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Nonlinear Matroid Optimization

and Experimental Design

Yael Berstein Jon Lee Hugo Maruri-Aguilar Shmuel Onn

Eva Riccomagno Robert Weismantel Henry Wynn

Abstract

We study the problem of optimizing nonlinear objective functions over matroids presented by or-
acles or explicitly. Such functions can be interpreted as the balancing of multi-criteria optimization.
We provide a combinatorial polynomial time algorithm for arbitrary oracle-presented matroids, that
makes repeated use of matroid intersection, and an algebraic algorithm for vectorial matroids.

Our work is partly motivated by applications to minimum-aberration model-fitting in experi-
mental design in statistics, which we discuss and demonstrate in detail.

1 Introduction

In this article, partly motivated by applications to minimum-aberration model-fitting in experimental
design, which will be discussed briefly at the end of this introduction and in detail in §5, we study the
problem of optimizing an arbitrary nonlinear function over a matroid, set as follows.

Nonlinear Matroid Optimization. Given matroid M on ground set N := {1, . . . , n}, integer weight
vectors wi = (wi,1, . . . , wi,n) ∈ Zn for i = 1, . . . , d, and function f : Rd → R, find a matroid base
B ∈ B(M) ⊂ 2N minimizing the “balancing” by f of the d weights wi(B) :=

∑
j∈B wi,j of base B,

f(w1(B), . . . , wd(B)) = f

∑
j∈B

w1,j , . . . ,
∑
j∈B

wd,j

 .

(All necessary basics about matroid theory are provided in §2.1. For more details consult [14] or [17].)

Nonlinear matroid optimization can be interpreted as multi-criteria matroid optimization: the d

given weight vectors w1, . . . , wd represent d different criteria, where the value of base B ∈ B(M) under
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criterion i is its i-th weight wi(B) =
∑

j∈B wi,j , and where the objective is to minimize the “balancing”
f(w1(B), . . . , wd(B)) of the d given criteria by the given function f .

In fact, we have a hierarchy of problems of increasing generality, parameterized by the number d

of weight vectors. At the bottom lies standard linear matroid optimization, recovered with d = 1 and
f the identity on R. At the top lies the problem of maximizing an arbitrary function over the set of
bases, with d = n and wi = 1i the i-th standard unit vector in Rn for all i, see Proposition 2.4 below.

It will be often convenient to collect the weight vectors in a d × n matrix W . Thus, the i-th row
of this matrix is the i-th weight vector wi = (wi,1, . . . , wi,n). For each subset S ⊆ N we define its
W -profile to be

W (S) := (w1(S), . . . , wd(S)) =

∑
j∈S

w1,j , . . . ,
∑
j∈S

wd,j

 ∈ Zd ,

which is the vector giving the value of S under each of the d weight vectors. The nonlinear matroid
optimization then asks for a matroid base B ∈ B(M) minimizing the objective function f(W (B)).

The computational complexity of nonlinear matroid optimization depends on the number d of
weight vectors, on the representation of weights (binary 〈wi,j〉 versus unary |wi,j |, see §2.1), on the
type of function f and its presentation, and on the type of matroid and its presentation. We will be
able to handle an arbitrary function f presented by a comparison oracle that, queried on x, y ∈ Zd,
asserts whether or not f(x) ≤ f(y), and an arbitrary matroid presented by an independence oracle,
that, queried on I ⊆ N , asserts whether or not I is independent in M , that is, whether I ⊆ B for
some base B ∈ B(M), see §2.1. These are very broad presentations that reveal little information (per
query) on the function and matroid, making our problem setting rather expressive but difficult for
achieving strong complexity results.

Standard linear matroid optimization is well known to be efficiently solvable by the greedy al-
gorithm. Nonlinear matroid optimization with d fixed and f concave turns out to be solvable in
polynomial time as well [8, 11]. In fact, using sophisticated geometric methods, the nonlinear opti-
mization problem with d fixed and f concave has been recently shown to be efficiently solvable for
bipartite matching [4] and for broader classes of combinatorial optimization problems [12]. Therein,
maximization rather than minimization form is used, and hence convex rather than concave functions
are considered.

However, generally, nonlinear matroid optimization is intractable, even for uniform matroids. In
particular, if d is variable then exponential time is needed even for {0, 1}-valued weights, and if the
weights are presented in binary, then exponential time is needed even for fixed dimension d = 1. See
Propositions 2.3, 2.4 and 2.5 in the sequel for various intractability statements.
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In spite of these difficulties, here we establish the efficient solvability of the problem as follows.

Theorem 1.1 For every fixed d and p, there is an algorithm that, given a matroid M presented
by an independence oracle on the n-element ground set N , integers a1, . . . , ap ∈ Z, weight vectors
w1, . . . , wd ∈ {a1, . . . , ap}n, and function f : Rd → R presented by a comparison oracle, solves the
nonlinear matroid optimization problem in time that is polynomial in n and max〈ai〉.

We also state the following natural immediate corollary concerning {0, 1, . . . , p}-valued weights.

Corollary 1.2 For every fixed d and p, there is an algorithm that, given n-element matroid M pre-
sented by an independence oracle, w1, . . . , wd ∈ {0, 1, . . . , p}n, and function f : Rd → R presented by
a comparison oracle, solves the nonlinear matroid optimization problem in time polynomial in n.

The algorithm establishing Theorem 1.1 is combinatorial and makes repeated use of matroid inter-
section (see e.g. [9] or [10], and see [7] for another recent interesting application of matroid intersection).
In fact, it invokes the matroid intersection algorithm roughly npd

times, and hence it is quite heavy.
However, most matroids appearing in practice, including graphic matroids and those arising in the
applications to experimental design to be discussed later, are vectorial. Therefore, we also provide an-
other, more efficient, linear-algebraic algorithm for vectorial matroids. Moreover, this algorithm applies
to weights with unlimited number (rather than fixed number p) of different values wi,j of entries.

Theorem 1.3 For every fixed d, there is an algorithm that, given integer m×n matrix A, weight vec-
tors w1, . . . , wd ∈ Zn, and function f : Rd → R presented by a comparison oracle, solves the nonlinear
optimization problem over the vectorial matroid of A in time polynomial in 〈A〉 and max |wi,j |.

A specific application that can be solved by either the combinatorial algorithm underlying Theorem
1.1 or the more efficient linear-algebraic algorithm underlying Theorem 1.3 is the following.

Example 1.4 (minimum-norm spanning tree). Fix any positive integer d. Let G be any connected
graph with edge set E = {e1, . . . , en}, and let w1, . . . , wd ∈ Zn be weight vectors with wi,j representing
the values of edge ej under the i-th criterion. Let A be the vertex-arc incidence matrix of an arbitrary
orientation of G. Then the vectorial matroid of A is the graphic matroid of G whose bases are the
spanning trees of G. Now fix also any q that is either a positive integer or ∞, and let f : Rd → R
be the lq norm given by ‖x‖q := (

∑d
i=1 |xi|q)

1
q for finite q and ‖x‖∞ := maxd

i=1 |xi|. Note that a
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comparison oracle for f = ‖x‖q is easily and efficiently realizable. Then Theorems 1.1 and 1.3 assure
that a spanning tree T of G minimizing the lq norm of the multi-criteria vector, given by

‖(w1(T ), . . . , wd(T ))‖q = ‖W (T )‖q

is computable in time polynomial in n and max |wi,j |. Note that if P6=NP then the problem is not
solvable in time polynomial in the binary length 〈wi,j〉 even for the graph obtained from a path by
replacing every edge by two parallel copies, see Proposition 2.5 below.

Experimental Design. We conclude the introduction with a brief discussion of the application to
experimental design, elaborated in detail in §5. The general framework is as follows. We are interested
in learning an unknown system whose output y is an unknown function Φ of a multivariate input
x = (x1, . . . , xk) ∈ Rk. It is customary to call the input variables xi factors of the system. In order to
learn the system, we perform several experiments. Each experiment i is determined by a point pi =
(pi,1, . . . , pi,k) and consists of feeding the system with input x := pi and measuring the corresponding
output yi = Φ(pi). Based on these experiments, we wish to fit a model for the system, namely, determine
an estimation Φ̂ of the function Φ, that satisfies the following properties:

• It lies in a prescribed class of functions;

• It is consistent with the outcomes of the experiments;

• It minimizes the aberration - a suitable criterion - among models in the class.

More detailed discussion and precise definitions will be given in §5. We have the following broad corol-
lary of Theorems 1.1 and 1.3; see §5 for the precise statement and its various practical specializations
to concrete aberration criteria useful in optimal model-fitting in experimental design.

Corollary 1.5 An aberration-minimum multivariate-polynomial model is polynomial time computable.

The article proceeds as follows. In §2 we set some notation and preliminaries, make some prepa-
rations for the algorithms in following sections, and demonstrate various intractability limitations on
nonlinear matroid optimization. In §3 we discuss arbitrary matroids presented by oracles, and provide
the combinatorial algorithm for nonlinear matroid optimization, thereby establishing Theorem 1.1. In
§4 we provide the more efficient algebraic algorithm for nonlinear optimization over vectorial matroids,
thereby proving Theorem 1.3. We conclude in §5 with a detailed discussion of the experimental design
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application and prove Corollary 1.5 and its various practical specializations. Readers interested mostly
in experimental design can go directly to §5, where the minimum-aberration model-fitting problem is
reduced to nonlinear optimization over a suitable matroid, and where each of the algorithms developed
in §3-4 can be invoked as a black box.

2 Preliminaries, Preparation and Limitations

2.1 Preliminaries

We use R for the reals, Z for the integers, and N for the nonnegative integers. The i-th standard unit
vector in Rn is denoted by 1i. The support of x ∈ Rn is the index set supp(x) := {j : xj 6= 0} of
nonzero entries of x. The integer lattice Zn is naturally embedded in Rn. Vectors will be interpreted
as either row or column vectors interchangeably – this will be relevant only when such vectors are
multiplied by matrices – in which case the correct interpretation will be clear from the context. We
often collect a sequence of vectors designated by a low case letter as the rows of a matrix designated
by the corresponding upper case letter. Thus, our weight vectors wi = (wi,1, . . . , wi,n), i = 1, . . . , d are
arranged in a d× n matrix W , and our design points pi = (pi,1, . . . , pi,k), i = 1, . . . ,m are arranged in
an m×k matrix P . The space Rn is endowed with the standard inner product which, for w, x ∈ Rn, is
w · x :=

∑n
i=1 wixi. Vectors w in Rn are also regarded as linear functions on Rn via the inner product

w · x. So we refer to elements of Rn as points, vectors, or linear functions, as is appropriate from the
context. We write 1 for the vector with all entries equal to 1, of dimension clear from the context.

Our algorithms are applied to rational data only, and the time complexity is as in the standard
Turing machine model, see e.g. [1, 6, 16]. The input typically consists of rational (usually integer)
numbers, vectors, matrices, and finite sets of such objects. The binary length of an integer number
z ∈ Z is defined to be the number of bits in its binary representation, 〈z〉 := 1 + dlog2(|z|+ 1)e (with
the extra bit for the sign). The length of a rational number presented as a fraction r = p

q with p, q ∈ Z
is 〈r〉 := 〈p〉+ 〈q〉. The length of an m× n matrix A (or a vector) is the sum 〈A〉 :=

∑
i,j〈ai,j〉 of the

lengths of its entries. Note that the length of A is no smaller than the number of entries, 〈A〉 ≥ mn.
Therefore, when A is, say, part of an input to an algorithm, with m,n variable, the length 〈A〉 already
incorporates mn, and so we will typically not account additionally for m, n directly. But sometimes
we will also emphasize n as part of the input length. Similarly, the length of a finite set S of numbers,
vectors or matrices is the sum of lengths of its elements and hence, since 〈S〉 ≥ |S|, automatically
accounts for its cardinality. Some input numbers affect the running time of some algorithms through
their unary presentation, resulting in so-called “pseudo-polynomial” running time. The unary length
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of an integer number z ∈ Z is the number |z| + 1 of bits in its unary representation (again, an extra
bit for the sign). The unary length of a rational number, vector, matrix, or finite set of such objects
are defined again as the sums of lengths of their numerical constituents, and is again no smaller than
the number of such numerical constituents. Often part of the input is presented by oracles. Then the
running time counts also the number of oracle queries. An oracle algorithm is polynomial time if its
running time, including the number of oracle queries, is polynomial in the length of the input.

Next, we make some basic definitions concerning matroids and set some associated notation. For
matroid theory see [14] or [17]. A matroid M is described by giving a finite ground set E(M) and a
nonempty set B(M) of subsets of E(M) called the set of bases of M , such that for every B,B′ ∈ B(M)
and i ∈ B \B′ there is an i′ ∈ B′ such that B \ {i} ∪ {i′} ∈ B(M). A subset I of E(M) is independent
in M if I ⊆ B for some base B ∈ B(M). The set of independent sets of M is denoted by I(M). Often
it is convenient to let E(M) = N = {1, 2, . . . , n} for some positive integer n. The rank rank(S) of a
subset S ⊆ E(M) is the maximum cardinality |I| of an I ∈ I(M) that is contained in S. The rank of
the matroid is rank(M) := rank(E(M)) and is equal to the cardinality |B| of every base B ∈ B(M).
An independence oracle for M is one that, queried on I ⊆ E(M), asserts whether I is in I(M). An
independence oracle allows us to compute the rank of every S ⊆ E(M) as follows. Start with I := ∅.
For each j ∈ S do (in any order): if I ∪ {j} is in I(M) then set I := I \ {j}. Output rank(S) := |I|.

An important example of a matroid is the graphic matroid M(G) of a graph G with E(M(G))
being the edge set of G and B(M(G)) equal to the set of edge sets of spanning forests of G. A
further key example is the vectorial matroid of an m × n matrix A (over a field F) with B(M) the
set of subsets of indices of maximal linearly-independent subsets of columns of A. Throughout, when
treating complexity issues, we assume that A has integer components, and that we do arithmetic
over the rationals. A uniform matroid is any matroid that is isomorphic to the matroid Um,n having
ground set N = {1, . . . , n} and having all m-subsets of N as bases. If M1 and M2 are matroids
with disjoint ground sets, then their direct sum M1 ⊕ M2 has E(M1 ⊕ M2) := E(M1) ] E(M2) and
B(M1 ⊕ M2) := {B1 ] B2 : B1 ∈ B(M1), B2 ∈ B(M2)}. A partition matroid is any matroid that is a
direct sum of uniform matroids ⊕r

i=1Umi,ni (with the ground sets of the Umi,ni labeled to be pairwise
disjoint). If mi = m and all ni = k for all i, then we write Ur

m,k for this r-fold sum of Um,k.

It is well known that all graphic matroids and uniform matroids are vectorial. Furthermore, any
partition matroid that is the direct sum ⊕r

i=1U1,ni of rank-1 uniform matroids is graphic: it is the
matroid of the graph obtained from any forest on r edges by replacing the i-th edge by ni parallel
copies for i = 1, . . . , r. In particular, Ur

1,k is a graphic matroid for any positive k and r.
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2.2 Preparation

Here we provide preparatory ingredients which will be used in algorithms in §3-4. We begin by showing
that finding an optimal base for a nonlinear matroid optimization problem can be reduced to finding
the optimal objective function value of a small number of subproblems. Consider data for a nonlinear
matroid optimization problem, consisting of a matroid M , weight vectors w1, . . . , wd ∈ Zn, and function
f : Rd → R. Each subset S ⊆ N gives a subproblem of nonlinear matroid optimization as follows. The
matroid of the subproblem is the restriction of M to S, that is, the matroid M.S on ground set S in
which a subset I ⊆ S is independent if and only if it is independent in M . Note that an independence
oracle for the restriction matroid M.S is realizable at once from that of M . The weight vectors of the
subproblem are the restrictions of the original weight vectors to S. The function f : Rd → R in the
subproblem is the same as in the original problem. We have the following useful statement.

Lemma 2.1 The nonlinear matroid optimization problem of finding an optimal base of an n-element
matroid is reducible in time polynomial in n to finding the optimal objective value of n+1 subproblems.

Proof. Denote by f∗(S) the optimal objective function value of the subproblem on S ⊆ N . Now
compute the optimal objective function value for n + 1 such subproblems as follows.

Start with S := N ;
Compute m := rank(S);
Compute the optimal value f∗ := f∗(N) of the original problem;
for j=1,2,. . . ,n do

Compute rank(S \ {j});
Compute the optimal subproblem value f∗(S \ {j});
if rank(S \ {j}) = m and f∗(S \ {j}) = f∗ then set S := S \ {j};

end
return B := S;

It is not hard to verify that the set B obtained is indeed an optimal base for the original problem.

We record for later the following statement, which follows directly from the definitions.

Proposition 2.2 Consider n-element matroid M , weights w1, . . . , wd ∈ Zn, and f : Rd → R. Put

U := {W (B) : B ∈ B(M)} = {u ∈ Zd : u = W (B) for some base B ∈ B(M)} . (1)
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Then the optimal objective value of the corresponding nonlinear matroid optimization problem satisfies

f∗ = min
u∈U

f(u) .

Thus, the problem of computing f∗ reduces to that of constructing the set U of W -profiles of bases.
This really is the crucial component of the solution of the nonlinear matroid optimization problem.
While the cardinality of U = {W (B) : B ∈ B(M)} may be polynomial under suitable assumptions on
the data, its direct computation by computing W (B) for every base is prohibitive since the number of
matroid bases is typically exponential in n. Instead, we will construct a finite superset Z of “potential”
W -profiles of bases, satisfying U ⊆ Z ⊂ Zd, and then filter U out of Z. However, this is not an easy
task either: deciding if a given u ∈ Zd satisfies u = W (B) for some base B is NP-complete already
for fixed d = 1 and uniform matroids or partition matroids that are the direct sums of rank-1 uniform
matroids, see Proposition 2.5 below. The way the filtration of U out of Z is done is precisely the key
difference between our two algorithms for nonlinear matroid optimization in §3 and §4.

2.3 Limitations

Here we provide various intractability statements about the nonlinear matroid optimization problem
and some of its relatives. In particular, we show that, if the weights are encoded in binary, then even
the 1-dimensional problem, namely with fixed d = 1, over any matroid given explicitly or by an oracle,
requires to examine the objective value of every base, and hence cannot be solved in polynomial time.

It is convenient to define a certain class of rank k matroids on 2k elements, so as to generalize the
uniform matroid Uk,2k and the partition matroids Uk

1,2. For some r, 1 ≤ r ≤ k, partition K = {1, . . . , k}
into r parts, as ]r

i=1Ki. Correspondingly, let K̄i := {j̄ : j ∈ Ki}. Let ki = |Ki| = |K̄i|. For i = 1, . . . , r,
let Mi be a uniform matroid of rank ki on ground set Ki∪K̄i (so Mi

∼= Uki,2ki
). Let Mr,k := ⊕r

i=1Mi .
Observe that M1,k

∼= Uk,2k (which is uniform) and Mk,k
∼= Uk

1,2 (which is graphic), so hardness results
with respect to the matroid classes Mr,k apply to uniform and graphic matroids. We note and will soon
use that for any r, 1 ≤ r ≤ k, |B(Mr,k)| is not bounded by any polynomial in |E(Mr,k)| = 2k.

Proposition 2.3 Computing the optimal objective value of the 1-dimensional nonlinear matroid op-
timization problem over matroids M , given explicitly or by an oracle, on n-element ground sets, and
a univariate function f presented by a comparison oracle, cannot be done in polynomial time. In
particular, with the single weight vector w := (1, 2, 4, . . . , 2n−1), solution of the nonlinear matroid op-
timization problem requires examining f(W (B)) for each of the |B(M)| bases of M . In particular, for
each r, 1 ≤ r ≤ k, the problem cannot be solved in polynomial time for the class of matroids Mr,k .
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Proof. The weights w(S) =
∑

j∈S 2j−1 of the 2n subsets S ⊆ N attain precisely all 2n distinct
values 0, 1, . . . , 2n− 1. Since the function f is arbitrary, this implies that the objective value f(W (B))
of each base B can be arbitrary. Therefore, if the value f(W (B)) of some base B is not examined, it
may be that this value is the unique minimum one and the nonlinear matroid optimization problem
cannot be correctly solved. The final remark of the proposition follows since, for every r, |B(Mr,k)| is
not bounded by any polynomial in |E(Mr,k)| = 2k.

Proposition 2.4 Computing the optimal objective value of the nonlinear matroid optimization prob-
lem in variable dimension d = n, over any matroid M , with {0, 1}-valued weights, the i-th weight
being the standard unit vector wi := 1i in Rn for all i, and with f : Rn → R a function presented by a
comparison oracle, requires examining f(W (B)) for each of the |B(M)| bases of M . In particular, for
each r, 1 ≤ r ≤ k, the problem cannot be solved in polynomial time for the class of matroids Mr,k .

Proof. The W -profiles W (B) = (w1(B), . . . , wn(B)) of the 2n subsets B ⊆ N attain precisely all
2n distinct vectors in {0, 1}n. Since the function f is arbitrary, this implies that the objective value
f(W (B)) of each base can be arbitrary. The rest of the argument is as in the proof of Proposition 2.3.

Consider nonlinear matroid optimization with a matroid M , weights w1, . . . , wd ∈ Zn, and function
f : Rd → R. As explained in §2.2, a crucial component in solving the problem is to identify W -profiles
of bases; that is, points u ∈ Zd satisfying u = W (B) for some B ∈ B(M). The following proposition
shows that, with binary encoded weights, both the nonlinear matroid optimization problem and the
problem of deciding if a given u is a W -profile of some base, are intractable already for fixed d = 1
and uniform matroids or partition matroids that are the direct sums of rank-1 uniform matroids.

Proposition 2.5 Given matroid M , a single nonnegative weight vector w ∈ Nn, and nonnegative
integer u ∈ N, encoded in binary, the following problems are NP-complete, already when restricted to
the class of matroids Mr,k, for any r, 1 ≤ r ≤ k:

1. Determining whether u = W (B) =
∑

j∈B wj for some base B ∈ B(M).

2. Determining whether the optimal objective value is zero for the 1-dimensional nonlinear matroid
optimization problem over M , with the explicit convex univariate function f(y) := (y − u)2.

Proof. The NP-complete subset-sum problem is to decide, given a0, a1, . . . , ak ∈ N, whether there
is a subset S ⊆ K = {1, . . . , k} with

∑
j∈S aj = a0. Given such ai, let u := a0, and let w :=
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(a1, . . . , ak, 0, . . . , 0) ∈ NK × NK̄ . Then, for any r, a base B of Mr,k satisfies W (B) = u if and only if
S := B ∩K satisfies

∑
j∈S aj = a0. This reduces the subset-sum problem to the problem considered

in the first part of the proposition, showing that it is indeed NP-complete.

For the second part, note that the objective value f(W (B)) = (W (B) − u)2 of every base B

is nonnegative, and B has f(W (B)) = 0 if and only if W (B) = u. Thus, the optimal objective
value is zero if and only if there is a base with W (B) = u. So the problem in the first part of the
proposition reduces to the problem in the second part, showing the latter to be NP-complete as well.

3 Arbitrary Matroids

In this section we develop a combinatorial algorithm for nonlinear matroid optimization, that runs in
polynomial time for any matroid presented by an independence oracle, provided that the number p

of distinct values taken by the entries wi,j of the weight vectors is fixed. In particular, the algorithm
applies to {0, 1}-valued weight vectors as well as to {0, 1, . . . , p}-valued weight vectors for any fixed p.

As explained in §2.2, we will filter the set U = {W (B) : B ∈ B(M)} of W -profiles of bases out
of a suitable superset Z. For this, we next show how to efficiently decide if a given u ∈ Zd satisfies
u = W (B) for some B ∈ B(M). We start with {0, 1}-valued W -profiles with pairwise disjoint supports.

Lemma 3.1 There is an algorithm that, given matroid M presented by an independence oracle on
the n-element ground set N , weight vectors w1, . . . , wd ∈ {0, 1}n with pairwise disjoint supports, and
u ∈ Nd, determines if M has a base B with W -profile W (B) = u, in time polynomial in n and 〈u〉.

Proof. For each base B of M and for each i = 1, . . . , d we have wi(B) = |B ∩ supp(wi)|. Therefore,
a base B has W (B) = u if and only if |B ∩ supp(wi)| = ui for i = 1, . . . , d. So we may and do assume∑d

i=1 ui ≤ rank(M) and ui ≤ |supp(wi)| for all i else M has no base with W (B) = u. Let

B′ :=
{

B ⊆ N : |B ∩ supp(wi)| = ui , i = 1, . . . , d ,∣∣∣B ∩
(
N \

⋃d
i=1 supp(wi)

)∣∣∣ = rank(M)−
∑d

i=1 ui

}
.

It is easy to see that B′ = B(M ′) is the set of bases of a partition matroid M ′ on ground set N , for
which an independence oracle is efficiently realizable. Moreover, M has a base B with W (B) = u if
and only if B(M) ∩ B(M ′) is nonempty. These observations justify the following algorithm:
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if
∑d

i=1 ui ≤ rank(M) or ui > |supp(wi)| for some i = 1, . . . , d then return NO;
Determine if B(M) ∩ B(M ′) is nonempty by computing a max-cardinality S ∈ I(M) ∩ I(M ′);
if |S| = rank(M);
then

return YES and B := S;
else

return NO;
end

Computing a max-cardinality S ∈ I(M) ∩ I(M ′) can be efficiently carried out using a maximum-
cardinality matroid-intersection algorithm, see e.g. [9] or [10] and references therein.

Next we consider weight vectors for which the number p of distinct wi,j values is fixed. So, we
assume that w1, . . . , wd ∈ {a1, . . . , ap}n for arbitrary given integer numbers a1, . . . , ap. Note that the
ai can vary and be very large, since they affect the running time through their binary length 〈ai〉.

Lemma 3.2 For every fixed d and p, there is an algorithm that, given matroid M presented by an
independence oracle on ground set N , integers a1, . . . , ap, weight vectors w1, . . . , wd ∈ {a1, . . . , ap}n,
and u ∈ Nd, decides if M has a base B with W (B) = u, in time polynomial in n, max〈ai〉, and 〈u〉.

Proof. Let V := {a1, . . . , ap}d and let P be the d× pd pattern matrix having columns that are all
of the pd points in V . Let, as usual, W be the d×n matrix with rows w1, . . . , wd. For j = 1, . . . , n, let
wj denote the j-th column of W . We will exploit the fact that, no matter how large n is, the columns
wj of W all lie in the fixed set V – so the number of distinct columns wj of W is limited.

Define a pd × n selector matrix Ŵ , having rows ŵv indexed by V , columns ŵj indexed by N , and

ŵv,j :=

{
1, if wj = v ;
0, otherwise,

for v ∈ V , j ∈ N . Note that each column ŵj of Ŵ is a standard unit vector, selecting the unique
pattern (i.e., column) of V that agrees with the column wj of W . It should be clear that the rows of
Ŵ , namely the ŵv, lie in {0, 1}n and have pairwise disjoint supports – this will enable us to appeal to
Lemma 3.1. We observe and will make use of the fact that the weight matrix W factors as W = PŴ .
Therefore, the W -profile and Ŵ -profile of a base B satisfy W (B) = PŴ (B) . This implies that there
exists a base B ∈ B(M) with W (B) = u if and only if for some pd-dimensional vector û satisfying
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u = Pû there exists a base B ∈ B(M) satisfying Ŵ (B) = û. Since Ŵ is {0, 1}-valued, any such
vector û = Ŵ (B) must lie in {0, . . . ,m}pd

, where m := rank(M). Therefore, checking if there is a base
B ∈ B(M) with W (B) = u, reduces to going over all vectors û ∈ {0, . . . ,m}pd

, and for each, checking
if Pû = u and if there is a base B satisfying Ŵ (B) = û. This justifies the following algorithm.

let P be the d× pd pattern matrix, and let Ŵ be the selector matrix (both determined by W );
for û ∈ {0, 1, . . . ,m}pd

do
if Pû = u then

if there is a base B ∈ B(M) with Ŵ (B) = û then return B;
end

end
return NO;

Since d and p are fixed and m ≤ n, the number (m + 1)pd
of such potential vectors û is polyno-

mial in the data. For each such vector û, checking if Pû = u is easily done by direct multiplication;
and checking if there exists a base B ∈ B(M) satisfying Ŵ (B) = û can be done in polynomial time
using the algorithm of Lemma 3.1 applied to the matroid M , the d̂ := pd weight vectors ŵv, v ∈ V

(the {0, 1}-valued rows of the matrix Ŵ , having pairwise disjoint supports), and the vector û.

We are now in position to solve the nonlinear optimization problem over a matroid that is presented
by an independence oracle.

Theorem 1.1 For every fixed d and p, there is an algorithm that, given a matroid M presented
by an independence oracle on the n-element ground set N , integers a1, . . . , ap ∈ Z, weight vectors
w1, . . . , wd ∈ {a1, . . . , ap}n, and function f : Rd → R presented by a comparison oracle, solves the
nonlinear matroid optimization problem in time that is polynomial in n and max〈ai〉.

Proof. We have three major steps:

1. First, under the hypotheses of the theorem, assume that in polynomial time we can calculate
the optimal objective value of the problem. Then, for every subset S ⊆ N , the optimal objective
value of the subproblem on S can be computed in polynomial time, since the entries of the
restrictions of w1, . . . , wd to S also attain values in {a1, . . . , ap}. By Lemma 2.1 this implies
that an optimal base can be found and the nonlinear matroid optimization problem solved in
polynomial time. So, it remains to show that in polynomial time we can calculate the optimal
objective value of the problem.
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2. To accomplish this, we first show how to compute the set U of W -profiles of bases of M ,
by working with an appropriately defined superset Z of U . Let m := rank(M). Consider any
i = 1, . . . , d and any m-subset B of N . Then, since wi,j ∈ {a1, . . . , ap} for all j, we have that,
for some nonnegative integers λi,1, . . . , λi,p with

∑p
k=1 λi,k = m,

wi(B) =
∑
j∈B

wi,j =
p∑

k=1

λi,kak .

Therefore, we find that set the set U of W -profiles of bases satisfies

U = {W (B) : B ∈ B(M)}

⊆ {W (B) : B ⊆ N, |B| = m}

⊆ Z :=

{
p∑

k=1

λkak : λ ∈ {0, 1, . . . ,m}p,

p∑
k=1

λk = m

}d

.

These observations justify the following algorithm to compute the set U of W -profiles of bases:

Compute m := rank(M) and let a := (a1, . . . , ap);
Start with Z := ∅;
for Λ ∈ {0, 1, . . . ,m}d×p do

if Λ1 = m1 then let Z := Z ∪ {Λa};
end
Start with U := ∅;
for u ∈ Z do

if there is a base B ∈ B(M) with W (B) = u then let U := U ∪ {u};
end
return U ;

Observe that, since d and p are fixed, |Z| ≤ |{0, 1, . . . ,m}d×p| = (m + 1)pd is polynomially
bounded in m ≤ n and hence so are the numbers of iterations in each of the “for” loops of the
algorithm. Also note that, in each iteration of the second loop, we can apply the algorithm of
Lemma 3.2 to determine, in polynomial time, whether there is a base B ∈ B(M) with W (B) = u.
Therefore, we can efficiently determine U .

3. By repeatedly querying the comparison oracle of f on |U | − 1 suitable pairs of points in U , we
obtain f∗ := min{f(u) : u ∈ U}, which by Proposition 2.2 is the optimal objective value.

Finally, by embedding steps 2-3 above as subroutines to solve the n+1 restrictions of the problem
to suitable subsets S ⊆ N in step 1, we obtain our desired algorithm.
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4 Vectorial Matroids

In this section we develop an algebraic algorithm for nonlinear matroid optimization over vectorial
matroids. It runs in time polynomial in the binary length 〈A〉 of the matrix A representing the matroid
and in the unary length max |wi,j | of the weights. It is much more efficient than the combinatorial
algorithm of §3 and applies to weights with an unlimited number of different values wi,j of entries.

First, we show that it suffices to deal with nonnegative weight vectors.

Lemma 4.1 The nonlinear matroid optimization problem with arbitrary integer weight vectors
w1 . . . , wd ∈ Zn is polynomial-time reducible to the special case of nonnegative vectors w1 . . . , wd ∈ Nn.

Proof. Consider a matroid M , integer weights w1, . . . , wd ∈ Zn, and function f : Rd → R. Let
m := rank(M) and q := max |wi,j |. Define nonnegative weights by w′

i,j := wi,j +q for all i, j, and define
a new function f ′ : Rd → R by f ′(y1, . . . , yd) := f(y1−mq, . . . , yd−mq) for every y = (y1, . . . , yd) ∈ Rd.
Note that the unary length of each new weight w′

i,j is at most twice the maximum unary length of the
original weights wi,j , and a comparison oracle for f ′ is easily realizable from a comparison oracle for
f . Then for every base B and for each i = 1, . . . , d, we have

w′
i(B) =

∑
j∈B

w′
i,j =

∑
j∈B

(wi,j + q) =

∑
j∈B

wi,j

+ mq = wi(B) + mq ,

implying the following equality between the new and original objective function values,

f ′(w′
1(B), . . . , w′

d(B)) = f ′(w1(B) + mq, . . . , wd(B) + mq) = f(w1(B), . . . , wd(B)) .

Therefore, a base B ∈ B(M) is optimal for the nonlinear matroid optimization problem with data M ,
w1, . . . , wd and f if and only if it is optimal for the problem with M , w′

1, . . . , w
′
d and f ′.

So we assume henceforth that the weights are nonnegative. As explained in §2.2 and carried out
in §3, we will filter the set U = {W (B) : B ∈ B(M)} of W -profiles of bases out of a suitable superset
Z. However, instead of checking if u ∈ U for one point u ∈ Z after the other, we will filter here the
entire set U out of Z at once. We proceed to describe this procedure.

Let A be a (nonempty) m × n integer matrix A of full row rank m, and let M be the vectorial
matroid of A. Note that m = rank(M). Let w1, . . . , wd ∈ Nn be nonnegative integer weight vectors and
let q := maxwi,j . Then for each i = 1, . . . , d and each m-subset B of N , we have wi(B) ∈ {0, 1, . . . ,mq},
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and therefore

U = {W (B) : B ∈ B(M)} ⊆ {W (B) : B ⊆ N, |B| = m}

⊆ Z := {0, 1, . . . ,mq}d ⊆ Nd .

We will show how to filter the set U out of the above superset Z of potential W -profiles of bases.
For each base B ∈ B(M), let AB denote the nonsingular m × m submatrix of A consisting of those
columns indexed by B ⊆ N . Define the following polynomial in d variables y1, . . . , yd:

g = g(y) :=
∑
u∈Z

guyu :=
∑
u∈Z

gu

d∏
k=1

yuk
k , (2)

where the coefficient gu corresponding to u ∈ Z is the nonnegative integer

gu :=
∑{

det2(AB) : B ∈ B(M), W (B) = u
}

. (3)

Now, det2(AB) is positive for every base B ∈ B(M). Thus, the coefficient gu corresponding to u ∈ Z

is nonzero if and only if there exists a matroid base B ∈ B(M) with W (B) = u. So the desired set
U is precisely the set of exponents of monomials yu with nonzero coefficient in g. We record this for
later use:

Proposition 4.2 Let M be the vectorial matroid of an m×n matrix A of rank m, let w1, . . . , wd ∈ Nn,
and let g(y) be the polynomial in (2). Then U := {W (B) : B ∈ B(M)} = {u ∈ Z : gu 6= 0}.

By Proposition 4.2, to compute U , it suffices to compute all coefficients gu. Unfortunately, they cannot
be computed directly from the definition (3), since this involves again checking exponentially many
B ∈ B(M) – precisely what we are trying to avoid! Instead, we will compute the gu by interpolation.
However, in order to do so, we need a way of evaluating g(y) under numerical substitutions. We
proceed to show how this can be efficiently accomplished.

Let Y be the n× n diagonal matrix whose j-th diagonal component is the monomial
∏d

i=1 y
wi,j

i in
the variables y1, . . . , yd; that is, the matrix of monomials defined by

Y := diag

(
d∏

i=1

y
wi,1

i , . . . ,

d∏
i=1

y
wi,n

i

)
.

The following lemma will enable us to compute the value of g(y) under numerical substitutions.

Lemma 4.3 For any m× n matrix A of rank m and nonnegative weights w1, . . . , wd ∈ Nn we have

g(y) = det(AY AT ) .
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Proof. By the classical Binet-Cauchy identity, for any two m×n matrices C,D of rank m we have
det(CDT ) =

∑
{det(CB) det(DB) : B ∈ B(M)}. Applying this to C := AY and D := A, we obtain

det(AY AT ) =
∑

B∈B(M)

det
(
(AY )B det(AB)

)
=

∑
B∈B(M)

∏
j∈B

d∏
i=1

y
wi,j

i det(AB) det(AB)

=
∑

B∈B(M)

d∏
i=1

y
wi(B)
i det2(AB) =

∑
u∈Z

∑
B∈B(M) :
W (B)=u

det2(AB)
d∏

i=1

yui
i

=
∑
u∈Z

guyu = g(y) .

Lemma 4.3 paves the way for computing the coefficients of the polynomial g(y) =
∑

u∈Z guyu by
interpolation. We will choose sufficiently many suitable points on the moment curve in RZ , substitute
each point into y, and evaluate g(y) using the lemma. We will then solve the system of linear equations
for the coefficients gu. The next lemma describes the details and shows that this can be done efficiently.

Lemma 4.4 For every fixed d, there is an algorithm that, given any m× n matrix A of rank m and
weights w1, . . . , wd ∈ Nn, computes all coefficients gu of g(y) in time polynomial in max wi,j and 〈A〉.

Proof. Let q := max wi,j and p := mq + 1. Then a superset of potential W -profiles of bases is
Z := {0, 1, . . . ,mq}d and satisfies |Z| = pd. For t = 1, 2, . . . , pd, let Y (t) be the numerical matrix
obtained from Y by substituting tp

i−1
for yi, i = 1, . . . , d. By Lemma 4.3 we have g(y) = det(AY AT ),

and therefore we obtain the following system of pd linear equations in the pd variables gu, u ∈ Z:

det(AY (t)AT ) = det

(
A diagj

(
d∏

i=1

twi,jpi−1

)
AT

)
=

∑
u∈Z

gu

d∏
i=1

tuip
i−1

=
∑
u∈Z

t
Pd

i=1 uip
i−1

gu , t = 1, 2, . . . , pd .

As u runs through Z, the sum
∑d

i=1 uip
i−1 attains precisely all |Z| = pd distinct values 0, 1, . . . , pd−1.

This implies that, under the total order of the points u in Z by increasing value of
∑d

i=1 uip
i−1, the

vector of coefficients of the gu in the equation corresponding to t is precisely the point (t0, t1, . . . , tp
d−1)

on the moment curve in RZ ∼= Rpd
. Therefore, the equations are linearly independent and hence the

system can be uniquely solved for the gu.

These observations justify the following algorithm to compute the gu, u ∈ Z :
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Compute m := rank(A);
let q := maxwi,j , and let p:=mq+1 ;
let Y := diagj

(∏d
i=1 y

wi,j

i

)
;

for t = 1, 2, . . . , pd do
let Y (t) be the numerical matrix obtained by substituting tp

i−1
for yi, i = 1, 2, . . . , d, in Y ;

Compute det(AY (t)AT );
end
Compute and return the unique solution gu, u ∈ Z, of the square linear system:

det(AY (t)AT ) =
∑

u∈Z t
Pd

i=1 uip
i−1

gu , u ∈ Z ;

We now show that this system can be solved in polynomial time. First, the number of equations
and indeterminates is pd = (mq+1)d and hence polynomial in the data. Second, for each i, j = 1, . . . , n

and t = 1, 2, . . . , pd, it is easy to see that the (i, j)-th entry of AY (t)AT satisfies∣∣∣∣∣
n∑

h=1

ai,h

d∏
k=1

tp
k−1wk,haj,h

∣∣∣∣∣ ≤
n∑

h=1

|ai,haj,h|pdpd max wk,h ,

implying that the binary length 〈AY (t)AT 〉 of AY (t)AT is polynomially bounded in the data as well.

It follows that det(AY (t)AT ) can be computed in polynomial time by Gaussian elimination for all
t, and the system of equations can indeed be solved for the gu in polynomial time. We further note
that the system of equations is a Vandermonde system, so the number of arithmetic operations needed
to solve it is just quadratic in its dimensions.

We can now efficiently solve the nonlinear optimization problem over vectorial matroids with unary
weights.

Theorem 1.3 For every fixed d, there is an algorithm that, given integer m×n matrix A, weight vec-
tors w1, . . . , wd ∈ Zn, and function f : Rd → R presented by a comparison oracle, solves the nonlinear
optimization problem over the vectorial matroid of A in time polynomial in 〈A〉 and max |wi,j |.

Proof. Let M be the vectorial matroid of A. Recall that linear-algebraic operations on A can
be done in polynomial time, say by Gaussian elimination. Dropping some rows of A if necessary
without changing M , we may assume that A has rank m. An independence oracle for M is readily
realizable since S ⊆ N is independent in M precisely when the columns of A indexed by S are linearly
independent. Applying, if necessary, the procedure of Lemma 4.1 and adjusting the weights while at
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most doubling the unary length of the maximum weight, we may also assume that the weights are
nonnegative.

We will show how to compute the optimal objective value f∗ := min{f(W (B)) : B ∈ B(M)} in
polynomial time. This will also imply that, for every subset S ⊆ N , the optimal objective value of the
subproblem on S can be computed in polynomial time. By Lemma 2.1 this will show that an optimal
base can be found and the nonlinear matroid optimization problem solved in polynomial time.

Let q := max wi,j and consider the superset Z := {0, 1, . . . ,mq}d of potential W -profiles of bases
and the polynomial g(y) =

∑
u∈Z guyu as defined in (2) and (3). By Proposition 4.2 we have

U = {W (B) : B ∈ B(M)} = {u ∈ Z : gu 6= 0} .

Applying now the algorithm of Lemma 4.4, we can compute in polynomial time the right-hand side
and hence the left-hand side, providing the filtration of the set U of W -profiles of bases out of
Z. By repeatedly querying the comparison oracle of f on suitable pairs of points in U , we obtain
f∗ := min{f(u) : u ∈ U} which by Proposition 2.2 is the desired optimal objective value.

5 Experimental Design

We now discuss applications of nonlinear matroid optimization to experimental design. For general
information on experimental design see e.g. the monograph [15] and references therein. As outlined in
the introduction, we consider the following rather general framework. We wish to learn an unknown
system whose output y is an unknown function Φ of a multivariate input x = (x1, . . . , xk) ∈ Rk. It is
customary to call the input variables xi factors of the system. We perform several experiments. Each
experiment i is determined by a point pi = (pi,1, . . . , pi,k) and consists of feeding the system with input
x := pi ∈ Rk and measuring the corresponding output yi := Φ(pi) ∈ R. Based on these experiments,
we wish to fit a model for the system, namely, determine an estimation Φ̂ of Φ, that:

• Lies in a prescribed class of functions;

• Is consistent with the outcomes of the experiments;

• Minimizes the aberration - a suitable criterion - among models in the class.

We concentrate on (multivariate) polynomial models defined as follows. Each nonnegative integer
vector α ∈ Nk serves as an exponent of a corresponding monomial xα :=

∏k
h=1 xαh

h in the system input
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x ∈ Rk. Each finite subset B ⊂ Nk of exponents provides a model for the system, namely a polynomial
supported on B, i.e. having monomials with exponents in B only,

ΦB(x) =
∑
α∈B

cαxα,

where the cα are real coefficients that need to be determined from the measurements by interpolation.

We assume that the set of design points {p1, . . . , pm} ⊂ Rk is prescribed. Indeed, in practical
applications, it may be impossible or too costly to conduct experiments involving arbitrarily chosen
points. The problem of choosing the design (termed the inverse problem in the statistics literature,
see [2] and references therein), is of interest in its own right, and its computational aspects will be
considered elsewhere. We collect the design points in an m× k design matrix P . Thus, the i-th row of
this matrix is the i-th design point pi. A model B ⊂ Nk is identifiable by a design P if for any possible
measurement values yi = Φ(pi) at the design points, there is a unique polynomial ΦB(x) supported on
B that interpolates Φ, that is, satisfies ΦB(pi) = yi = Φ(pi) for every design point pi = (pi,1, . . . , pi,k).

Among models identifiable by a given design, we wish to determine one that is best under a suitable
criterion. Roughly speaking, common criteria ask for low degree polynomials. To make this precise, for
each identifiable model B, consider the following average degree vector whose i-th entry is the average
degree of variable xi over all monomials supported on B :

1
|B|

∑
α∈B

α =

(
1
|B|

∑
α∈B

α1, . . . ,
1
|B|

∑
α∈B

αk

)
.

Now, given any function f : Rk → R, the aberration of model B induced by f is defined to be

A(B) := f

(
1
|B|

∑
α∈B

α

)
.

The term aberration is the one used in the statistics literature in this context, see e.g. [5, 18] and the
reference therein. We now give some concrete examples of functions providing useful aberrations.

Example 5.1 Some concrete useful aberrations.

• Consider the function f(x) := x1 + · · ·+ xk. Then the aberration of model B is

A(B) =
1
|B|

∑
α∈B

α1 + · · ·+ 1
|B|

∑
α∈B

αk =
1
|B|

∑
α∈B

k∑
i=1

αi ,

which is the average total degree of monomials supported on B.
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• Consider f(x) := π1x1 + · · ·+ πkxk for some real weights π1, . . . , πk. Then

A(B) = π1
1
|B|

∑
α∈B

α1 + · · ·+ πk
1
|B|

∑
α∈B

αk

is the weighted average degree, allowing for preferences of some variables over others.

• Consider the function f(x) := max{x1, . . . , xk}. Then the aberration of B is

A(B) = max

{
1
|B|

∑
α∈B

α1, . . . ,
1
|B|

∑
α∈B

αk

}
,

and is the maximum over variables of the average variable degree of monomials supported on B.

• More generally, consider f(x) := ‖π · x‖q = (
∑k

i=1 |πixi|q)
1
q . Then the aberration of B is

A(B) =

∥∥∥∥∥π ·
(

1
|B|

∑
α∈B

α

)∥∥∥∥∥
q

,

which is the lq-norm of the weighted average degree vector of monomials supported on B.

We can now formally define the minimum-aberration model-fitting problem.

Minimum-Aberration Model-Fitting Problem. Given a design P = {p1, . . . , pm} of m points in
Rk, a set N = {β1, . . . , βn} of n potential exponents in Nk, and a function f : Rk → R, find a model
B ⊆ N that is identifiable by P and is of minimum aberration

A(B) = f

 1
|B|

∑
βj∈B

βj

 .

It can be verified that a model B is identifiable by a design P if and only if B = {β1, . . . , βm} ⊂ Nk

for some m exponents βj = (βj,1, . . . , βj,k), j = 1, . . . ,m, and the m×m matrix T , defined by

ti,j := p
βj

i =
k∏

h=1

p
βj,h

i,h ,

is invertible. (In the terminology of algebraic geometry, the model B is identifiable if the congruence
classes of the monomials xβ1 , . . . , xβm form a basis for the quotient of the algebra of polynomials
R[x1, . . . , xk] modulo the ideal of polynomials vanishing on the design points; see [3, 13] and references
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therein for more on this.) If B is identifiable then, given any vector of measurements y ∈ Rm at the
design points, the vector of coefficients c ∈ Rm of the unique polynomial ΦB(x) =

∑m
j=1 cj

∏k
h=1 x

βj,h

h

supported on B that is consistent with the measurements, is given by c := T−1y.

It should be now quite clear how to formulate the minimum-aberration model-fitting problem over
a design P = {p1, . . . , pm}, a set N = {β1, . . . , βn} of potential exponents, and a function f : Rk → R,
as a nonlinear matroid optimization problem. Consider the following m × n matrix A having rows
indexed by P and columns indexed by N , defined by

ai,j := p
βj

i =
k∏

h=1

p
βj,h

i,h , i = 1, . . . ,m , j = 1, . . . , n .

Then a model B ⊆ N is identifiable by P if and only if the submatrix of A comprising columns indexed
by B is invertible. If the rank of A is less than m, then no B ⊆ N is identifiable, and the set N of
potential exponents should be augmented with more exponents. So assume that A has rank m. Let
M be the vectorial matroid of A, so that

B(M) := {B ⊆ N : B is identifiable by P} .

Now define k weights vectors w1, . . . , wk ∈ Nn by wi,j := 1
mβj,i for i = 1, . . . , k, j = 1, . . . , n. Then the

aberration of model B is

A(B) = f

 1
m

∑
βj∈B

βj

 = f

∑
βj∈B

w1,j , . . . ,
∑

βj∈B

wk,j

 .

Thus, the aberration of a model B identifiable by the design P is precisely the objective function value
of the base B in the nonlinear matroid optimization problem over the matroid M above, with d := k

and the weights w1 . . . , wk ∈ Nn as above, and with the given function f : Rk → R. Assuming that
a comparison oracle for the function f can be realized, which is practically always true, and that the
design points are rational so that they can be input and processed on a digital computer, we obtain
the following corollary of Theorems 1.1 and 1.3:

Corollary 1.5 For every fixed k, there is an algorithm that, given a rational design P = {p1, . . . , pm}
in Rk, a set N = {β1, . . . , βn} in Nk, and a function f : Rk → R presented by a comparison oracle,
solves the minimum-aberration model-fitting problem in time polynomial in m,n, 〈P 〉 and maxβi,j .

It is very natural and common in practice to consider hierarchical models; that is, models B with
the property that β ≤ α ∈ B implies β ∈ B. In [3, 13], in the context of the theory of Gröbner bases
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in commutative algebra, it was shown that the smallest set containing all m-point hierarchical models
B (termed staircases therein) in Nk is the following set, consisting of roughly O(m log m) points,

N := {α ∈ Nk :
k∏

h=1

(αh + 1) ≤ m} .

Thus, Corollary 1.5 will be typically applied with this set N as the set of potential monomial exponents.

We proceed to describe a more general useful class of aberrations that can be treated, which is
naturally suggested by the nonlinear matroid optimization formulation. As before, we are given a
design P = {p1, . . . , pm} in Rk and a set N = {β1, . . . , βn} of potential exponents in Nk. But now we
are also given d weight vectors w1, . . . , wd ∈ Zn. The function f is now defined on Rd rather than Rk.
The aberration induced by the weights and the function is now simply the objective function of the
nonlinear matroid optimization problem, which for an identifiable model B ⊆ N is given by

A(B) := f (W (B)) ,

where W is the matrix with rows wi. Note that aberrations of the type considered before can be
recovered as a special case with d := k and wi,j := 1

mαj,i for all i, j. Here are a few useful examples.

Example 5.2 Some concrete useful generalized aberrations. Let N = {β1, . . . , βn} ⊂ Nk be
any set of exponents. Let θ be a small positive integer, say θ = 1 or θ = 2, that will serve as a desired
bound on the degrees of variables in monomials of the sought after models B contained in N .

• Let d := 1, and define the single weight vector w1 ∈ Nn by

w1,j :=

{
0, if βi,j ≤ θ , for every i = 1, . . . , k ;
1, otherwise,

for j = 1, . . . , n. Then
∑

βj∈B w1,j is the number of monomials supported on B ⊆ N that do not
meet the degree bound; in particular, for θ = 1 it is the number of non square-free monomials.
Taking f : R → R to be the identity f(y) := y, the aberration A(B) of model B is the number of
undesired monomials. In particular, an optimal model B has A(B) = 0 if and only if the design
admits an identifiable model with all variables in all monomials having degree at most θ.

• Now let d := k, and define weight vectors w1, . . . , wk ∈ Nn by

wi,j :=

{
0, if βi,j ≤ θ ;
1, otherwise,
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for i = 1, . . . , k, j = 1, . . . , n. Then
∑

βj∈B wi,j is the number of monomials supported on
model B ⊆ N for which variable xi violates the degree bound θ. Defining f : Rk → R by
f(y) := maxk

i=1 yi, we get that the aberration A(B) of model B is the maximum over variables
of the number of monomials having xi violating the degree bound θ. The optimal model will
minimize the maximum violation.

We have the following generalized minimum-aberration model-fitting problem and corollary.

Generalized Minimal-Aberration Model-Fitting Problem. Given a design P = {p1, . . . , pm}
in Rk, a set N = {β1, . . . , βn} of potential exponents in Nk, weight vectors w1, . . . , wd ∈ Zn, and a
function f : Rd → R, find a model B ⊆ N that is identifiable by P and is of minimum aberration

A(B) = f (W (B)) = f

∑
βj∈B

w1,j , . . . ,
∑

βj∈B

wd,j

 .

Corollary 5.3 For every fixed k and d, there is an algorithm that, given any rational design
P = {p1, . . . , pm} in Rk, any set N = {β1, . . . , βn} of potential exponents in Nk, weight vectors
w1, . . . , wd ∈ Zn, and function f : Rd → R presented by a comparison oracle, solves the generalized
minimum-aberration model-fitting problem in time polynomial in m,n, 〈P 〉, max βj,i and max |wi,j |.
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