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Abstract— In this paper, we study the convergence and the ap-
proximation error of the transverse waveform relaxation (TWR)
method for the analysis of very wide, on-chip multiconductor
transmission line systems. Significant notational simplicity is
achieved in the analysis using a splitting framework for the per-
unit-length matrix parameters of the transmission lines. This
splitting enables us to show that the state transition matrix of
the coupled lines satisfies a linear Volterra integral equation
of the second kind whose solution is generated by the TWR
method as a summable series of iterated kernels with decreasing
norms. The upper bounds on these norms are proved to be����������	�
 �

where
	

is the number of iterations and
�

is a measure
of the electromagnetic couplings between the lines. Very fast
convergence is guaranteed in the case of weak coupling (

�����
).

These favorable convergence properties are illustrated on a fully
embedded implementation of TWR, called TWRTL, that uses
the application programming interface of an industrial circuit
analysis program (IBM’s PowerSpice). TWRTL is shown to
converge with few ( ��� ) Gauss-Jacobi iterations to the exact
solution on a full test suite of industrial VLSI buses in a modern�������

CMOS process.
Index Terms - VLSI, circuit simulation, waveform relax-

ation, coupled transmission lines, on-chip buses.

I. INTRODUCTION

The basic idea of the transverse waveform relaxation (TWR)
algorithm for the analysis of coupled transmission lines is to
analyze the multiconductor system one transmission line at a
time [2], [3]. This is achieved iteratively until convergence by
transforming the electromagnetic couplings between lines into
independent voltage and current sources that are sometimes
called relaxation sources. The waveform imprinted by a given
source at iteration ����� is computed based on the states of
the lines at iteration � . This method of waveform relaxation is
well adapted to the parallel data paths of the transmission lines
and can be construed a form of decoupling between lines in
order to facilitate their analysis. But unlike modal decoupling
which requires the explicit diagonalization of the per-unit-
length (PUL)  "!�#%$ matrices [4], the TWR decoupling,
in its simplest form, is based on an explicit splitting of

these  "!�#&$ matrices. There are several motivations for
developing and implementing an algorithm such as TWR. One
such motivation is the limited capacity of available circuit
analysis programs in handling a large number of coupled
transmission lines. When the generalized method of charac-
teristics is used as for instance in HSPICE’s W-element [5] or
PowerSpice’s RLINE [6], the maximum number of coupled
transmission lines that can be efficiently analyzed is limited
to about 10 lines [3]. This is because of the need to fit rational
approximations to the transcendental functions involved in the
formulation of the generalized method of characteristics. This
fitting is needed even when the PUL matrix parameters of the
lines are independent of frequency. The dependence of PUL
parameters on frequency will make matters worse. For on-
chip transmission lines, synthesis methods of the type used in
[7], [8] can extend the analysis capacity to about 24 lines
[9], but it is well known that these synthesis methods are
not suitable for low-loss lines where they tend to require an
excessive number of ' sections in order to capture the time-
of-flight delays of the lines. Furthermore, using the synthesis
approach for a large number of lines ( (*)�+ ) in the presence of
a large number of nonlinear terminations seems to challenge
the capabilities of present day SPICE-level simulators [9].
Another motivation for the need to study and implement
TWR is the ever more stringent signal integrity and noise
immunity requirements on on-chip VLSI buses and off-chip
MCM and PCB communications links of present and future
computing systems. Taking the digital on-chip VLSI case as
an example, the very wide data buses used to transfer data
between caches and processors are typically enmeshed within
the chip power bus. Analyzing the interaction between various
kinds of interconnect noise (capacitive, inductive, and the one
induced by the finite impedance of the return paths) on the one
hand, and the delta-I noise of the power supply, on the other,
is based on the premise of a robust method for simulating
a large number of both signal and power transmission lines
interacting together [9].

Since TWR deals with coupled transmission lines one line
at a time, it is expected that the simulation bottleneck of
the generalized method of characteristics or the synthesized



circuit approach will be overcome. The main concerns for
TWR as for any waveform relaxation process are convergence
and convergence to the right solution. In [3], [10], [11] very
encouraging results regarding the convergence behavior of
TWR have been reported. The several TWR examples therein
were observed to converge in fewer than five iterations even for
buses containing as many as 80 lines with randomly selected
PUL parameters. One main contribution of this paper is to
provide a rigorous conceptual and theoretical framework for
explaining the convergence results reported in these earlier
publications. Our work shows that the TWR iterates of the
state transition matrix of the coupled transmission lines are
guaranteed to converge as they are associated with the Picard
iterates of a Volterra integral equation that can be readily
obtained from the Telegrapher’s equations. Furthermore, we
show that the state transition matrix of the coupled transmis-
sion lines can be written as the limit of the Volterra series
whose terms are TWR iterated kernels. We also derive a TWR
error estimate based on the truncation of the Volterra series at
a given number of terms corresponding to a maximum number
of TWR iterations.

Another contribution of this paper is in benchmarking
our own implementation of TWR against the results of a
traditional circuit analysis program for a realistic on-chip
bus architecture. This benchmarking is meant to address the
issue of “TWR convergence to the right solution.” The main
observation we make based on our experiments is that TWR
converges to the correct solution faster on active lines than
on quiet lines. It also converges faster on the far ends than
on the near ends. In the crosstalk experiments that we have
conducted, most of the latter TWR iterations are used to
converge on the noise waveforms while the waveforms on
the active lines are essentially correct at the first or second
iteration.

The third contribution of this paper is in terms of the
software architecture of our TWR implementation. According
to [12], a mixture of MATLAB scripts and HSPICE netlists
were used in deriving the results of [3], [10], [11]. Given
the corporate CAD context of our work, this implementation
style was not an option we could entertain. Given the limited
resources in time and headcount, doing development work
on the core engine of the corporate circuit analysis program,
PowerSpice, was not an option either. We have therefore opted
for a software architecture in which the TWR process is
implemented as part of the CAD application that needs it
(e.g., bus signal integrity) rather than in the core engine of
the SPICE-level simulator. The communication between the
CAD application and the circuit application is accomplished
via an application programming interface that enables both
TWR and the simulation engine to run in-core without any
file IO.

This paper is organized as follows. In Section II, the basic
idea of TWR is presented along with its circuit representation.
In Section III, the TWR iteration is recast in a matrix form by
splitting the PUL matrices of the multiconductor transmission

Fig. 1. Transformation of electromagnetic couplings into distributed voltage
and current relaxation sources.

system. Furthermore, the Volterra integral equation satisfied
by the state transition matrix of the transmission system is
introduced. In Section IV, the main theoretical result of this
paper, namely, the unconditional convergence of TWR to a
solution of the ordinary differential equation satisfied by the
state transition matrix, is stated and proved. In Section V,
an error estimate is given for the TWR iterations that clearly
shows the impact of electromagnetic couplings on the TWR
convergence rate. Section VI is devoted to the description of
an embedded implementation of TWR as part of a CAD flow
for the analysis of very-wide, global on-chip RLC buses. This
implementation is contrasted with the earlier implementations
of the WR algorithm in the context of VLSI circuit analysis.
In Section VII, an extensive set of numerical examples to
validate TWR for on-chip RLC buses is described. The very
favorable convergence behavior of TWR is illustrated on wide
industrial buses with as many as 40 bit-lines. Conclusions and
suggestions for future research work are given in section VIII.

II. TRANSVERSE WAVEFORM RELAXATION FOR

TRANSMISSION LINES

We assume we have an interconnect bus of , parallel
coupled transmission lines of length - . The electrical state
at any point .0/21 3546-87 and any time instant 9;:<3 is described
by the first-order Telegrapher’s partial differential equation== .?> @ .A4B9BCED FHGJI @ .A4B9BCKFML == 9 I @ .A4N9BC== . I @ .A4B9BCED FHO > @ .P4B9BCQFSR == 9�> @ .A4N9BC (1)

where GT46LU46OV46RW/&X8Y*ZHXQY are the PUL matrices of the ,
lines and > @ .P4B9BC[4NI @ .A4N9BCU/\XQY are the voltages and currents
at point .S/]1 354N-K7^4N9H:_3 . The voltage and current equations
of the ` -th line can be written as [3], [10], [11]



aacb?d�egf bAhNiBjlk mon e�eqpresf bAhBiBj8m2t e�e aaciqpresf bAhNiBjm uvwyx{z}| w^~x e � n e w p w�� t e w aa�i�p w f bPhBiBj��aacb?p e f bAhNiBjlk mo� e�e d e f bPhBiBjQmS� e�e aaciqd e f bAhNiBjm uvwyx{z}| w^~x e � � e w d w f bAhBiBj � � e w aa�iqd w f bAhNiBj �
The summations in the above equations represent the impact
of electromagnetic couplings on line � due to all the other
lines in the bus. The equations of Line � can be rewritten asaacb d e f bAhNiBjlk mon e�e p e f bAhBiBj8m2t e�e aaci p e f bAhNiBj� � egf bAhBiBjaacb?pregf bAhNiBjlk mo� e�e�d�egf bPhBiBjQmS� e�e aaciqd�egf bAhNiBj� � egf bPhBiBj
where the aggregate electromagnetic couplings � e f bAhNiBj and� egf bPhBiBj are given by

� egf bPhBiBjlk m uvwyxPz[| w^~x e � n e w p w f bPhBiBjBj � t e w aaciqp w f bAhNiBj �� e f bPhBiBjlk m uvwyxPz[| w^~x e � � e w d w f bAhNiBj � � e w aaci d w f bPhBiBj � (2)

Thus the equations describing the state of each line � in the
bus are those of a single transmission line under excitation by
distributed voltage and current sources whose strengths per-
unit-length are given by � esf bPhBiBj and � egf bAhNiBj , respectively. The
basic idea of transverse waveform relaxation for transmission
lines [11] is to assume that the state of these sources is known
at iteration � , and that the state of each transmission line can
then be determined according to the recursionsaacb d����6� zB�e k mon e�e p6���N� zr�e m2t e�e aaci p6���N� zr�e (3)� � ��� �eaacb?p ���6� zB�e k mo� e�e�d ���6� zr�e f bAhNiBj8mS� e�e aaciqd ���6� zB�e (4)� � ��� �e� ���6� zB�e k m uvwyxPz[| w^~x e � n e w p ���N� zr�w � t e w aaci�p ���N� zr�w �

(5)

� ���6� zB�e k m uvwyxPz[| w^~x e � � e w d ���6� zr�w � � e w aaciqd ���N� zB�w �
(6)

where the argument f bPhBiBj has been dropped throughout the
equations. The initial conditions for the distributed coupling

sources in the above recursion are� �y� �e k �5h���� � �*�� �y� �e k �5h���� � �*�
In the context of TWR, the distributed coupling sources are
sometimes called relaxation sources.

Figure 1 illustrates this transverse decomposition of trans-
mission lines for a segment of length � b of the bus. It
is to be noted that this decomposition can work with any
electrical representation of the � b segment, be it distributed
or lumped. Figure 2 shows this decomposition when the � b
segment is represented with an RLC section. In this latter
case, the circuit representation of TWR amounts to replacing
the electrostatic coupling of the floating capacitance with an
independent current source and the magnetostatic coupling of
the mutual inductance with an independent voltage source.
The states of these current and voltage sources are determined
iteratively according to the equations given in (2).

The TWR recursion described above as well as the ones
in [3], [10], [11] are for what is known as a Gauss-Jacobi
iteration [13]. Conceivably the updates of the electrical states
of the transmission lines can be done according to a Gauss-
Seidel iteration where the most recent states are included in
the calculation of the sources. Assuming that the states of
transmission lines

���<�Q� � mS� have been updated, the state
of transmission line � at iteration � � � is updated as follows:� ��� �e k m e�� zv w�xPz � n e w p6���N� zr�w � t e w aaci p6���N� zr�w �

m uvwyx e � z
� n e w p6��� �w � t e w aaci pN��� �w �

� ��� �e k m e�� zv w�xPz � � e w d ���6� zr�w � � e w aaci�d ���6� zB�w �
m uvwyx e � z

� � e w d ��� �w � � e w aaci d ��� �w �aa�b d����N� zB�e k mon e�e p6���6� zB�e mMt e�e aa�i p6���6� zB�e� � ��� �eaa�b;p ���N� zr�e k mo� e�eqd ���6� zB�e f bPhBiBjQmS� e�e aaciqd ���N� zr�e� � ��� �e
The main difference between the Gauss-Jacobi TWR and the
Gauss-Seidel TWR is in the way the relaxation sources are
updated. In Gauss-Jacobi only the states of the sources from
the previous iteration are involved in the update, while in
Gauss-Seidel, the most recent state information is used in
the relaxation source update. The theoretical and numerical
results of this paper are for the Gauss-Jacobi TWR process.
The results of the Gauss-Seidel TWR will be given in a future
paper.



Fig. 2. Transformation of electromagnetic couplings into independent voltage
and current relaxation sources when the the transmission line macromodel is
made of cells of lumped parameters.

III. TWR CONVERGENCE FRAMEWORK

In this section, we set the stage for proving the conver-
gence of the TWR iteration for transmission lines. While
convergence proofs for waveform relaxation are as old as the
WR idea itself [1], [14]–[16], they were all for lumped pa-
rameters systems described by ordinary or ordinary-algebraic
differential equations. WR has been applied to distributed
parameter systems described by partial differential equations
after their spatial dependence has been discretized. Of note in
this regard is the work on the nonlinear diffusion equations
describing the charge behavior of semiconductor devices [17],
[18] and the work on the reaction diffusion equation [19].
In this prior art, WR convergence proofs and convergence
acceleration algorithms are all within the dynamic iteration
framework of ordinary differential equations. The present
paper as well as [3], [10], [11] apply dynamic iteration in
the partial differential equation context of the Telegrapher’s
equations. Indeed, the dynamic iteration equations (3) and
(4) preserve the distributed-parameter nature of the coupled
transmission lines, and so does the TWR convergence analysis
presented in this paper.

The TWR convergence proof has two ingredients. The first
is the splitting of the PUL ���o� �¢¡¤£&¥ matrices describing
the transmission lines and the second is to express the TWR
process in terms of an iterated integral kernel resulting from a
Volterra integral equation of the second kind. The PUL matrix

splitting is the mathematical counterpart of the decoupling
of transmission lines into single lines excited by distributed
sources. The Volterra integral equation is the one that results
from “solving” for the electrical states of the single lines under
the assumption that the states of the excitation sources are
known.

A. Splitting the Telegrapher’s PDE’s

In the Gauss-Jacobi TWR, each of the PUL �T¦6¡�¦6£T¦6¥W§¨Q© � ¨{© matrices is split into a diagonal part and a non-
diagonal part. The diagonal part will be denoted with ª�«
and the non-diagonal part with ¬ « where « refers to the
original matrix as follows:�  ª � ® ¬ �¡  ª ¡ ® ¬ ¡£  ª £¯® ¬ £¥  ª ¥ ® ¬ ¥ (7)

The ª matrices are the self parameters of the lines while
the ¬ matrices are the coupling parameters. We also use the
notation ª±°V²´³;µ¶ ª � ®V· ³;ª ¡¬ ° ²´³;µ¶ ¬ � ®2· ³;¬ ¡ª�¸¹²´³;µ¶ ª £ ®2· ³;ª ¥¬ ¸ ²´³;µ¶ ¬ £ ®T· ³;¬ ¥ (8)

where · ³ is the Fourier variable. Using the above matrix
splittings, the Telegrapher’s equation can be written in the
time domain asººc»?¼ ² » ¦B½Bµl ¾Hª �0¿ ² » ¦B½BµQ¾Sª ¡ ºº ½ ¿ ² » ¦B½BµQ¾S¬ �0¿ ² » ¦B½Bµ¾ ¬ ¡ ºº ½ ¿ ² » ¦N½Bµººc» ¿ ² » ¦B½Bµl ¾Hª £ ¼ ² » ¦N½Bµ8¾Sª ¥ ºº ½ ¼ ² » ¦B½BµQ¾S¬ £ ¼ ² » ¦B½Bµ¾ ¬ ¥ ºº ½ ¼ ² » ¦B½Bµ (9)

and in the frequency domain asººc»oÀ ² » ¦B³;µl ¾Hª ° ²�³;µrÁQ² » ¦r³;µQ¾S¬ ° ²�³;µrÁQ² » ¦r³;µºº�» ÁQ² » ¦B³;µl ¾HªM¸Â²´³;µ À ² » ¦r³;µ8¾M¬Â¸¹²´³;µ À ² » ¦B³;µ
The above two first-order equations can be combined in a
single first order equation of order Ã��ººc»�Ä ² » ¦r³;µKÅ¾Hª*²´³;µ Ä ² » ¦B³;µQ¾M¬Æ²�³;µ Ä ² » ¦r³;µ (10)

where we have defined Ä ² » ¦r³;µKÈÇ À ² » ¦r³;µÁ{² » ¦r³;µÊÉ § ¨QËN© and

ª*²�³;µ¶ Ç Ì ª ° ²�³;µª ¸ ²´³;µ Ì É § ¨ Ë6© � ¨ ËN©
¬Í²�³;µ¶ Ç Ì ¬�°T²�³;µ¬_¸¹²�³;µ Ì É § ¨ Ë6© � ¨ ËN©



Equation (10) describes a linear system with a dynamic
matrix Î*Ï�Ð;Ñ and an input matrix ÒÍÏ�Ð;Ñ through which the
electromagnetic couplings impact the electrical states of the
individual lines. Note that if ÒÍÏ�Ð;Ñ is the zero matrix, we
get Ó independent single-line Telegrapher’s equations. The
general solution of Equation (10) is given byÔ Ï�ÕAÖBÐ;Ñl× Ø�Ù Î\ÚyÛgÜ�Ý Ô ÏßÞ�ÖrÐ;Ñ (11)à á Ýâ Ø Ù Î\Ú�ÛsÜ�Ú�Ý Ùäã Ü ÒÆÏ�Ð;Ñ Ô Ïæå5ÖrÐ;Ñrçsågè
If the initial vector

Ô ÏßÞ�ÖrÐ;Ñ (voltages and current at the near
end ports) were known, the above equation would have been,
for each spatial variable Õ and at each frequency Ð , a Volterra
integral equation of the second kind. This type of integral
equations can be solved according to the Picard iteration [20]Ô Ú�é6êPërÜ ÏßÕAÖrÐ;ÑE× Ø Ù Î\Ú�ÛsÜßÝ Ô ÏßÞ5ÖBÐ;Ñ (12)à á Ýâ Ø�Ù Î\ÚyÛgÜìÚ�Ý Ùcã Ü ÒíÏ´Ð;Ñ Ô Ú�éNÜ Ï^ågÖrÐ;ÑBçîå
Note that this equation is almost identical to Equation (6) in
[3] which we re-write here asÔ Ú�é6êPërÜ ÏßÕAÖrÐ;ÑE× Ø Ù Î\Ú�ÛsÜßÝ Ô Ú�éNê{ërÜ ÏæÞ5ÖrÐ;Ñ (13)à á Ýâ Ø�Ù Î\ÚyÛgÜìÚ�Ý Ùcã Ü ÒíÏ´Ð;Ñ Ô Ú�éNÜ Ï^ågÖrÐ;ÑBçîå
The main difference between Equation (12) and Equation (13)
is in the initial-condition term where it is kept at its original
value in the Picard iteration (it is a real initial condition) but
is updated in the waveform relaxation, using the boundary
conditions of each transmission line. The value of

Ô ÏßÞ�ÖrÐ;Ñ is
not known a priori but depends on the near-end and far-end
terminations of the transmission line. 1 The main implication
of this difference between the initial-value problem in the
Volterra iteration and the boundary-value problem of the
Telegrapher’s equation is that the traditional analysis of the
Picard iteration and its proof of convergence to the unique
solution of the Volterra integral equation does not apply to
the boundary-value problem. Nonetheless, one can “recover”
the initial-value problem from the boundary-value one and
eliminate the dependence on

Ô ÏßÞ�ÖrÐ;Ñ in (12) if instead of
writing the integral equation in terms of currents and voltages
as in Equation (11), we write it in terms of the state transition
matrix of the multiconductor transmission lines. This we do
in the following section.

B. Volterra Integral Equation for the State Transition Matrix

Assume that the ï�Óñðòï�Ó matrix, ó¢ÏßÕAÖBÐ;Ñ , is a solution of
the initial-value, ordinary matrix differential equationôô Õ ó¢Ï�ÕPÖrÐ;Ñ?× à ÏæÎ]Ï�Ð;Ñöõ±ÒÆÏ�Ð;ÑBÑìó&Ï�ÕPÖrÐ;Ñ (14)

1The most natural initial guess for starting the WR iteration in the
transmission line case is to solve for the ÷ transmission lines using the
existing terminations with no coupling, i.e., øTùyúcûcü%ý�þ

with the initial condition ó¢Ï�ÕPÖrÐ;Ñÿ×�� , where � is theï�Ó ð±ï�Ó identity matrix. Then the ï�Ó vector �VÏßÕAÖrÐ;Ñ&×ó¢Ï�ÕPÖrÐ;Ñ��2ÏßÞ5ÖBÐ;Ñ is the unique solution of Equation (10) with
the initial condition

Ô ÏßÞ5ÖBÐ;ÑK×��VÏæÞ5ÖrÐ;Ñ�è This initial condition
is trivially satisfied because the ó¢ÏßÕAÖBÐ;Ñ?×�� when Õ&×]Þ5è As
for the differential equation (10), we have successivelyôô Õ �VÏ�ÕPÖrÐ;Ñl× ôô Õ � ó¢ÏßÕAÖBÐ;Ñ��2ÏßÞ�ÖrÐ;Ñ	�× ôô Õ � ó¢ÏßÕAÖBÐ;Ñ
���TÏæÞ5ÖBÐ;Ñ× � à Ï^Î]Ï´Ð;Ñöõ\ÒÆÏ´Ð;ÑBÑ�ó¢Ï�ÕPÖrÐ;Ñ	���VÏßÞ�ÖrÐ;Ñ× à ÏæÎ]Ï�Ð;Ñöõ±ÒÆÏ´Ð;ÑNÑ � ó¢Ï�ÕPÖrÐ;Ñ��2ÏæÞ5ÖBÐ;Ñ
�× à ÏæÎ]Ï�Ð;Ñöõ±ÒÆÏ´Ð;ÑNÑ��VÏ�ÕPÖrÐ;Ñ (15)

Note that the above result remains valid even when the line
is nonuniform, i.e., when the line parameters are dependent
on the co-ordinate Õ , in which case Î*Ï´Ð;Ñ and ÒÍÏ�Ð;Ñ have
to be replaced with Î]ÏßÕAÖrÐ;Ñ and ÒÍÏßÕAÖBÐ;Ñ respectively. It is
also valid when the ������ matrices are frequency-dependent
due, for instance, to skin and/or or proximity effects. When
the solution is computed at the far-end ports, we have Õ%×�� ,
and �VÏ��oÖBÐ;Ñ8×*ó¢Ï��oÖBÐ;Ñ��VÏßÞ�ÖrÐ;Ñ (16)

Now it is well known in the theory of linear systems [21]
(Chapter 4) that the exact solution of (14) is given by an
exponential matrixó&Ï�ÕPÖrÐ;ÑK×ÊØ Ù � Î<Ú�ÛsÜßêAÒ�Ú�ÛsÜ � Ý (17)

so if the matrix ó&Ï��HÖrÐ;Ñ is conformally partitioned according
to the Ó port currents and Ó port voltages, we get the chain-
parameter-matrix representation [4] of the Ó transmission
lines��� Ï��HÖrÐ;Ñ�{Ï��HÖrÐ;Ñ�� × ��� Ï��HÖrÐ;Ñ��òÏ��oÖrÐ;Ñ Ï��HÖrÐ;Ñ"!\Ï��oÖBÐ;Ñ#� �#� ÏæÞ5ÖBÐ;Ñ�QÏßÞ5ÖBÐ;Ñ$� (18)

The above equation must be augmented with termination
conditions. Linear, time-invariant, termination conditions are
represented in the frequency domain by the equations% ÏæÞ5ÖrÐ;Ñ � ÏæÞ5ÖrÐ;Ñöõ'&±ÏæÞ5ÖrÐ;Ñ(�PÏæÞ5ÖBÐ;Ñ¶× ) ÏßÞ�ÖrÐ;Ñ (19)% Ï��oÖrÐ;Ñ � Ï��oÖrÐ;Ñöõ'&±Ï��oÖrÐ;Ñ(�PÏ��oÖBÐ;Ñ¶× ) Ï��HÖrÐ;Ñ (20)

where ) ÏæÞ5ÖBÐ;Ñ and ) Ï��HÖrÐ;Ñ denote the frequency-domain rep-
resentations of the sources at the near and far end, respectively.
Note that the boundary conditions in Equations (19) and (20)
are written so that both Norton and Thevenin representations
of the terminations are included. At each frequency Ð , the
solution of the near and far end port quantities is given by the* Ó ð * Ó linear system+,,- � Ï��oÖBÐ;Ñ��òÏ��oÖBÐ;Ñ à �/. 0 Ï��oÖrÐ;Ñ�!<Ï��HÖrÐ;Ñ 0 à � .% ÏßÞ�ÖrÐ;Ñ &±ÏæÞ5ÖBÐ;Ñ 0 00 0 % Ï��oÖBÐ;Ñ1&±Ï��HÖrÐ;Ñ

24335 +,,-
� ÏßÞ�ÖrÐ;Ñ�QÏßÞ�ÖrÐ;Ñ� Ï��oÖBÐ;Ñ�QÏ��oÖBÐ;Ñ

24335



68799: ;;<>=�?A@(BDC<>=�EF@GBDC
H4IIJ

The matrix of the above linear system is the frequency-domain
stamp for the AC analysis of the K transmission lines in the
presence of linear, time-invariant terminations.

From the viewpoint of the state transition matrix L =NMO@GBDC ,
the main idea of TWR is to avoid the direct computation of the
full exponential matrix in (17), and to compute it iteratively by
treating the P =QBDC matrix as if it were a perturbation on R =QBDC
whose exponential is relatively easy to compute. Equation (14)
can be written asSS M L =NMT@(BDC 6VU R =QBDC L =NMT@(BDC U P =NBDC L =�MT@(BDC (21)

where the term P =QBDC L =NMO@GBDC is now considered an input
excitation into a linear system whose dynamic matrix is R =NBDC .
Again, based on linear system theory [4] (Chapter 7), the
general solution of the above equation is written asL =NMO@GBDC 6XWZY R\[4]_^N` U'a `b WZY R\[4]_^
[c` Y/d ^ P =NBDC L =�e_@(BDCGfge

(22)

IV. CONVERGENCE OF TWR

The matrix integral equation (22) is a Volterra integral
equation of the second kind [20]. If we denote the kernel
matrix function byh =�MT@GBDC 6VUiWZY R\[4]_^N` P =NBDC (23)

and the initial condition byj =NMO@GBDC 6XW Y R\[4]_^N` @
the Volterra integral equation (22) can be rewritten more
compactly as L =NMT@(BDC 6 j =NMT@(BDCTk hml L =NMO@GBDC (24)

where the convolution

hml L is defined by= hml L Cn=NMO@GBDC 6 a `b h =NM U e_@(BDC L =oe_@(BDCGfge (25)

In order to get to the essence of the TWR iteration from
an analytic viewpoint, we need to introduce few notations.
We denote by p the function space q =Nrs@utwv�xzy{t|v�x>C

of
complex matrix functions that are continuous over the domainr~} 6�� ?A@�E���y � B|������@(B��w� ` � . Note that p is a Banach space
with respect to the norm of uniform convergence. We also
denote by � } p���p the operator mapping ����p to� ��p according to� 6 ��� 6 j k hml � (26)

Then clearly Equation (24) states that L is a fixed point of
the operator � in the Banach space p . This fixed point can
be found according to the following iterative process:

1) Set L [ b ^ 6 j .

2) Update L [����O�(^ 6 j k hml L [c��^ (27)

3) Repeat (2) until convergence.
This is a Picard iteration that is guaranteed to converge if

the operator � } p���p is contracting (see Chapter 5 in
[22]). The objective of the rest of this section is to give a
direct proof for the convergence of the recursion in (27). The
proof will help us gain more insight into the TWR process and
derive an upper bound on the TWR error when the process is
stopped after a finite number of iterations.

First, we have the following
Lemma 4.1: The � -th TWR iterate L [c��^ is the sum of the

first � k�� iterated kernelsL [c��^ 6 �� �(� b h � l j (28)

where
h � 6 hmlshml �n�¡�¢lsh£ ¤¦¥ §¨ times

with the convention that

h b 6�© .
Proof: By induction on � using (27).

The above lemma suggests that the fixed-point solution of
(24) is the sum of the series in (28) as �ª�¬« provided that
the series converge. This is indeed the case, and in order to
prove it, we need first to look more closely at the iterated
kernels

h � l j .
We denote by  [c��^ } 6 L [���^ U L [c� Y �(^ 6 h � l j . Then we

have [����O�(^ =NMO@GBDC 6 a `b WZY R\[4]_^
[c` Y/d ^ = U P =QBDC�C  [c��^ =oe_@GBDC(f®e
(29)

which is the recursive equation defining all the  [c��^ =NMT@(BDC
iterates. Taking the matrix norm of both sides, we get the
following inequalities¯  [c�����G^ =�MT@GBDC ¯6 ¯ a `b W Y R\[4]_^
[c` Y/d ^ = U P =NBDC(C  [c��^ =�e_@(BDCGfge ¯° a `b ¯ WZY R{[4]_^
[�` Y±d ^ = U P =NBDC(C  [c��^ =�eA@GBDC ¯ f®e° a `b ¯ WZY R{[4]_^
[�` Y±d ^ ¯Z¯ = U P =QBDC�C ¯Z¯  [c��^ =�eA@GBDC ¯ fge° ¯ P =QBDC ¯ a `b ¯ W Y R\[4]_^
[�` Y±d ^ ¯Z¯  [c��^ =�eA@GBDC ¯ fge (30)

Since the function
=NMO@�e�C � ¯ W Y R\[4]_^
[�` Y±d ^ ¯ is continuous on

the square � ?²@�E³�_y � ?A@�E³� it has an upper bound that we denote
by ´ =NBDC . Note also that

¯ W Y R\[4]_^N` ¯ ° ´ =NBDC . Now we can
state the following:

Lemma 4.2: The � th iterated kernel satisfies the upper
bound¯  [���^ =NMO@GBDC ¯ ° M ��gµ ¯ P =QBDC�C ¯ � � ´ =QBDC
� ���O� @·¶|=NMO@GBDC � rs

(̧31)



Proof: The proof is by induction on ¹ . First for ¹»º½¼ ,
we have¾�¿QÀGÁÃÂ�ÄTÅGÆDÇ ºÉÈ{ÊËÍÌZÎ±Ï ¿4Ð_Á
¿ Ê Î/Ñ Á ÂGÒFÓÔÂQÆDÇ�Ç ÌZÎ±Ï ¿4Ð_Á Ñ¡ÕgÖ_×
Taking the matrix norm of both sides and following the same
series of norm inequalities in (30), we getØ ¾�¿QÀGÁÃÂ�ÄTÅGÆDÇ ØÙ Ø ÓÔÂQÆDÇ Ø ÈÚÊË Ø ÌZÎ±Ï ¿4Ð_Á
¿ Ê Î/Ñ Á Ø�Ø ÌZÎ±Ï ¿4Ð_Á
¿ Ñ Á Ø ÕgÖÙ Ø ÓÔÂQÆDÇ Ø�Û Ü ÂQÆDÇ	ÝßÞ È{ÊË ÕgÖ º Ä Ø ÓÔÂQÆDÇ Ø�Û Ü ÂQÆDÇ	ÝßÞ (32)

which proves inequality (31) for ¹�º1¼ . Assume now the
inequality is satisfied for all à Ù ¹ , and let us prove that its
satisfied for à#ºV¹ áÉ¼ . From the line before Inequality (30)
we getØ ¾ ¿�â�ãOÀ(ÁÃÂNÄOÅGÆDÇ Ø Ù Ø Ó�ÂNÆDÇ Ø¦Ü ÂQÆDÇ È ÊË Ø ¾ä¿câ�ÁuÂ Ö ÅGÆDÇ Ø
which by applying the induction assumption to the integrand
gives Ø ¾ ¿câ�ãOÀ(Á ÂNÄTÅ(ÆDÇ ØÙ Ø Ó�ÂNÆDÇ ØnÜ ÂQÆDÇ Ø ÓÔÂQÆDÇ Ø â Û Ü ÂQÆDÇ
Ý â�ãOÀ È ÊË Ö â¹gå Õ®Öº Ä â�ãOÀÂ ¹wá�¼ Ç å Ø Ó�ÂNÆDÇ Ø â�ãOÀ Û Ü ÂNÆDÇ
Ý â�ã Þ (33)

which completes the proof.
Corollary 4.3: For each

Æ$æ Û Æ³ç�è�é�Å(Æ�çwê Ê Ý , the ¹ -th iterated
kernel is uniformly bounded on

Û ë Å�ì³Ý
as followsØní â�îsï ÂNÄTÅ(ÆDÇ Ø º Ø ¾ ¿�â�Á Â�ÄTÅGÆDÇ ØÙ ì â¹gå Ø Ó�ÂNÆDÇ Ø â Û Ü ÂNÆDÇ
Ý â�ãOÀð|ÂNÄOÅGÆDÇ�æ�ñ

(34)
With this upper bound (34), we can now prove the following

Theorem 4.4: For each
Æòæ Û Æ|çsè�é±ÅGÆ�çwê Ê Ý the series of

iterated TWR kernelsó ¿�â�Á Â�ÄTÅGÆDÇ º âôõÃö Ë í õ îsï Â�ÄTÅGÆDÇ (35)

converges uniformly on the interval
Û ë Å�ì³Ý

to the unique
solution

ó Â�ÄTÅ(ÆDÇ
of (24) as ¹ø÷mù ×

Proof: According to (34), for each
Æ½æ Û Æ ç�è�é ÅGÆ çwê Ê Ý ,every term in the series (35) is uniformly (with respect toÄúæ Û ë Å�ì�Ý

) dominated by the upper boundÜ ÂNÆDÇ ì â¹gå Ø Ó�ÂQÆDÇ Ø â Û Ü ÂQÆDÇ	Ý â
Further, the series ûô â ö Ë ¼¹gå Û ì Ü ÂQÆDÇ Ø ÓVÂNÆDÇ Ø Ý â
converges to ü¦ý_þ Â�ì Ø ÓÔÂQÆDÇ Ø¦Ü ÂNÆDÇ(Ç ×
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Fig. 3. Surface plot showing the dependence of the matrix norm of the
Volterra kernel ÿ�� �������
	 on line length and frequency.
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Fig. 4. Dependence of the norm of the electromagnetic coupling matrix on
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In Figures 3 and 4, typical plots of the functions
ÂNÄOÅGÆDÇ ÷Ø ü¦ý_þ Â(Ò Ï ÂQÆDÇ	Ä±Ç Ø and

Æ ÷ Ø Ó�ÂNÆDÇ Ø
are shown. The corre-

sponding PUL � Å� Å�·Å� matrices are those of an industrial
24-bitline on-chip bus. The matrix norm used in these plots is
the maximum-singular-value norm induced by the Euclidean
norm on � Þ� . The function

Æ ÷ Ü ÂNÆDÇ
used in the above

inequalities is the curve traced by the intersection of the
surface in Figure 3 with the

Ä º ¼ ë�ëZë���� plane. It is clear
from these plots that since

Ü ÂQÆDÇ
and

Ø ÓÔÂQÆDÇ Ø
are monotoni-

cally increasing functions of
Æ

, the TWR convergence bounds
are worse the higher the frequency and the longer the line.
Furthermore since

ì Ø ÓÔÂQÆDÇ Ø
measures the total cumulative

electromagnetic coupling along the line, the TWR iterates are
smaller the weaker the electromagnetic coupling between the
lines.

Finally, one can state the TWR convergence result in terms
of the TWR function operators as follows

Theorem 4.5: In the normed space � Â�ñsÅ � Þ���� � Þ� Ç of
continuous matrix functions on

ñ�� º Û ë Å�ì�Ý � Û Æ³çsè�é±ÅGÆ�çwê Ê Ýequipped with the uniform-convergence norm, the iterationó ¿câ�ãOÀ(Á º ï á í î ó ¿�â�Á
always converges to the unique solution of the Volterra integral



equation of the second kind�����! #"%$&�
Proof: Use the maximum values '�(*)+ ,.-/,1032�2

and'�(*)+ ,4�56,1074�2
with

098;: 0=<?>
@BAC0D<?EGFIH
to insure that the series

of iterated kernel in (35) converges absolutely on J .
In the next section, the series of iterated kernels in (35) is

used to derive an error estimate for the TWR algorithm..

V. ERROR ANALYSIS OF TWR

The results of the previous section allows us to conduct
a rigorous error analysis of the TWR algorithm. When ap-
plied to multiconductor transmission lines, the residual errorKML @�N ,POQAC032

after R iterations is given by

K!L @�N ,SOTAC032 � � ,SOTAC032DU @V
WYX�Z�[ L

W N ,SOTAC032
� \VWYX�Z][ L

W N ,SOQA^032DU @V
WYX�ZB[ L

W N ,POQA^032
� \VWYX @�_T` [ L

W N ,SOTAC032
(36)

Taking the matrix norms of both sides and using the upper
bound of (34) we get the following upper bound on the
residual error

4 K L @aN ,SOTAC032�4cb \VWYX @�_=`ed
W
fBg 4�56,1032�4 W : -h,1032iH W _T`

� d
@�_T`

, R  kj 2 g 4�56,1032l4 @�_=` : -/,S032iH @�_]m

n \VWYX�Z d
W
fBg 4l5�,S032�4 W : -/,1032oH W

� d
@�_T`

, R  kj 2 g 4�56,1032l4 @�_=` : -/,S032iH @�_]m
n p )rq , d

4�56,1032l4G-/,S032^2
(37)

The exponential in the final inequality is independent of the
iteration R and is in fact an upper bound on the matrix norm4 � ,SOTAC032�4

. An estimate of the maximum relative error s @ ,1032
of the WR approximation of the multiconductor transmission
lines can be given by

s @ ,S032 �p )rq ,^U d
4�5�,1032l4G-/,S032^2 't(�)Faurv Z�w xzy 4 K L

@�N ,SOTAC032l4{b

d
@�_T`

, R  kj 2 g 4l5�,S032�4 @a_T` : -h,1032iH @�_Qm
(38)

The matrix norm
4�56,1032l4

measures the size of the coupling
terms in the PUL matrices. This relative error estimate allows
us to predict that the weaker the couplings the faster the
convergence. Furthermore, the longer the line, the slower the
convergence. These predictions are borne out by the recent
computational evidence described in [3] and in Section VII of
this paper.

Fig. 5. Methodology flow of an embedded WR algorithm.

Discussion: Based on the above convergence analysis
of the Gauss-Jacobi TWR algorithm, it is clear that one can
estimate the number of iterations needed to achieve a given
level of accuracy. This number is smaller the smaller the
total coupling between the lines as measured by the norm4�56,1032

d
4
. When some of the lines exhibit strong coupling

the splitting of the Telegrapher’s equation can be adapted so
as to be block diagonal rather than diagonal. Each diagonal
block contains the PUL submatrices of a given line and the
lines that are strongly coupled to it. These diagonal blocks
will affect the norm

-/,1032
and will very likely make it larger.

The PUL matrix
5|,1032

representing the weak couplings is
likely to have a smaller norm. The essence of the Volterra
integral equation analysis and series convergence will however
remain the same, and the conclusion as to the convergence
of the Volterra series to the state-transition matrix remains
unchanged. It is also to be noted that the same framework
can be used to analyze the convergence of the Gauss-Seidel
TWR as well as the SOR TWR. In a future paper, we
will show how this framework can be augmented to include
linear near-end and far-end terminations. The importance of
including terminations in the convergence analysis stems from
the intuitive fact that coupled transmission lines with multiple
reflections due to load and source impedance mismatches will
have more difficulty converging than perfectly matched lines.

VI. EMBEDDED IMPLEMENTATION OF TWR

The practical implementation of any WR process for the
analysis of electrical circuits, be they of lumped or distributed
nature, requires the following steps:

1) Partitioning of the original circuit into small subcircuits.
2) Instrumentation of each subcircuit with sources (for

inputs) and probes (for outputs).
3) Scheduling the different subcircuits for visitation by the

WR process.
4) Initiating, monitoring, and stopping the WR iteration.
5) Management, storage, and update of probe and source

waveforms from one iteration to another.



Depending on the nature of the analyzed circuit, there may
be other steps that the WR process needs to guarantee speed,
accuracy, or numerical stability. Among these steps:

1) Windowing the simulation time interval (WR converges
faster on “short” time windows).

2) Management of waveform hand-offs from one time
window to another.

3) “Windowing” the length of the transmission line (TWR
converges faster on “short” lines. See convergence anal-
ysis in Section IV).

4) Organization of the multi-rate analysis of subcircuits
with vastly differing time constants.

5) Management of waveforms at the boundaries between
subcircuits analyzed with different rates.

All these steps are important and can have a significant im-
pact on the rate of convergence of the WR process. Borrowing
an expression from [23], they can all be assembled under the
heading of external WR algorithm.

Previous implementations of the WR algorithm for the
analysis of electrical circuits [1], [24]–[26] were built on
the premise that the software implementation of external WR
should be within the core engine of the SPICE-level circuit
analysis program. This implementation philosophy resulted in
placing too much burden on the circuit simulator which had
to be augmented with sophisticated netlist partitioning and
subcircuit scheduling algorithms as well as a full database and
a complete library for waveform management and processing.

In this paper we take an “external” perspective on the
implementation of WR in the following sense. Our TWR
prototype assumes that the implementation of the external
WR algorithm should be external to the core engine of the
SPICE-level circuit analysis program and should rather be
owned by the CAD program requesting the WR analysis.
Figure 5 illustrates such a flow where the WR process is
under the management of the CAD tool be it one for timing,
signal integrity, or power analysis. We call such a flow an
embedded WR algorithm. To insure seamless integration of
the circuit analysis step in WR with the CAD tool requesting
the WR analysis, the SPICE-level circuit analysis program
should have an application programming interface (API) [27]
that enables the in-core setup, instrumentation, and probing
of the subcircuits as well as the setting of all the run control
parameters needed for the electrical analysis at the subcircuit
level.

The premise of this API-based, embedded implementation
of WR is that the intimate knowledge that the CAD tool has
of the application domain and the origins of circuit netlists
will enable the use of customized partitioning and scheduling
algorithms. Furthermore, if the API interface is standardized
accross industrial circuit analysis programs such as HSPICE
(Synopsis), Spectre (Cadence), PowerSpice (IBM) or Nexxim
(Ansoft), the CAD tool requesting the WR analysis and the
circuit simulator will be plug-compatible. As shown in Figure
5, not only does the embedded WR approach move the
external WR from the core circuit simulation engine to the

Fig. 6. Cross section of the 24-bitline bus. The top geometry was used
for capacitance extraction. The bottom geometry was used for inductance
extraction.

CAD tool but it further transfers out the WR convergence
test and termination themselves. Here again, knowledge of the
application domain plays a crucial role in setting reasonable
convergence criteria that will minimize the number of WR
iterations needed to get acceptable waveforms.

Finally, in the specific context of this work, the limited
resources in time and headcount as well as a corporate need
for the rapid prototyping of TWR have made the API-based
embedded approach very attractive. For one thing, it keeps the
SPICE-level core engine undisturbed while enabling the TWR
R & D effort to proceed. For another, it allows the R & D
effort to remain focused on the specific CAD needs, namely,
signal integrity for very wide on-chip, global buses rather than
the generic issues of a new, full WR-based circuits simulation
program.

Beside the SIPCE-level API, the TWR prototype used
the C++ Standard Template Library (STL), especially the
map datastracture for the management of probe and source
waveforms as well as an internal C++ library for waveform
processing [28] supporting such functions as windowing,
squishing, filtering, etc.

The TWR prototype, code-named TWRTL, is written in
C++, has about 2000 lines of code, and runs on an IBM
PowerPC supporting the AIX5.3 operating system.

VII. NUMERICAL RESULTS

A. Description of the Test Suite

The test suite used in our numerical experiments comprise
on-chip buses with number of transmission lines increasing
from 4 to 40 bitlines with an increment of 4 bitlines. A
bus having a pair of coupled transmission lines, the smallest
topology to which TWR can be applied, is also included in
the test suite. Every bus was assumed to run on the next to
last top metal layer of a 10-metal-layer BEOL cross section
corresponding to the 65nm technology node. The top two
metal layers of this cross section are 8X layers that are used for
global on-chip signal and clock interconnection. In the global
buses of the test suite, the signal wire width is 0.8 }�~ on a
pitch of 1.6 }�~ while the power wire width is 2.4 }�~ on a
pitch of 8.0 }�~ . The structure of the power bus alternates the



VDD and the VSS (ground) wires. In each power bay between
a VDD and a VSS, two signal wires are routed at minimum
spacing with the net outcome that the distance between a
signal wire and its neighboring power wire was 1.60 ��� . The����������

matrices of each bus are computed according to
the methodology flow described in [29] as implemented in
IBM’s AQUAIA tool.

The top cross section of Figure 6 shows an example of the
geometry used to extract the PUL capacitance matrix,

�
, of a

24-line bus while the bottom cross section shows the geometry
used to extract the PUL inductance matrix

�
. One important

aspect of TWR is the impact of electromagnetic couplings
on convergence. This impact was expressed mathematically
in an aggregate form through the matrix �|�1�3� and its norm� ���S�3� � , see Equation (34) and Figure 4. Perhaps a more
visual way for capturing the electromagnetic couplings in a
bus is to plot the bar graph of the capacitive and inductive
coupling coefficients defined as follows:

Capacitive: ���o����� � � ���� �
�
�����#�����/�� 

(39)

Inductive: � �¢¡a£��� � ¤ ���¤ �
�
�9���9�������� 

(40)

where
� ��¥ � ���G¦ and

� ��¥ § ���G¦ . In Figure 7 such a bar graph
is shown for a 24-line bus in the case when

� � �I¨
. Note in

the top graph how most of the electromagnetic coupling is due
to the nearest neighbor line,

� � �a�
, that is sharing the same

power bay with line
� � �©¨

. The capacitive and inductive
coupling coefficients of this neighbor are 40% and 50%,
respectively. The bottom graph is a zoom-in on the region
where the coupling coefficient is below 2.5%. The presence
of the power bus provides effective capacitive shielding and
almost eliminates all the capacitive couplings due to lines that
are in adjacent power bays, including the nearest neighbor
line

� � �lª¬«
On the other hand, the inductive coupling is not

eliminated but decreases gracefully with the distance between
the center line

� � �I¨
and its right and left neighbors. Finally,

note that the inductive coupling coefficients are consistently
larger than the capacitive coupling coefficients, indicating that
the induced crosstalk noise in the bus is essentially inductive.
This situation is typical and should be sufficient to justify the
use of inductance-aware and/or transmission line macromodels
for global on-chip interconnect.

We note finally that for all these on-chip buses
�

is a
diagonal matrix (in fact, a scalar multiple of the identity
matrix) and

� �® «
Each line in the bus was terminated with a ¯a°�± resistor on

the near end and a
�^²´³

capacitor on the far end. The active
signal was a trapezoidal waveform with a rise/fall time of µ�° ²B¶
between °�· and

� · . The total bus length is
� °a°a°a��� .

The numerical experiments were all crosstalk experiments
in which only the center bitline was active while all other
bitlines were quiet. Specifically, in a bus of width

  � ¨� /¸
lines, we assumed that line

� �  t¸
was active, all the other

lines remaining quiet.
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Fig. 7. Capacitive and inductive coupling coefficients for a 24-bitline bus.
The reference line is line 12 assumed active.

B. Validation

In this set of results, the question of “convergence to
the right solution” is addressed. TWR has been extensively
validated against a SPICE-level simulator, namely, PowerSpice
(the IBM circuit simulation program). On each bus both
TWRTL and PowerSpice were run. Within TWRTL each
transmission line was analyzed as a single line excited with
distributed sources whose states are updated according to the
TWR algorithm. The waveforms of these sources are com-
puted according to Equations (5) and (6) and communicated
to PowerSpice using the API interface. The process of decom-
posing the bus into single transmission lines, scheduling the
TWR iterations, probing currents and voltages, and updating
the relaxation sources is done in-core (i.e. no file IO) but
outside the PowerSpice core engine whose sole responsibility
is to analyze the single lines. The run controls of both TWRTL
and PowerSpice were exactly the same.

Given the efficiency limitation of PowerSpice in analyzing
buses containing more than 10 transmission lines, a lumped
RLC circuit model has been used. For the PowerSpice case,
each cell in the lumped model is as shown on the top of
Figure 2. Because the full electromagnetic couplings are taken
into account in the PowerSpice bus models, the analysis is
called “full analysis.” As for the TWR analysis in TWRTL,
the lumped model is as shown on the bottom of Figure 2. The
number of cells for both the PowerSpice and TWR analysis
was taken to be 10 cells per each �¹� of transmission line
length.

For each bus, the difference between the full analysis and
the TWR analysis was measured as follows:º�»�¼D½¾ �P¿À� � Á�Â*ÃÄ�ÅÀÆiÅÀÇÉÈ Ê ½�ËQÌÍTÎ¾ �P¿ �^Ï �ÑÐ Ê ÇBÒ�Ó¾ �S¿ ��Ï � È

º Ó ÎQÔ¾ �P¿À� � Á�Â*ÃÄ�ÅÀÆiÅÀÇ È Ê ½�ËQÌÍTÎ¾ �P¿ �^Ï �ÑÐ Ê ÇBÒ�Ó¾ �S¿ ��Ï � È
Á�Â*ÃÄlÅ´ÆiÅBÇ È Ê ½ÕË]Ì�ÍTÎ¾ �S¿ �^Ï � È���×Ö¹�9 
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Fig. 8. Worst-case TWR error with respect to full analysis.
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Fig. 9. Relative TWR error with respect to full analysis.

where Ø�Ù�Ú=ÛÜ ÝSÞBß and Ø�à�áQâÜ ÝSÞBß measure, respectively, the worst-
case absolute and worst-case relative errors at point Þ of
the ã -th line of the bus. Note that ØGÙ�Ú=ÛÜ ÝPäÕß and Ø�Ù�ÚDÛÜ ÝPå3ß
are, respectively, the aboslute errors at the near and far
end of the ã -th line, while Ø à�áQâÜ ÝPäÕß and Ø à�áTâÜ ÝPå3ß are the
corresponding relative errors. For all the buses, the TWR was
run to convergence (see next subsection). In Figures 8 and
9, representative error values for the near and far ends are
given as functions of bus width. Each plot has three curves
corresponding to three values of ã : the active line, the nearest-
neigbor line and the farthest-neighbor line. It is remarkable
that for this series of tests, the quality of the TWR convergence
to the PowerSpice solution is independent of the problem size
as measured by the bus width. Furthermore, the relative error
at the near end is consistently worse than that at the far end.
This suggests that a conservative relative convergence criterion
should be based on the near-end waveforms.

C. Convergence

In this set of results, the convergence of the TWR process
for the on-chip bus test suite is illustrated. For each bus, TWR
was run for 4 iterations with the initial iteration having zero
initial condition on the relaxation sources. The absolute and
relative convergence errors at iteration æ for each bus are
defined as follows:
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Fig. 10. Worst-case difference between 3rd and 4th TWR iterations.
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Fig. 11. Worst-case relative difference between 3rd and 4th TWR iterations.

Ø Ù�ÚDÛç ÝPÞÀßéè ê�ë*ìíYî Ü îBï ê�ë*ìðlî´ñiîBòÉó ô¬õ çöÜ ÝSÞT÷^ø^ßDù ô´õ çGú íÜ ÝPÞQ÷^ø^ß ó
Ø à�áQâç ÝPÞÀßéè ê�ë*ìíYî Ü îBï

ê�ë*ìðlî´ñiîBòÉó ô¬õ çöÜ ÝSÞT÷^ø^ßDù ô´õ çGú í öÜ ÝPÞQ÷�ø^ß ó
ê�ë�ìð�îÀñiîÀòûó ô õ çöÜ ÝSÞQ÷�ø^ß ó

The plots of Ø�Ù�ÚDÛü Ý.ä�ß (near end) and ØYÙ�Ú=Ûü ÝPåýß (far end) vs.
bus width are given in Figure 10. The absolute convergence
errors are remarkably stable with respect to the bus width.
An essentially similar behavior is displayed by the relative
convergence errors in Figure 11 where ØGà�áQâç Ý.ä�ß (near end)
and Ø�à�áQâü ÝPåýß (far end) are plotted. As was remarked for the
validation results, the near end has consistently worse absolute
and relative errors than the far end. This again suggests that
the near-end waveforms provide us with the more conservative
convergence criterion.

In order to assess the TWR convergence rate, the plots ofØ�Ù�Ú=Ûç ÝPä�ß (near end) and ØYÙ�Ú=Ûç ÝPåýß (far end) vs. iteration æ
are given in Figure 12 for a selected number of bus widths:
12, 24, 32 and 40 bitlines. Note that the þ -axis on ths plot
is logarithmic. There is about a decade of improvement in
waveform accuracy on the first three iterations with the far
end waveform having a faster convergence rate than the near
end waveform. Furthermore, there is no appreciable difference
in the rates across the test suite: the plots for all the selected
buses land on the top of each other. Similar conclusions can be
made about Figure 13 showing the relative convergence errors:Ø�à�áQâç ÝPäÕß at the near end and ØYà�áQâç ÝPåýß at the far far end. Note
that because of the zero initial condition on the relaxation
sources, we will always have ØYà�áQâí Ý.ä�ß/è Øà�áTâí ÝPå3ß/è ÿ as
shown.

The voltage waveforms that result from the first few it-
erations have the required engineering accuracy needed to
conduct on-chip bus signal integrity analysis as we will
ilusrtate in the following two subsections.
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Fig. 12. Worst-case difference showing rate of convergence for 4 wide
on-chip transmission line structures. Note that the convergence behavior is
essentially independent of the number of lines.
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Fig. 13. Worst-case difference showing rate of convergence for 4 wide
on-chip transmission line structures. Note that the convergence behavior is
essentially independent of the number of lines.

D. Waveform example

In Figures 14, 15, and 16, we show a representative sample
of the voltage waveforms for the 40-bitline on-chip bus
of the test suite. On each plot four waveforms are shown
corresponding to the fully-coupled PowerSpice analysis and
the first three TWR iterations. There are several observations
that can be made about these plots. First, the TWR waveforms
have indeed converged to the PowerSpice ones in the first
few iterations. The active line

�������
, Figure 14, displays

the fastest convergence as the 1st TWR waveform is already
very close to the PowerSpice one. The crosstalk waveforms
need at least two iterations as the initial iteration results in
an identically zero waveform for the crosstalk because of the
zero initial condition on the relaxation sources. Recall that
in TWR the relaxation sources are the ones responsible for
the transmission of electromagnetic couplings from one line
to another. The second observation is that TWR is capable of
capturing the crosstalk in the farthest line in the bus within
very few Gauss-Jacobi iterations as is clear from Figure 16
where a crosstalk level of few tens of microvolts is obtained
within essentially two iterations. The third observation is
that although in the validation and convergence results we
ascertained that the far-end waveforms have smaller errors and
faster convergence, the actual waveforms obtained from TWR
are all within engineering accuracy for both the near end and
far end waveforms as is shown in the 40-bitline plots.

E. Application: Noise analysis

This set of results illustrates even further the quality of
the TWR waveforms compared with the PowerSpice ones.
The driving input on the active line in these experiments
was the rising half of the trapezoidal input of the previous
experiements. The crosstalk in a 24-bitline on-chip bus was
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Fig. 14. A 40-line bus waveform example. Near end and far end of the
active line. Active lines have typically the fastest TWR convergence.
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Fig. 15. A 40-line bus waveform example. Near end and far end of the
nearest neighbor to the active line. This neighbor shares the same power bay
as the active line, and so capacitive coupling is maximized.
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Fig. 16. A 40-line bus waveform example. Near end and far end of the
rightmost line in the bus. Note how TWR is capturing the essentially inductive
crosstalk waveform.
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Fig. 17. Worst-case noise and its polarity for all the near ends on the
victim lines. Note the orders-of-magnitude difference between the nearest
and farthest neighbors on this 24-bitline bus.

analyzed under the assumption that line �
	 was active with
all the other lines remaining quiet. Figures 17 and 18 show
that TWR is faithfully capturing both the polarity and the
amplitude of the worst-case noise on every single quiet line on
the bus. This occurs within 3 Gauss-Jacobi iterations for both
the near-end and far-end crosstalk. For example, the bottom
bar graph in Figure 18 shows the polarities of the worst-case
noise as calculated by both PowerSpice and TWRTL. The
polarities are identical. It is worth noting that the worst-case
noise is of capacitive nature (positive polarity) for the nearest-
neighbor of the active line, line �
� , that shares the same power
bay with it. The capacitve shielding due to the power grid
makes the worst-case noise on the remaining quiet lines of
inductive nature (negative polarity). In order to clearly show
the relathionships between the PowerSpice worst-case noise
and the TWR one, the top bar graph displays their worst-case
amplitudes side by side. Because of the differences in crosstalk
scale across the bitlines from the nearest neighbor ( �
���� ) to
the farthest neighbor ( ������ ), the amplitude bar graph was in
fact plotted in terms of the decimal logarithm of the worst-
case noise amplitude divided by the full voltage swing of the
active signal (=1Volt).

These signal integrity experiments indicate that TWR can
very well be used to find the worst-case switching patterns
needed for simultaneous switching and common-mode noise
analysis [8], [9].

F. Run times

The TWR run times is essentially linear as function of the
bus width. This is illustrated in Figure 19 in which the � -
axis displays the TWR run time for the buses of the test suite
normalized with respect to the run time of the 2-line bus -
the smallest bus topology to which TWR applies. This figure
confirms the finding of [3] and is to be compared with Figure
5 therein.
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Fig. 18. Worst-case noise and its polarity for all the the far ends on the
victim lines. Note the orders-of-magnitude difference between the nearest
and farthest neighbors on this 24-bitline bus.
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Fig. 19. Normalized TWR run time. The normalization is with respect to
the 2-line TWR case.

The more interesting result in our own embedded imple-
mentation of TWR is shown in Figure 20 where the cost of
updating the relaxation sources from one iteration to another
appears to be the single major contributor to the TWR com-
putational cost. Since the number of WR iterations needed to
achieve engineering precision for the on-chip bus application
is small, the WR acceleration techniques studied in [15], [17],
[18], [30] might not be needed in this specific context. On the
other hand, algorithms for making the relaxation source update
more time-efficient are needed. We are currently exploring
several techniques for speeding up the relaxation source update
in TWR.
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Fig. 20. Computational cost breakdown of TWR. Note that most of the time
taken by TWR is due to relaxation source updates from one iteration to the
next.



VIII. CONCLUSIONS AND FUTURE WORK

This paper has initiated the formal analysis of convergence
of the transverse waveform relaxation (TWR) method for
the analysis of very wide, multiconductor transmission line
systems. Significant notational simplicity has been achieved
in the analysis using a splitting framework for the per-unit-
length matrix parameters of the transmission lines. While our
proofs, software implementation and numerical examples have
focused on the Gauss-Jacobi version of TWR, they can be
readily extended to the Gauss-Seidel and SOR versions. The
same framework can also be used to analyze the convergence
of block TWR, where lines with strong couplings are clustered
together and analyzed as a single multiconductor subsystem, as
well as overlapped TWR, where clusters of lines are allowed to
share some conductors. One practical outcome of our work is
the seamless integration of TWR within a signal integrity CAD
tool using the API of an industrial circuit simulator. Another
outcome is the fact that for on-chip buses, the main TWR issue
is not the number of TWR iterations until convergence but
rather the cost of relaxation source update. TWR acceleration
will come mainly from devising new schemes for efficient
source update. Standard issues in WR like circuit decom-
position, time windowing, scheduling, and multirate analysis
should be re-visited in the TWR context. New issues specific
to TWR remain to be fully investigated, including the impact
of nonlinear drivers and receivers on convergence, the role of
series and dielectric losses in stabilizing TWR convergence,
and the interplay between windowing very long time intervals
and segmenting very long buses as might be the case in very-
wide, off-chip communication links.
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