks) against encrypted
databases. Thus, we only focus on new security concerns
introduced in providing query integrity assurance.

PKI, Secret Key, and Signature

In cryptography, a public key infrastructure (PKI) is an ar-
rangement which provides for third-party vetting of, and
vouching for, user identities. User identities, or signatures,
can be generated with either PKI or a secret key. PKI-based
signature separates the ability of verifying a signature from
signing a signature. Public key is used for verifying a signa-
ture and the private key is used for generating signature. In
our case, we argue that using the secret key approach is suf-
ficient, as we trust the owner of the database and the users
of the database to keep a secret key from attackers. The ad-
vantage of the secret key approach is that the overhead is
significantly less.

One-way Hash Functions

Our approach relies on a standard security technique, the
one-way hash functions [4]. A one-way hash function H
takes a variable-length input string x and converts it into a
fixed-length (usually 128 bits) binary sequence H(x). It is
designed in such a way that it is hard to reverse the process,
that is, for a given value x′ it is computationally infeasible

to find a string x such that H(x) = x′. For some one-
way hash functions, it is also computationally infeasible to
find two strings x and y, such that H(x) = H(y). These
properties make one-way hash functions a central notion in
public-key cryptography.

Our approach adopts dual encryptions of the data, i.e.,
we select a small subset of the data and encrypt it using two
different keys. For any given record, the user of the service
can find out easily whether it has been selected for dual en-
cryption, and if it is, which of the two keys it is encrypted
with. These information however must be kept away from
the service provider, or potential adversaries. We use one-
way hash functions to achieve this, and the details are dis-
cussed in Section 4.

3 Data Correspondence
In this section, we introduce the concept of data corre-

spondence. It reveals a major difficulty that a cross exam-
ination based approach must overcome in order to provide
query integrity assurances.

In the naı̈ve setting, two sites are involved in a cross ex-
amination. More specifically, assume we store the same
dataset T at two service providers A and B. We denote
the encrypted data at A as TA, and that at B as TB , and
we assume that A and B do not have intercommunication.
Every user query q is encrypted and sent to both of the ser-
vice providers. If both A and B execute the queries and
send back the results honestly and correctly, then the results
should be exactly the same after decryption.

The feasibility of this approach depends on the assump-
tion that the two service providers cannot communicate
with each other. Under this assumption, the best way it can
cheat is to “guess” the answers. However, as long as one of
them is “guessing”, it will be very unlikely that the results
they provide for a query will turn out to be the same. To see
this, assume dataset T contains NT tuples. For any query
that finds tuples satisfying a certain predicate, the probabil-
ity that A and B return the same answer is 2−NT , if one or
both of them is guessing randomly.

However, the no-communication assumption is too
strong to realize in practice. This is exacerbated by the
fact that minimal communication between the two service
providers can break the scheme. To see this, we define data
correspondence between two copies of encrypted data.

Definition 1. Assume TA and TB are encryptions of T . Let
DA ⊆ TA and DB ⊆ TB . We say DA correspond to DB if
they are encryptions of the same subset of data in T .

Intuitively, two datasets correspond to each other if they
are different encryptions of the same plain text data. Data
correspondences are a severe security risk for the cross ex-
amination approach in providing query integrity assurances.

Property 1. If the two service providers discover that DA

correspond to DB , they can evade the integrity check by
simply doing one of the following

3

1. remove DA and DB from TA and TB , or

2. replace TA and TB with DA and DB

and then use the new TA and TB to answer future queries.

The proof is trivial because TA and TB are the same data
under different encryptions, so any query against TA and
TB should return the same results. It is a clear integrity
breach because queries are now running against subsets of
the original data.

Unfortunately, it is very easy for the service providers
to find such correspondence as long as they have minimal
communication with each other. For instance, the empty-
result attack we mentioned earlier corresponds to the 2nd
form of attacks where DA = DB = ∅. Other non-trivial
data correspondence can be discovered by analyzing the
queries the two service providers receive from the user. For
instance, if A and B knows that they are answering a same
query t, then they can use the query results of t as DA and
DB , and carry out the above attacks.

In this paper, we introduce the dual encryption model
based on the intuition of cross examination. Clearly, our
major challenge lies in finding a solution that can handle
data correspondence with low cost. In addition, we must
avoid another severe drawback of the naı̈ve cross examina-
tion approach – it needs two service providers, as it doubles
the cost of database outsourcing, and introduces extra over-
head of communication.

4 The Dual Encryption Approach
In this section, we describe a solution to providing query

integrity assurances for database outsourcing.

4.1 Overview
In our approach, the database owner outsources its data

T to the service provider through dual encryption, namely,
a primary encryption and a secondary encryption. More
specifically, we encrypt the entire data T using a primary
encryption key k, and we encrypt a selected, small subset
of T using a secondary encryption key k′. The encrypted
data are merged and stored at the service provider as a sin-
gle piece. The detail of the encryption process is discussed
in Section 4.2.

User queries go through a query interface before being
sent to the service provider. The query interface performs
query rewriting and monitors query integrity by analyzing
query results returned by the service provider. More specif-
ically, given a batch of queriesQ = 〈q1, · · · , qu〉, the query
interface sends Qk = 〈qk

1 , · · · , qk
u〉 to the service provider,

where qk
i denotes the query qi encrypted using the primary

encryption key k. Based on Q, the query interface gener-
ates a new batch of queries and sends them to the service
provider after applying the secondary encryption. We use
Qk′ = 〈rk′

1 , · · · , rk′
v 〉 to denote these queries. From the

results of Qk and Qk′ , the query interface derives the cor-
rect answers of Q as well as the assurance of their integrity,

and sends them to the user. Figure 2 illustrates the role of
the query interface. We discuss query rewriting in detail in
Section 4.3.

client server

...

...

query
interface

1

6

2

4

5

3

(1) query sequence Q = 〈q1, · · · , qu〉
(2) primary queries Qk = 〈qk

1 , · · · , qk
u〉

(3) secondary queries Qk′ = 〈rk′
1 , · · · , rk′

v 〉
(4) answers to primary queries 〈ρ(qk

1), · · · , ρ(qk
u)〉

(5) answers to secondary queries 〈ρ(rk′
1), · · · , ρ(rk′

v)〉
(6) query answer 〈ρ(q1), · · · , ρ(qu)〉

Figure 2. Our approach

4.2 Dual Encryption
In databases, tuple encryption promises to disassociate

a tuple’s encrypted text from its plain text content. Dual
encryption exploits this promise to provide integrity in ad-
dition to privacy.

The idea is to encrypt some tuples in a database with
two keys. Given a tuple r in the original database T and
two encryption keys k and k′, the encrypted database Ts

can contain both Ek(r) and Ek′(r), which are the encrypted
texts of r using key k and k′ respectively.

We must overcome the data correspondence problem.
The rationale is that, if the attacker does not know data
correspondence, that is, he does not know that Ek(r) and
E′

k(r) are different encryptions of the same original tuple r,
then deleting tuples1 from the encrypted database will likely
lead to a situation where one tuple, say Ek(r), is deleted
while its corresponding tuple, E′

k(r), remains, which en-
ables us to detect the attack.

We discuss our dual encryption scheme in detail in two
parts, data transformation and query encryption.

4.2.1 Data Transformation
Dual encryption can build on top of any encryption scheme
that supports queries over encrypted data. These include
schemes proposed in the recent work [18, 2]. We assume
the underlying encryption scheme already provides good se-
curity (e.g., protection against data distribution attacks) for
querying over encrypted databases.

1The attacker can also modify or add tuples. But these attacks are easily
detected as described below.

4

II:
primary encryption
(replicated)

I:
primary encryption
(unreplicated)

III:
secondary encryption
(replication of II)

r

1-r

Figure 3. Dual Encryption

For our dual encryption approach, we encrypt the origi-
nal dataset T with a primary key k, and we replicate r per-
cent of T and encrypt the replication using a secondary key
k′. We denote r as the replication factor. The encrypted
dataset Ts contains data of two different encryptions, and
we store Ts at the service provider. As shown in Figure 3,
we can view Ts as composed of 3 parts that are mixed to-
gether. Part I and II correspond to the primary encryption
of T , and part III corresponds to a different encryption of
part II. Because tuples of the three parts are mixed together,
given any tuple t in Ts, we cannot tell which part t belongs
to. In particular, the domain of the two encryptions can
overlap, that is, two different tuples, one encrypted with k,
the other k′, may have the same encrypted text.

Nevertheless, in order to assess query integrity from the
answer returned by the service provider, for any tuple t in
the answer, the client need to know:

1. whether t is a valid tuple of T , and

2. how t is encrypted (in particular, whether t has a cor-
responding tuple encrypted using a differet key).

Once the client knows that t is valid, and t satisfies the
query condition, then the client knows that t is a correct
answer to the query. On the other hand, knowing how t is
encrypted is important in evaluating query integrity, which
we discuss in Section 5.

In order to have the above information, we attach addi-
tional information to each tuple in T . We call it the dual
information. We use secret key and one-way hashing to
generate the dual information for each tuple t. Assume a
secret key e is shared by the database owner and the users
of the database service. For any tuple t, its dual informa-
tion tdual is computed by a one-way hash function H() as
follows.

tdual =

H(e, t) : t ∈ part I
H(e, t) + 1 : t ∈ part II
H(e, t) + 2 : t ∈ part III

(1)

According to the property of one-way hashing, given
t, it is easy to compute H(e, t). The user of the service,
on receiving t as an answer from the service provider, can

easily check if the value of its dual information is among
{H(e, t),H(e, t)+1,H(e, t)+2}. If it is not, we know t is
not a valid tuple in the original dataset T . If it is, we know
how it is being encrypted, that is, whether it is encrypted
with a primary key, and whether it is one of the replicated
tuples.

Only the client has the knowledge of how a tuple is en-
crypted, and this will enable us to assess query integrity,
which we discuss in Section 5. For the service provider
or any adversary, since H is a one-way hash function, it is
computationally infeasible to find out the secret key e given
any tuple t and its tdual value. Thus, it is unlikely that an
adversary can generate a valid tdual without knowing e. The
probability that a random guess of tdual happens to be one
of the three valid values for t is 3/2128, as one-way hash
functions typically convert the input into a binary string of
128 bits. Thus, it is difficult for the adversary to change the
content of the database, or to distinguish a tuple encrypted
with the primary key from a tuple with the secondary key.

We can show that the dual encryption scheme is provable
secure against data correspondence attacks when the adver-
saries are computationally bounded. More specifically, if
we assume that the underlying encryption algorithm is a
pseudo-random function or a pseudo-random permutation
in the sense that the best adversary only has advantage ε
than a random guess [17, 20, 8], then we can show, by con-
tradition, that no algorithm can have advantage by ε′ than
randomly guessing at corresponding tuples, where ε′ is a
function of ε. We omit the proof here due to lack of space.

4.2.2 Query Encryption

In order to query encrypted data, the query itself must also
be encrypted. Our method builds on top of previous ap-
proaches that support querying over encrypted data [18, 2].
For example, if the underlying encryption scheme is or-
der preserving, our scheme supports range queries against
outsourced data. Similar to previous work on integrity as-
surances [22, 25], we are concerned with identity queries
whose result is a subset of T . This means we consider only
queries testing equality and other logical comparison predi-
cate clauses.

More specifically, let q be an identity query. It should
have the following form [22]:

q: SELECT * FROM T WHERE predicate;

Each literal of predicate is in the form of:

ai cond vi

where ai is an attribute, vi a value in the domain of ai, and
cond is an operator such as =, >, <,≥,≤. For example, q
can be the following query:

q: SELECT * FROM T WHERE a1 = 2 AND a3 < 100;

5

The above query q on table T will be encrypted when it
is sent to the server. Since we have two keys, k and k′, the
above query can be transformed into two different forms:

qk : SELECT * FROM Ts

WHERE a1 = Ek(2) AND a3 < Ek(100)

qk′ : SELECT * FROM Ts

WHERE ai = Ek′(2) AND a3 < Ek′(100)

Note that the service provider executes a query, regard-
less how it is encrypted, against the entire Ts that contains
data encrypted in two different ways. Note that for security
reasons, we may choose Ek and Ek′ whose domains over-
lap. For example, there may exist values x and y such that
Ek(x) = Ek′(y), where x 6= y. Thus, query qk′ may return
tuples encrypted with key k as well. These tuples are to be
filtered out during decryption according to Eq 1.

Next, we discuss how to take advantage of the relation-
ship between the results of qk and qk′ to determine whether
the service provider carries out the query in honestly.

4.3 Cross Examination

The purpose of dual encryption is to allow for sophis-
ticated cross examination. We have mentioned in Sec-
tion 4.2.1 that dual encryption is secure against data corre-
spondence attacks: with the assumption that the underlying
encryption mechanism is provable secure, the best adver-
sary has no advantage more than ε′ over random guessing
in finding corresponding tuples. However, queries posed by
the clients may reveal critical information to allow the ser-
vice provider to detect data correspondence.

Query Correspondence Attacks

To understand the new challenge, we first analyze a sim-
ple approach which performs cross examination on dually
encrypted data. Assume a user has a batch of queries
Q = 〈q1, · · · , qu〉. For each query qi ∈ Q, the user sends
qk
i to the service provider and gets back result ρ(qk

i). Later,
to check the integrity of ρ(qk

i), it sends qk′
i to the service

provider. The user then evaluates the “trustworthiness” of
the service provider by analyzing ρ(qk

i) and ρ(qk′
i), which

involves checking for every replicated tuple t ∈ ρ(qk
i),

whether t’s replication is in ρ(qk′
i).

query results on
dually encrypted
datasets

server

client

results after
decryption on
the client side

Figure 4. Identical Queries

We illustrate the simple approach in Figure 4. The two
queries, qk

i and qk′
i , are semantically identical. In particu-

lar, if every tuple is replicated (r=1), then after decryption,
ρ(qk

i) and ρ(qk′
i) will correspond to the same set of tuples.

This induces a security risk. If an adversary finds out that qk
i

and qk′
i are different encryptions of a same query, it knows

immediately that ρ(qk
i) correspond to ρ(qk′

i), which enables
the adversary to launch data correspondence attacks. The
risk is high because although queries are encrypted, the en-
cryptions are applied on the values in the queries not the
queries themselves. For instance, given qi = “SELECT *
FROM T WHERE ai = 3”, the encrypted queries qk

i and
qk′
i differ only in the way of encrypting the value 3. Thus,

it is possible to discover the correspondence between two
queries by performing simple syntactical checking.

In our approach, the query we issue has different seman-
tics for the query whose integrity we want to evaluate, that
is, given a query qi, we derive a checking query q, such that

ρ(qk′) 6= ρ(qk
i) (2)

To use query q to assess the integrity of query qi, we require
that the result of q and the result of qi have certain overlap,
that is,

ρ(qk′) ∩ ρ(qk
i) 6= ∅ (3)

Eq 2 and Eq 3 are the only conditions for applying our ap-
proach. This is illustrated in Figure 5.

query results on
dually encrypted
datasets

server

client

results after
decryption on
the client side

Figure 5. Our Approach

It follows that if we can ensure the result of q overlaps
with the result of multiple queries, we can use q, a single
query, to evaluate the integrity of multiple queries, instead
of generating a checking query for each of them. The ben-
efits of evaluating the integrity of multiple queries at a time
is two-fold. First, it increases the difficulty for an adversary
to match a checking query with the original query. This re-
duces the risk of the data correspondence attack. Second,
because there are fewer checking queries, the overhead of
query processing is reduced.

Distribution Attacks
Assume for a batch of queries Q = 〈q1, · · · , qu〉, the client
generates a single checking query q. It then sends Q̂ =
Qk ∪ {qk′} to the server. There is still a subtle potential
risk, which we describe below.

6

By studying the distribution of query results, an adver-
sary may discover data correspondence with high probabil-
ity. Let t be a tuple in the answer set of Q and let s denote
the probability that t also satisfies q, in other words, s de-
notes the level of overlap. Recall that the replication factor
is r, then the probability that ρ(Q̂) also contains t’s corre-
sponding tuple is sr. If sr is larger than the probability that
ρ(Q̂) contains a random tuple, then the adversary may dis-
cover data correspondence after seeing a large number of
queries.

This issue can be resolved by considering the size of
ρ(Qk) before we decide if we should send a checking query
now or we should delay the checking query. If |ρ(Qk)|/|Ts|
is no less than rs, then the checking query poses no risk,
because a random tuple has as high probability as a cor-
responding tuple to appear in ρ(Q̂). Note that we can al-
ways construct additional queries so that for any tuple t cov-
ered by the checking query, a deterministic set of tuples is
queried and returned with probability higher than rs.

5 Security Proof
We first prove the security properties of our scheme in an

ideal setting, where each tuple is encrypted with DES.
We assume some basic security properties of these prim-

itives as in most security literature. Our system can then be
shown to be provable secure [10, 7, 11, 6, 5, 9, 26]. That
is, the security of our system can be reduced to the secu-
rity properties of the underlying crypto primitives that we
employed to build our system.

First, we introduce some standard crypto primitives used
in provable secure literature. These primitives can be built
with the standard DES symmetric key encryption [9].

A mapping F : K × X → Y where k is chosen uni-
formly randomly from the key space K is said to be a
(q, t, ε)-pseudorandom function if there does not exists an
algorithmA that can ε-distinguish this function from a truly
random function U : K ×X → Y , where U is chosen uni-
formly random from all the set of random functions that
map X to Y for each chosen k in K, with no more than q
queries and t computation.

The following notations are used in our proof and in the
performance analysis.

T original table
NT number of tuples in T
r replication factor
Ts table stored at the service provider
Q a batch of queries against T
q a query generated to evaluate Q’s integrity
s q’s selectivity (s = |q∩Q|

|Q|)

s′ Q’s selectivity (s′ = |q∩Q|
|q|)

Table 1. Notation

Theorem 1. There does not exist an adversary algorithm
that can succeed in selecting m tuples that can be deleted
without being detected with a probability significant higher
than ∑

m=u+2v,u≥0,v≥0

g(u)f(v)

with t + c computation and q + TN + rTN queries.

Proof. (Sketch) We prove this by contradiction. We assume
there exists an algorithm B that can successfully choose m
tuples that can be deleted without being detected from an
encrypted database. We then construct an algorithm A that
breaks F , that is, we show F is not a (t, q, ε)-pseudorandom
function.

We construct an algorithm A that works as follows. Al-
gorithm A takes a function as the input. This function can
be either a truly random function U or a pseudorandom
function F .

A then apply the function to all the tuples T in the
database with the primary key as the first argument to the
function and then apply the function to the replicated set of
tuples T’ with the secondary key as the first argument to the
function. We call the function application here encryption.
The results are combined and inserted into the database ta-
ble. We then invoke the adversary algorithm B to select m
items.

There are two ways to select m items. First, a tuple, t1,
resulting from applying one functions to a non-replicated
tuple can be selected. We call this selectionnon-replication
selection.Second, we can select two tuples: one is encrypted
with the primary key; the other is the same tuple encrypted
with the secondary key. We call this selection replication
selection.

First, to successfully carry out non-replication selection
of u tuples, all the u tuples must come from the tuples that
have been encrypted with the primary key only. If the map
function is truly random, there is an equal chance for a tuple
to be mapped to any tuple in the encrypted table. Since there
are (1 − r)NT tuples encrypted with the primary key only,
therefore there are

(
(1−r)NT

u

)
ways of picking u tuples en-

crypted with the primary key only. As there are
(
(1+r)NT

u

)
ways of picking any u rows from the entire table Ts, the
probability is

g(u) =

(
(1−r)NT

u

)
(
(1+r)NT

u

)

Second, to successfully carry out replication selection of
2v tuples, the algorithm must pick v tuples encrypted with
the primary key and the corresponding v tuples encrypted
with the secondary key. There are

(
rNT

v

)
ways of picking

v tuples in Ts that are encrypted with both the primary key
and the secondary key. Thus, the probability of carrying out
u successful replication selections is

f(v) =

(
rNT

v

)
(
(1+r)NT

2v

)

7

Finally, if m tuples are picked without possibly being de-
tected, there must be v replication selections and u non-
replication selections such that m = 2v + u. Thus, the
probability of deleting m successfully is

∑

m=u+2v,u≥0,v≥0

g(u)f(v)

As we assume that algorithm B can select m tuples with
a probability

∑

m=u+2v,u≥0,v≥0

g(u)f(v) + E

where E is significantly bigger than (t, q, ε). After the algo-
rithm B outputs m tuples, algorithm A takes over and verify
whether these tuples can be deleted without detection, if so,
it output 1 and outputs 0 otherwise. Hence, we have

AdvA = Pr[A(F) = 1]− Pr[A(U) = 1]

=
∑

m=u+2v,u≥0,v≥0

g(u)f(v) + E −
∑

m=u+2v,u≥0,v≥0

g(u)f(v)

= E > ε

which contradicts the fact that Fk is a (t, q, ε)-
pseudorandom function.

Furthermore, it is easy to see that

g(u) =
((1− r)NT)((1− r)NT − 1) · · · ((1− r)NT − u + 1)
((1 + r)NT)((1 + r)NT − 1) · · · ((1 + r)NT − u + 1)

Since

((1− r)NT)
((1 + r)NT)

>
((1− r)NT − x)
((1 + r)NT − x)

for x in 1, · · · , u− 1, we have

g(u) < (
(1− r)NT

(1 + r)NT
)u = (

1− r

1 + r
)u

Note also this bound is quite tight for large TN .
Similarly, we have

f(v) < (
2v

(1 + r)NT
)v(

v

(1 + r)NT − v
)v

As f(v) ¿ g(u) for u, v ≤ m as NT is big, Y (m) ≈
g(m). Thus, the probability of not being detected always
approaches 0 rapidly for large TN .

6 Experimental Evaluation
In this section, we evaluate the security and the perfor-

mance overhead of the dual encryption scheme.

Datasets The data we use in our experiments is derived
from the database in the SPECjAppServer benchmark [14],
which intends to model real-world E-commerce workload
and is widely accepted for evaluating the performance of
J2EE servers. The database in this benchmark has two
domains: dealer and manufacture. We use the customer
table in the dealer domain for our experiments. The
database in this benchmark is scaled with a parameter called
InjectionRate. The number of tuples in this table is
7500 ∗ InjectionRate. In our experiment, we use an
InjectionRate of 400, which gives us 3 millions tu-
ples.

Storage Overhead In order to secure privacy and in-
tegrity in database outsourcing, the dual encryption scheme
incurs some storage overhead. These include i) the over-
head of storing encrypted tuples instead of plaintext tuples,
ii) the storage overhead for the additional dual column, and
iii) the storage overhead for the subset of the data replicated
for secondary encryption. However, i) is common to any
scheme that tries to protect data privacy. The dual column
serves as signatures for tuple authentication. In dual en-
cryption, the signature is overloaded as an indicator of how
tuples are encrypted, and it does not create further space
overhead. Thus, the only overhead introduced for provid-
ing integrity assurance is iii), i.e., the r percentage of the
original data replicated for secondary encryption.

Security Against Data Alternation Attacks Recall that
in data deletion attacks, an attacker randomly deletes m tu-
ples from the outsourced table. For each value of m (rang-
ing from 1 to 30), we repeat our experiment 100 times, and
count the times that the attacks can escape detection. We
also calculate the confidence interval for the probabilities
by using exact Binomial distribution instead of using nor-
mal distribution to approximate binomial distribution. Fig-
ure 6 shows the probability of successful attacks for duly
encrypted data with replication rates fro 10% to 50%. As
we have expected, at only 10% overhead, the probability
drops rapidly when m increases. Moreover, the probability
of carrying out successful data deletion attacks approaches
0 as the attack tries to delete more than 15 tuples even if we
use a replicate rate of merely 10%. Note that the data has 3
million tuples, and 15 out of 3 million (0.0005%) is a very
small number.

Security Against Query Result Alternation Attacks
We evaluate the rate of successful query result deletion
attacks. We assume that the original query is of the form

SELECT * FROM T WHERE Ai = v;

For every 10 queries Q = 〈q1, · · · , q10〉, we form a
checking query that covers their query results. The check-
ing query is a relaxed query based the above queries. The
queries are executed against T with 3 million records.

We then simulate query result deletion attacks. We ran-
domly delete m tuples, and check if we can detect the dele-

8

0

20

40

60

80

100

0 2 4 6 8 10

P
o
ss

ib
ili

ty
 o

f
E

sc
a
p
in

g
 D

e
te

ct
io

n

of Deletion

encrypted query

0

20

40

60

80

100

0 2 4 6 8 10

P
o
ss

ib
ili

ty
 o

f
E

sc
a
p
in

g
 D

e
te

ct
io

n

of Deletion

encrypted query

0

20

40

60

80

100

0 2 4 6 8 10

P
o
ss

ib
ili

ty
 o

f
E

sc
a
p
in

g
 D

e
te

ct
io

n

of Deletion

encrypted query

0

20

40

60

80

100

0 2 4 6 8 10

P
o
ss

ib
ili

ty
 o

f
E

sc
a
p
in

g
 D

e
te

ct
io

n

of Deletion

encrypted query

(a) r = 10% (b) r = 20% (c) r = 30% (d) r = 50%

Figure 7. Ratio of attacks that escape a single check.

0

20

40

60

80

100

5 10 15 20 25 30

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
fu

l a
tta

ck

of deletion

10% replication
20% replication
30% replication
40% replication
50% replication

Figure 6. Data Deletion Attacks

tion by analyzing the query results. For every m, we re-
peat the process 100 times and find the average detection
probability and the confidence interval. As we can see from
the curves in Figure 7, the probability of escaping detection
rapidly approaches 0 as the number of deletion increases.

7 Related Work
There is an extensive body of reseach in traditional

DBMS security [12, 19, 23]. However, these studies mainly
focus on providing access control to sensitive data. Al-
though access control mechanisms are effective in the tradi-
tional database setting, it is inapplicable in the database out-
sourcing paradigm where the data and the query execution
are hosted by a third-party service provider in a different
administration domain.

There have been some studies focusing on the privacy
aspect of outsourced database. Hacıgümüş et. al. [18]
proposed a method to query the encrypted database and
Agrawal et. al. [2] proposed an order-preserving encryp-
tion scheme for numeric values. These methods enable di-
rect execution of encrypted queries on encrypted datasets.
In our study, we use these methods, particuarly the order-
perserving encrytion, to ensure that we can ask identity
queries over data of different encrytions. Recently, there has
been much work on security issues for data mining appli-
cation. For example, the so-called privacy-preserving data
mining [3, 1] focuses on potential security hazards posed
when an adversary has data mining capabilities.

In the database outsourcing environment, most of the
studies on the integrity aspect of data security do not con-
sider query completeness. Premkumar et. al. [16] proposed
a scheme to use Merkel trees to authenticate databases that
are published by a third party. Mykletun et. al. investigated
the feasibility of using various signature schemes including
BGLS and Merkle Trees to authenticate returned results. In
many cases, we can use less expensive symmetric signature
schemes for authenticity as the clients in our outsourced
database model and the owners of the data are trusted. In
other words, we do not separate the ability of reading the
data and creating the data. Only in the case that we want
to have two seperated groups of clients, one group can only
read the data and the other can also create the data, we need
a PKI-based non-symetric signature scheme.

Mykletun et. al. [22] were the first to identify the query
completeness as one aspect of intergity, but they did not
investigate possible solutions. Probably the most related
work to this study is described in Sion [25]. In that study,
Sion proposeed to use Challenge Token as a query execution
proof technique to ensure that a query is processed over the
entire dataset. Their adversary model is not as general as
ours in that the only purpose of an adversary to produce in-
complete results is to reduce resource consumption. Their
approach is not applied to the adversary model where an ad-
versary can first compute the complete query result and then
delete the tuples specifically corresponding to the challenge
tokens. Moreover, their approach requires software mod-
ification on database servers to add query execution proof
while our approach does not require any modification of
DBMS software.

Our study falls into the general category of research on
computing over a set of untrusted hosts. Our approach can
be thought of as encrypting a computation twice and then
decrypting the results to check whether they are matching.
Several algorithms have been proposed to encrypt computa-
tion [13, 28]. However, in general, these algorithms are only
constructed to demonstrate theoretical possibilities and are
not intend to be implemented at efficiency level accepted by
any real-world system.

Many practical systems also resort to relax the assump-
tion about the trustworthiness of the hosting environment.
The most common relaxation is to assume that the num-
ber of untrusted machines only constitutes a minority of

9

hosts [21, 29]. Majority vote is used to select the correct
computation results. In general, the assumption that the
trustworthy hosts constitute the majority is hard to check
and verify. Moreover, a computation must be repeated for
many times to derive the results in majority voting. By
focusing on a special type of computation, i.e., queries in
databases, we are able to eliminate the assumption and the
drawbacks associated with it.

8 Conclusion
Recently, there is a growing interest in database out-

sourcing. Providing verifiable quality-of-service assurances
is to the interest of both the service providers and the users
of the service. We are concerned with the issue of query
integrity, that is, whether the results provided by the ser-
vice are correct and complete. Previous approaches require
the database servers to be modified and thus can be diffi-
cult to deploy. Our approach is database server transparent
in the sense that it does not require database servers to be
modified. Moreover, our approach is efficient and it only
introduce small overhead.

References
[1] Dakshi Agrawal and Charu C. Aggarwal. On the de-

sign and quantification of privacy preserving data min-
ing algorithms. In PODS, 2001.

[2] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan
Srikant, and Yirong Xu. Order-preserving encryption
for numeric data. In SIGMOD, 2004.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-
preserving data mining. In SIGMOD, pages 439–450.
ACM Press, May 2000.

[4] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryp-
tographic hash functions: A survey. Technical Report
95-09, Department of Computer Science, University
of Wollongong, 1995.

[5] Mihir Bellare. Practice-oriented provable security.
In Ivan Damgård, editor, Lectures on Data Security,
volume 1561 of Lecture Notes in Computer Science,
pages 1–15. Springer, 1998.

[6] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip
Rogaway. A concrete security treatment of symmet-
ric encryption. In FOCS, pages 394–403, 1997.

[7] Mihir Bellare, Roch Guérin, and Phillip Rogaway.
XOR MACs: New methods for message authen-
tication using finite pseudorandom functions. In
CRYPTO, pages 15–28.

[8] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The
security of cipher block chaining. Lecture Notes in
Computer Science, 839:341–358, 1994.

[9] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The
security of the cipher block chaining message authen-
tication code. Journal of Computer and System Sci-
ences, 61(3):362–399, 2000.

[10] Mihir Bellare and Phillip Rogaway. Entity authentica-
tion and key distribution. In CRYPTO, pages 232–249.

[11] Mihir Bellare and Phillip Rogaway. Provably secure
session key distribution: the three party case. pages
57–66, 1995.

[12] Elisa Bertino, Sushil Jajodia, and Pierangela Samarati.
A flexible authorization mechanism for relational data
management systems. ACM Transactions on Informa-
tion Systems, 17(2):101–140, 1999.

[13] David Chaum, Ivan Damgård, and Jeroen van de
Graaf. Multiparty computations ensuring privacy of
each party’s input and correctness of the result. In
CRYPTO, pages 87–119, 1987.

[14] Standard Performance Evaluation Corpo-
ration. The SPECjAppServer benchmark.
http://www.spec.org/jAppServer/, 2004.

[15] D. Denning. Cryptography and Data Security.
Addison-Wesley, 1982.

[16] Premkumar T. Devanbu, Michael Gertz, Charles U.
Martel, and Stuart G. Stubblebine. Authentic third-
party data publication. In Proceedings of the IFIP
TC11/ WG11.3 Fourteenth Annual Working Confer-
ence on Database Security, 2001.

[17] O. Goldreich, S. Goldwasser, and S. Micali. How
to construct random functions. Journal of the ACM,
33(4):792C807, October 1986.

[18] Hakan Hacıgümüş, Balakrishna R. Iyer, Chen Li, and
Sharad Mehrotra. Executing SQL over encrypted data
in the database service provider model. In SIGMOD,
2002.

[19] Sushil Jajodia, Pierangela Samarati, V. S. Subrahma-
nian, and Eliza Bertino. A unified framework for en-
forcing multiple access control policies. In SIGMOD
Record, pages 474–485, 1997.

[20] M. Luby and C. Rackoff. How to construct pseudo-
random permutations from pseudorandom functions.
SIAM Journal on Computing, 17(2):373C386, 1988.

[21] Dahlia Malkhi and Michael Reiter. Byzantine quorum
systems. In Proc. of annual ACM symposium on The-
ory of computing, pages 569–578, 1997.

[22] E. Mykletun, M. Narasimha, and G. Tsudik. Authenti-
cation and integrity in outsourced databases. In NDSS,
2004.

[23] Matunda Nyanchama and Sylvia L. Osborn. Access
rights administration in role-based security systems.
In IFIP Workshop on Database Security, pages 37–56,
1994.

[24] B. Schneier. Applied Cryptography. John Wiley, 2nd
edition, 1996.

[25] Radu Sion. Query execution assurance for outsourced
databases. In VLDB, 2005.

[26] Dawn Xiaodong Song, David Wagner, and Adrian
Perrig. Practical techniques for searches on encrypted
data. In IEEE Symposium on Security and Privacy,
pages 44–55, 2000.

[27] D. R. Stinson. Cryptography: Theory and Practice.
CRC Press, 2nd edition, 2002.

[28] Andrew C. Yao. Protocols for secure computation.
In Proc. of IEEE Symposium on Foundations of Com-
puter Science, pages 160–164, 1982.

[29] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
byzantine fault tolerant services, 2003.

10

