
RC24309 (W0707-105) July 17, 2007
Mathematics

IBM Research Report

Approver Selection Optimization for Access Management

Walter C. Dietrich, J. P. Fasano, Jon Lee
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

APPROVER SELECTION

OPTIMIZATION FOR

ACCESS MANAGEMENT

WALTER C. DIETRICH, J.P. FASANO & JON LEE

Abstract. We describe the problem of match-
ing approvers to access requests in a dy-
namic environment at IBM. We cast the
problem as a minimum-weight set-covering
formulation and develop an integer-programming
methodology to efficiently solve instances
in a real-time environment. Our solution,
which has been successfully deployed at IBM,
uses state-of-the-art optimization tools from
COIN-OR.

Introduction

In many businesses, accesses to applications and
data must be controlled so that only authorized
people are allowed to see and manipulate the data.
This is a well-understood problem and can be solved
with existing tools such as Database Management
Systems and Application Servers. Managing autho-
rization is a more subtle problem. In general, be-
fore someone is authorized, someone else must de-
cide whether the person should be authorized. In
large organizations, the identity of the person who
makes a particular authorization decision may be
based on the application, the data, and the opera-
tions to be performed on the data. For example, if
an application contains data for two departments,
the manager of each department might make autho-
rization decisions for their own department’s data,
and the managers’ manager might be able to make
authorization decisions for both departments’ data.

Some applications require fine-grained control over
both access and authorization. Imagine a system
that contains financial data for a multinational com-
pany that contains multiple divisions that span many
countries. Some people would only have access to

Date: July 28, 2007.

one department’s data. Some people would only
have access to all of the data that pertains to a cer-
tain country. Some people would only have access
to data that pertains to a certain division. Some
people would only have access to data that pertains
to certain divisions in certain countries. In this situ-
ation, the identities of the people who can make au-
thorization decisions depend on the set of data that
will be accessed. The situation can become more
complicated because of hierarchies: data might be
grouped by geographic region and by organizational
constructs such as division, subdivision and depart-
ment. While data access is important, operations
on the data are also important: one person might
be allowed to update data, while another person
might only be allowed to view data.

One way to control data operations is to group
operations by role. For example, in a payroll appli-
cation, an employee might be able to change their
paycheck’s destination (bank, address, etc.), a man-
ager might be able to change the employee’s salary,
and a payroll clerk might be able to change both.

As can be seen from the above examples, many
factors must be taken into account when authoriz-
ing access, and these factors can come into play
when deciding who can authorize access. When a
large number of applications or users are involved,
automation can make the authorization process more
efficient, and it can improve accountability and au-
ditability.

At IBM, we designed and implemented a new
tool for entitlement and access management in 2005.
Although there were multiple existing applications
for authorization management, we needed a system
that had more flexibility and functionality. The sys-
tem needed to support a wide variety of applica-
tions, and it needed to be able to add new appli-
cations without code changes. The system needed
to support complex and dynamic sets of authoriza-
tion rules without code changes. The system also
needed to support sequences of authorization steps
in an approval workflow, in which each step can
have a different set of authorization rules, with op-
timization being invoked at each step. The tool has

1

2 DIETRICH, FASANO & LEE

been in production for a year. It now manages au-
thorizations for more than 70 applications. It has
been used to manage application access for more
than 40,000 different users.

In what follows, we formalize the problem, demon-
strate how it can be cast as a set cover problem, and
describe the algorithm and implementation that we
put in place at IBM.

In §1, we set our notation. In §2, we cast our
problem as a minimum-weight set cover formula-
tion. In §3, we describe our ILP (integer linear
programming) based solution. In §4, we describe
solver enhancements. In §5, we describe a further
use of our solution to reduce sets of approver rules.
In §6, we propose a method for updating approver
weights to achieve target utilizations. In §7, we de-
scribe software integration business results.

1. Notation

We have a finite set of attributes D. Some com-
monly used attributes are Country and Job Role.
The dimension d of D is the number of attributes.
The “width” in dimension k (1 ≤ k ≤ d) is the num-
ber nk of allowed values for attribute k. A point is a
specification of an allowed value for each attribute.
Each point represents a set of attribute values con-
taining one value for each attribute. The attribute

space H is the set of points. Let N :=
∏d

k=1 nk

be the number of points in the attribute space. A
slice of the attribute space is a specification, for
each attribute, of an allowed value or a “ * ” (i.e.,
wildcard). An example of a slice is a single point.
Another example is a hyperplane (in which case all
but one attribute has the value “ * ”).

Slices can be used in two different ways: they can
be used to represent choices by end users who wish
to receive access to an application, and they can
be used to represent the authority of people who
grant access. For example, if a user requests ac-
cess to data for Japan and wants to access the data
as an Accountant, that could be represented using a
slice containing “Japan” and “Accountant.” (In the
example, the attributes are Country and Job Role.)
Slices are also used in approver “rules,” which spec-
ify the authority of people who grant access. Each

rule, associated with an approver (or an approver
code that maps to an approver name), is a slice.
For example, if “John Doe” can approve (or reject)
requests for the Japan data for any Job Role, then
the slice (“Japan”, “*”) is associated with the ap-
prover “John Doe”.

In most cases, the rules provide an approver for
every valid request slice. However, in order to meet
business requirements, the new system has config-
uration options that specify what happens if a re-
quest slice does not have an approver. For some
applications, no approver is required if one has not
been defined. For other applications, an approver
is required, so the requested slice will be rejected.

A request R comprises a set of slices. Like a re-
quest, an approver A also comprises a set of slices
in attribute space. For an approver, a slice is also
called an approver rule. The set of available ap-
provers is A.

We assume that requests come in, one at a time,
and that we must assign each request to a set of
approvers in an online fashion.

An approver rule r covers a request slice a if for
every attribute, whenever the specification of r is
not “ * ”, the specification of that attribute in a
matches the value of that attribute in r. An ap-
prover A covers a slice q of a request R, if some rule
a of A covers q. A set of approvers Â ⊂ A covers

a request R if every slice of R is covered by some
approver in Â.

In our formulation, we are assuming that a slice
is not “splittable” — it must be covered wholly by
some approver. For example, if the specification of
some attribute is “ * ”, then we can not cover this
slice by a set of approver rules that cover, piece-
meal, the individual allowable values for that at-
tribute. This was given to us as a business require-
ment, though it is certainly possible to work with a
more flexible formulation.

We assume that a weight w(A) is assigned to each
approver A that encapsulates the cost of assigning
A to a request. Weights are specified at run time.
Note that we could interpret an approver as a type
of approver, of which there could be many. Then
we might weight such a set of identical approvers

APPROVER SELECTION OPTIMIZATION 3

according to the current workload of that set —
and then treat the apportionment of the workload
to that set as a postprocessing step.

When assigning weights to approvers we should
pay careful attention to issues of this type: If ap-
prover A1 has rules that are the disjoint union of
the rules of approvers A2 and A3, and a request R
includes all rules of A1, then depending on which is
the preferred assignment, we should consider which
we want to be greater w(A1) or w(A2) + w(A3).

One possible static strategy is to have weights
that increase exponentially according to the power
of the rules for an approver. Using a base of 10,
a reasonable exponent for an approver is to count
the number of different fields that are “ * ” in some
rule for that approver. This should to some extent
mimic the strategy of trying to push approvals down
to the lower levels of the partial order of approver
rules. In §6, we discuss another approach to weight
setting.

In any case, when a request R comes in, what
we desire is a minimum-weight set of approvers that
covers all of R — or as many slices as can be feasibly
covered by the given approvers.

2. A min-weight set-cover formulation

We cast our problem as a minimum-weight set-
cover formulation. To learn a bit about set cover see
[3] and [4], for example. We define an |R|× |A| 0/1-
valued matrix M . Each row r of M corresponds to
a slice of the request R. Entry Mr,A is 1 if approver
A can approve slice r of the request. So column A
of M just picks out (with 1’s), the slices of R that
approver A can approve. With this notation, letting
x be a 0/1-valued |A|-vector of variables, and w be
the |A|-vector of weights, our problem is just:

min wT x

subject to

Mx ≥ e

x ∈ {0, 1}|A|,

where e is a vector of all 1’s.

Of course we can drop columns (i.e., approvers)
that contribute no points to a request. Similarly, we
drop request slices (and report this) when there is

no approver with a rule that can cover the request
slice.

We solve instances of this formulation using open-
source optimization code from COIN-OR (see [1]).
In particular, we employ the C++ libraries Clp and
Cbc for the solution of LPs (linear programs) and
ILPs (integer linear programs), respectively. Cbc is
a state-of-the-art library based on the branch-and-

cut methodology. Cbc makes use of Cgl to generate
cutting planes which speed the solution of the ILPs.
These base solver libraries are freely available (un-
der the Common Public License, see [2]) and have
been very reliable for the problem instances encoun-
tered in this application.

3. Our Three-Phase Approach

We developed a three-phase approach to safe-
guard against the possibility of difficult instances
arising.

(1) Solve the LP relaxation and round up the
solution components, yielding a candidate
feasible solution.

(2) Solve the ILP restricted to the variables in-
dexed by the candidate solution in Phase 1,
yielding a possibly improved candidate fea-
sible solution.

(3) Solve the full ILP producing the optimal so-
lution.

We provide options to control the effort spent in
each of Phases 2 and 3. If either a time limit or
branch-and-cut node limit is reached in Phases 2 or
3, the best solution determined in the partial search
is returned.

Note that the Phase 1 solution obtained above
may contain some redundant approvals. It is just
used to quickly get a decent feasible solution. Phase
2 cleans this up and finds a good solution from
which no approver can be deleted without uncov-
ering some request slices. Phase 3 finally finds the
optimal solution. Each phase helps the solver in the
subsequent phase, and if resource limits are reached
in the computation, good solutions are still avail-
able.

4 DIETRICH, FASANO & LEE

4. Solver Enhancements: Cuts and

Heuristics

Cbc has a variety of heuristics and cutting-planes
which, when judiciously used, can improve the per-
formance in its solution of integer linear programs.

We expose control of the ones that may be use-
ful for set-covering formulations through control pa-
rameters. In particular, we expose control of Cbc
heuristics: GreedyCover, Rounding, LocalSearch
and FeasibilityPump, as well as the Cgl cutting-
plane generators CglGomory, CglOddHole,
CglRedSplit, CglMixedIntegerRounding and
CglProbing. By default, all of these are turned off
and can be explicitly turned on via input parame-
ters.

The following greedy scheme which is specific to
set-cover formulations (and is implemented in Cbc

as GreedyCover) has reasonably good properties.

(1) Start with S := ∅ (“selected”), and U := A
(“unexamined”).

(2) While the request R is not yet covered by
the approvers in S:
(a) Let Amin be the approver A in U that

minimizes the ratio of w(A) to the num-
ber of points of R that will be covered
by A but were not covered by approvers
in the current S. That is, Amin :=
argmin{w(A)/|A ∩ (R \ ∪B∈SB)|}.

(b) Let S ← S ∪ {Amin}, and let U ← U \
{Amin}.

(3) Return S as the set of approvers assigned to
the request R.

Note, this heuristic may cause some unnecessary
approvals (e.g., the approver chosen last may be
costly and necessary, and assigning this approver
may obviate the need for a previously chosen one).
An easy cleanup at the end, is to re-instantiate and
solve the set-covering ILP, but now only having
columns for the approvers in the heuristically se-
lected S — this will be a very small instance which
will be easy to solve. However, we are using this
heuristic within the ILP search carried out by Cbc,
so this is not a substantial issue.

If the heuristic appears to be needed, its perfor-
mance might be improved by doing a local search
starting from its solution S. That is, repeatedly
look for an approver A ∈ S and an approver A′ ∈
A\S so that w(A) > w(A′) (improvement) and R is
covered by S\{A}∪{A′} (feasible), and then replace
S by S \{A}∪{A′}. If such improving swaps exists,
this may be worthwhile (and it can be followed by
the cleanup mentioned above). This type of local
search is realized by the Cbc module LocalSearch.

5. Shrinking bloated sets of approver

rules

Prior to the development and use of the new tool,
approver selection had been handled by a greedy
algorithm in the old tool that it replaced. The
greedy algorithm of the old tool encouraged extreme
growth in the set of approver rules. With the old
tool, the way to increase the priority of an approver
who can cover a request, without changing his/her
authority, is to give the approver a large set of very
specific rules that are dominated by his/her more
general rules. With our algorithm, we simply de-
crease the weight of the approver. An extreme case
of this occurred in one application having 64 ap-
provers. In that data set there were a total of 21,188
rules, but all of these rules were dominated by a sub-
set of only 382 rules. Besides being hard to main-
tain, large sets of approver rules like this one cause
the bottleneck in any algorithm to be the checking
of request slices against approver rules. By using
a minimal set of rules for each application, which
we can compute in a single preprocessing phase, we
make our production runs extremely fast.

We have provided some functionality to take care
of this. We can obtain the minimal rules for each
approver by treating all of their rules as slices of a
request, and running this request against the very
same set of rules treated now as approver rules. Us-
ing weights of 1, we use our basic algorithm to find
the minimal set of rules for this approver. Repeat-
ing this for each approver, and aggregating the sets
of minimal approver rules, we get a minimal set of
approver rules for the application.

APPROVER SELECTION OPTIMIZATION 5

It is certainly possible to do this more efficiently
from a running-time point of view, but this prepro-
cessing does not have to be done during production
runs, so it is preferable to re-use the existing code
of our basic algorithm.

6. Weight setting

It may be useful to have a good mechanism for
setting/updating weights for approvers. One possi-
ble approach to this is having target utilizations, on
a per approver basis, to be achieved in the long run.
Although we have not implemented this, we have
worked out a reasonable scheme to achieve this.

For each approver A, we may have a target uti-
lization τ(A) > 0. This is the fraction of all requests
that we would like to be assigned to A. Then, com-
puted over a sequence of assignments (for exam-
ple, the moving average computed over the prior
few months), we can compute the actual utilization
α(A). Then each approver A will have a deviation

δ(A) := α(A)/τ(A) .

Whether we employ static or adaptive weights,
we do need a way to set the weights initially. A
reasonable choice is w(A) := δ(A) . It is not so
important how we initially set them, since we can
simulate request arrivals and employ the updating
process below, to get a good stable set of weights.

We need an easy mechanism to adaptively update
the weights so that the long-run target utilizations
can be achieved, and so that we can shift to new
targets as desired. By simply periodically re-setting
the weights according to the current deviations, we
penalize approvers who are over utilized, and make
under-utilized approvers look more attractive for as-
signment. Faster adjustment to the targets could be
achieved by choosing an exponent p > 1, and let-
ting w(A) := (δ(A))p. Our weight-update strategy
keeps all weights positive, which seems to be a rea-
sonable idea since some heuristics may rely on such
an assumption.

7. Software Integration and Business

Results

The approver selection engine in the new system
is a component that is called as a service by the
workflow component. The workflow component re-
ceives requests for authorization from a dynamic
front-end component. Once requests have been ap-
proved, the workflow component passes the request
to a provisioning component.

The provisioning component is responsible for
making the changes that are needed to update a
user’s application access privileges. The provision-
ing component has interfaces with Lotus Notes (en-
terprise business email and collaboration middle-
ware), IBM DB2 (a relational database manage-
ment system), WebSphere Message Queuing (mes-
saging and queueing middleware), IBM RACF (Re-
source Access Control Facility), and an IBM LDAP-
based system for defining and maintaining groups of
user IDs. If these interfaces are not sufficient, the
provisioning component can send email to someone
who can update the user’s privileges in the applica-
tion.

As of June 14, 2007, the new IBM tool for entitle-
ment and access management was used to manage
access for more than 70 applications. We expect
that number to grow to 100 by the end of 2007. The
new tool has been very successful and is now the
strategic application for access management within
IBM.

References

1. COIN-OR, Common Infrastructure for Operations Re-
search, http://www.coin-or.org .

2. Common Public License, Common Public License,
http://www.opensource.org/licenses/cpl1.0.php .

3. Gérard Cornuéjols, Combinatorial Optimization: Packing

and Covering, CBMS-NSF Regional Conference Series in
Applied Mathematics, vol. 74, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2001.

4. George L. Nemhauser and Laurence A. Wolsey, Integer

and Combinatorial Optimization, Wiley-Interscience Se-
ries in Discrete Mathematics and Optimization, John Wi-
ley & Sons Inc., New York, 1988.

IBM Corporation

E-mail address: {wallyd,jpfasano,jonlee}@us.ibm.com

