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Abstract

A finite test set for an integer optimization problem enables us to verify whether a feasible point
attains the global optimum. We establish in this paper several general results that apply to integer
optimization problems with nonlinear objective functions.
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1 Introduction and related work

Given a feasible point x∗ of an optimization
problem P , one important concern is to estab-
lish a set of points T = T (x∗, P ) with which
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one can verify whether x∗ is optimal for P .
We refer to such a set T as a test set. Usually,
for a test set T , we compare feasible elements
of {x∗ + t : t ∈ T} , via objective value,
against x∗ . Our goal is to establish, in vari-
ous settings, the existence of a finite test set
T . An initial feasible solution together with a
description of a finite test set for any feasible
point allows us to design an algorithm that it-
eratively builds up a sequence of better and
better points.

It is preferred that a test set T does not de-
pend on x∗ , but this is not always possible.
In general, it is interesting to establish a finite
test set T and to understand the dependence
of T on x∗ and on the parameters that define
P .

Before proceeding, we briefly set some nota-



tion. Z (resp., R) denotes the set of integers
(resp., real numbers). Z+ (resp., Z−) denotes
the set of non-negative (resp., non-positive)
integers, and we use Z−∞ := Z ∪ {−∞} ,
Z+∞ := Z ∪ {+∞} and Z±∞ := Z ∪ {±∞}.
Analogously, we use such notation for R . For
S ⊂ Zn , and simple variable bounds l ∈ Zn

−∞ ,
u ∈ Zn

+∞ , with l ≤ u , let

F (S, l, u) := {x ∈ S : l ≤ x ≤ u}.

For a function f : Zn→R , we consider the
optimization problem

max {f(x) : x ∈ F (S, l, u)} .
P (f(x), S, l, u) :

Often, we focus on the case in which S is de-
fined by linear equations. For A ∈ Zm×n and
right-hand side b ∈ Zm (l, u as above), we
sometimes consider S of the form S := {x ∈
Zn : Ax = b}, and we write

F (A, b, l, u) := {x ∈ Zn : Ax = b, l ≤ x ≤ u}

and

max {f(x) : x ∈ F (A, b, l, u)} .
P (f(x), A, b, l, u) :

Also, we write L(A) := {x ∈ Rn : Ax = 0} .
An augmentation for x∗ ∈ F (A, b, l, u) is a
t ∈ Zn such that x∗+ t ∈ F (A, b, l, u) . Neces-
sarily, an augmentation t is in L(A). The aug-
mentation t is improving if f(x∗) < f(x∗+ t) .

We let On
j denote the j-th orthant of Rn , for

integers j satisfying 0 ≤ j < 2n . Specifically,
the j-th orthant of Rn is defined, for 0 ≤ j <
2n , by having xk ≥ 0 (resp., xk ≤ 0) if bit k is
0 (resp., 1) in the binary representation of j .
Hence On

0 = Rn
+ . When we need to work with

an arbitrary orthant (of Rn), we often simply
use O .

While it is no surprise that for a linear con-
tinuous optimization problem a finite test set

(appropriately defined) can be given, the sit-
uation becomes more difficult when we con-
sider linear integer optimization. The follow-
ing general result establishes a finite test set
for linear integer optimization.

Theorem 1.1 (Graver [3]) For all A ∈
Zm×n , there exists a finite set T (A) ⊂
Zn ∩ L(A) such that for every c ∈ Rn ,
b ∈ Zm , and l ∈ Zn

−∞ , u ∈ Zn
+∞ , with

l ≤ u , the point x∗ ∈ F (A, b, l, u) is op-
timal for P (cT x, A, b, l, u) if and only if
cT (x∗ + t) ≤ cT x∗ for all t ∈ T (A) such that
x∗ + t ∈ F (A, b, l, u) .

One such set T (A) is the so-called Graver ba-
sis G(A), which will be defined and used in
Section 2. It turns out that Theorem 1.1 can
be extended to a broader class of functions.

Let F be the set of functions f : Zn→R of
the form f(x) =

∑r
i=1 φi(c

T
i x) , where ci ∈ Zn

and φi : R→R is concave (univariate), for i =
1, . . . , r .

Theorem 1.2 (Murota, Saito and Weis-
mantel [5]; Hemmecke[4]) For all f ∈
F and A ∈ Zm×n , there exists a finite set
T (f(x), A) ⊂ Zn ∩ L(A) such that for ev-
ery b ∈ Zm , and l ∈ Zn

−∞ , u ∈ Zn
+∞ ,

with l ≤ u , a point x∗ ∈ F (A, b, l, u) is
optimal for P (f(x), A, b, l, u) if and only if
f(x∗ + t) ≤ f(x∗) for all t ∈ T (f(x), A) such
that x∗ + t ∈ F (A, b, l, u) .

It is our intention with this note to extend
both Theorem 1.1. and 1.2 to a broader class
of functions with a property related to super-
and subadditivity, that will be defined in Sec-
tion 3.

The paper is organized as follows. In Section 2,
we study the general problem P (f(x), S, l, u)
with varying l, u . In this case it is possible
to derive, for every feasible point x∗ , a finite
set for verifying its optimality. In Section 3
we introduce the notion of oriented subaddi-
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tive and superadditive functions and exploit
their structure. In Section 4, we construct fi-
nite test sets for integer optimization prob-
lems where the objective function has certain
oriented subadditive and superadditive prop-
erties on an orthant refinement. In this set-
ting, the sets that we construct are always
universal in that they do not depend on the
feasible point x∗ that we test for optimality.

2 Finite test sets for feasible points

Define a partial order v on Zn that extends
the coordinate-wise partial order ≤ on Zn

+ as
follows: For a pair of vectors u, v ∈ Zn , we
write u v v and say that u is conforms to v
if |ui| ≤ |vi| and uivi ≥ 0 for i = 1, . . . , n ,
that is, u and v lie in the same orthant of
Zn , and each component of u is bounded by
the corresponding component of v in absolute
value. Points with some zero components are
in multiple orthants, but it is easy to see that
v is well defined.

Here and throughout the paper, we make
heavy use of the following natural exten-
sion to v and Zn of the well-known Gordan
Lemma [2] for ≤ and Zn

+ .

Lemma 2.1 (Extended Gordan Lemma)
For every set S ⊂ Zn , the set T (S) ⊂ S of
v-minimal elements of S is finite.

Applying Lemma 2.1 we obtain

Theorem 2.2 For every set S ⊂ Zn , func-
tion f : Zn→R , and point x∗ ∈ S , there is
a finite set T (x∗, f(x), S) ⊂ Zn such that, for
every l ∈ Zn

−∞ , u ∈ Zn
+∞ with l ≤ x∗ ≤ u ,

the point x∗ is optimal for P (f(x), S, l, u) if
and only if there is no t ∈ T (x∗, f(x), S) with
l ≤ x∗ + t ≤ u .

PROOF. Let

H(x∗, f(x), S) := {h ∈ Zn :

x∗ + h ∈ S, f(x∗) < f(x∗ + h)}.

We claim that the set T (x∗, f(x), S) ⊂
H(x∗, f(x), S) of v-minimal elements, guar-
anteed to be finite by the Extended Gordan
Lemma 2.1, is the desired set. Consider any
l ∈ Zn

−∞ , u ∈ Zn
+∞ with l ≤ x∗ ≤ u . If x∗ is

not optimal for P (f(x), S, l, u) , then there is
an x̄ ∈ S with l ≤ x̄ ≤ u and f(x∗) < f(x̄) ,
and hence h := x̄ − x∗ ∈ H(x∗, f(x), S) .
Therefore there is a t ∈ T (x∗, f(x), S) with
t v h . Now t v h and l ≤ x∗, x∗ + h = x̄ ≤ u
imply that l ≤ x∗ + t ≤ u .

Conversely, if there is a t ∈ T (x∗, f(x), S)
with l ≤ x∗ + t ≤ u , then T (x∗, f(x), S) ⊂
H(x∗, f(x), S) implies that x∗ + t ∈ F (S, l, u)
and f(x∗) < f(x∗+ t) , and therefore x∗ is not
optimal for P (f(x), S, l, u) . This completes
the proof. 2

We next present a refined result for the case
in which the set S is defined using linear equa-
tions. For this we need to use the Graver ba-
sis G(A) of an m× n integer matrix A, which
can be defined as follows: G(A) := T (S) is the
set of all v-minimal elements in S := {x ∈
Zn ∩ L(A) : x 6= 0} .

Theorem 2.3 Let f : Zn→R be a function,
and let A ∈ Zm×n . For every x∗ ∈ Zn, there
exists a finite set T (x∗, f(x), A) ⊂ Zn ∩ L(A)
such that for all l ∈ Zn

−∞ , u ∈ Zn
+∞ with l ≤

x∗ ≤ u , letting b∗ := Ax∗ , x∗ ∈ F (A, b∗, l, u)
is optimal for P (f(x), A, b∗, l, u) if and only if
there is no t ∈ T (x∗, f(x), A) with l ≤ x∗+t ≤
u .

PROOF. Let G(A) = {g1, . . . , gk} be the
Graver basis of A . Let

A(x∗) := {α ∈ Zk
+ :

f(x∗) < f(x∗ +
∑k

i=1 αigi)} .
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Let B(x∗) ⊂ A(x∗) be the subset of A(x∗)
of ≤-minimal elements, which is finite by the
(standard) Gordan Lemma. We claim that the
desired test set is provided by

T (x∗, f(x), A) :=
{∑k

i=1 βigi : β ∈ B(x∗)
}

.

First, note that T (x∗, f(x), A) ⊂ L(A) and
therefore, for all t ∈ T , we have A(x∗ + t) =
Ax∗ = b∗ . Also, for all t ∈ T (x∗, f(x), A),
we have f(x∗) < f(x∗ + t) by the construc-
tion of T (x∗, f(x), A) . So if there is a t ∈
T (x∗, f(x), A) with l ≤ x∗ + t ≤ u then x∗ + t
is a better feasible point than x∗, so x∗ is
not optimal. Conversely, suppose that x∗ is
not optimal and let x′ be a better feasible
point. Let h := x′ − x∗ . Then h ∈ L(A)
and therefore there is an α ∈ Zk

+ providing
a conformal decomposition of h into Graver
bases elements, that is, h =

∑k
i=1 αigi and

gj v h whenever αj > 0 . Now f(x∗) <
f(x′) = f(x∗ +

∑k
i=1 αigi) implies that α ∈

A(x∗) and hence there is a β ∈ B(x∗) satisfy-
ing β ≤ α . Consider the element t := Gβ in
T (x∗, f(x), A) . Then h =

∑k
i=1 αigi being a

conformal decomposition of h and β ≤ α im-
ply t v h . Now l ≤ x∗, x∗ + h = x′ ≤ u imply
l ≤ x∗ + t ≤ u . 2

Note that, in an actual construction of the
test set in the proof of Theorem 2.3, it might
be useful to represent the Graver basis as the
union of its intersections Hj := G(A) ∩ On

j

with the orthants of Rn, for 0 ≤ j < 2n . Then
eachHj is the so-called Hilbert basis of the ra-
tional cone On

j ∩L(A), and, using the so-called
integer Carathéodory property (see [6]), one
can restrict attention in the definition of the
setA(x∗) in the proof of Theorem 2.3 to those
α ∈ Zk

+ with at most 2n − 2 nonzero compo-
nents corresponding to elements of some Hj .

3 Oriented sub/superadditive func-
tions

In this section we introduce the notion of ori-
ented subadditive (and superadditive) func-
tions and show how to manipulate these func-
tions. The next definition makes precise what
we mean by this.

Definition 3.1 Let X, D1, D2 ⊂ Rn be
given. A function f : Zn→R is (X, D1, D2)-
oriented superadditive if for all integral
x ∈ X, y ∈ D1, z ∈ D2 , we have

f(x + y + z) + f(x) ≥ f(x + y) + f(x + z) .

We note that the defining inequality is equiv-
alent to

f(x + y + z)− f(x)

≥ [f(x + y)− f(x)] + [f(x + z)− f(x)] ,

which is perhaps more intuitive — the incre-
mental value of adding both y and z to x ex-
ceeds the sum of the incremental values of
adding y and z individually to x.

Definition 3.2 The function f is oriented
subadditive if −f is oriented superadditive.

Note that the definitions do not depend on
the order of D1 versus D2 . That is, f is
(X, D1, D2)-oriented superadditive if and
only if f is (X, D2, D1)-oriented superaddi-
tive. In the special case when D = D1 = D2,
then a function is (X, D,D)-oriented super-
additive if and only if the family of functions
fx : D ∩ Zn→R defined by

fx(y) = f(x + y)− f(x)

is superadditive (in the ordinary sense), for all
x ∈ X . That is,

fx(y + z) ≥ fx(y) + fx(z) ,
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for all y, z ∈ D . Also note that (X, D,D)-
oriented superadditivity of f implies that

f(x +
∑

i

yi)− f(x) ≥
∑

i

[f(x + yi)− f(x)] ,

for x ∈ X and yi ∈ D .

Various functions are readily seen to be
(X, D1, D2)-oriented superadditive. Trivially,
all affine functions are (Rn, Rn, Rn)-oriented
superadditive. Any univariate convex func-
tion is (R+, R+, R+)-oriented superadditive
as well as (R+, R−R−)-oriented superadditive
[5].

Other superadditive functions can be easily
defined. For example, the function f : Z2→Z
defined by

f(x) = x1x2

is (R2, O2
j , O

2
j )-oriented superadditive for

j = 0, 3 (i.e., the (+, +) and (−,−) orthants).
However, for j = 1, 2 (i.e., the (+,−) and
(−, +) orthants), this function is (R2, O2

j , O
2
j )-

oriented subadditive. These observations fol-
low by calculating that

f(x + y + z) + f(x)− f(x + y)− f(x + z)

= y1z2 + y2z1 ,

and then just considering how for y and z both
in any of the four orthants, we have control on
the sign of y1z2 + y2z1 .

In order to exploit the property of oriented
sub/superadditivity, we need the notion of an
orthant refinement of a linear space.

Definition 3.3 For a d-dimensional sub-
space L ⊂ Rn , an orthant refinement of
L is a finite set C of d-dimensional (convex)
polyhedral cones such that:

(1) L = ∪C∈CC ;
(2) int(C) ∩ int(D) = ∅ , for C, D ∈ C with

C 6= D ;
(3) For all C ∈ C: int(C) ⊂ On

j , for some
0 ≤ j < 2n .

Of course we trivially have that the set of or-
thants is an orthant refinement of Rn .

We can perform operations on oriented
sub/superadditive functions. In particular,
we obtain the following result.

Theorem 3.4 Let C be an orthant refine-
ment of Rn , and let f : Zn→R be (Rn, C, C)-
oriented superadditive (subadditive) for all
C ∈ C . Let W ∈ Zn×m , and define the lin-
ear function w : Zm→Zn by w(x) := Wx ,
for all x ∈ Rm . Then there exists an orthant
refinement C̃ of Rm , such that the composed
function

f ◦ w : Zm→R
is (Rm, C̃, C̃)-oriented superadditive (subaddi-
tive), for all C̃ ∈ C̃ .

PROOF. Without loss of generality, we
consider the case where the function f
is (Rn, C, C)-oriented superadditive. For
0 ≤ j < 2m and C ∈ C , we define

C̃j := {x ∈ Om
j : Wx ∈ C} ,

and we let

C̃ := {C̃j : 0 ≤ j < 2m and C ∈ C} .

Since the family of cones C is an orthant re-
finement of Rn , the family of cones C̃ is an
orthant refinement of Rm . Moreover, for all
x ∈ Zm and y, z ∈ C̃j ∩ Zm , we have that
Wy,Wz ∈ C , and hence f(Wx+Wy+Wz)+
f(Wx) ≥ f(Wx+Wy)+ f(Wx+Wz) . 2

Theorem 3.4 illustrates that, indeed, the fam-
ily of oriented sub/superadditive functions is
not pathological. In combination with an or-
thant refinement of Rn , the structure of ori-
ented sub/superadditive objective functions
f allows us to establish finite universal test
sets for the family of optimization problems
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P (f(x), A, b, l, u) with varying integral data
b, l, u . This is the topic of the next section.

4 Oriented sub/superadditive integer
maximization

Our goal in this section is to use properties of
oriented sub/superadditivity to establish the
existence of finite test sets for a broad class of
nonlinear integer programming problems. In
doing so we need the notion of local optimality
with respect to a specific subset of Rn .

Definition 4.1 Let O be a subset of Rn

and f : Zn→R be a function. A point x∗ ∈
F (A, b, l, u) is O-optimal for P (f(x), A, b, l, u)
if for all vectors t ∈ Zn ∩ L(A) ∩ O such that
l ≤ x∗ + t ≤ u, we have f(x∗ + t) ≤ f(x∗) .
That is, there is no t ∈ O that is an improving
augmentation for x∗ .

As a first result, we consider the case where,
given a set O of Rn , a function f is
(Rn

+, Rn
+, O)-oriented superadditive. Then, we

can deduce that the set of all non O-optimal
solutions for a certain infinite family of prob-
lems has a nice combinatorial structure: it is
“closed up.” More precisely, we have

Lemma 4.2 Let A ∈ Zm×n , let O de-
note a subset of Rn , and let f : Zn→R
be (Rn

+, Rn
+, O)-oriented superadditive. Then

there is a finite set T (f(x), A) ⊂ Zn ∩L(A)∩
O , such that for every b∗ ∈ Zm, a point
x∗ ∈ F (A, b∗, 0,∞) is O-optimal if and only if
f(x∗ + t) ≤ f(x∗) for all t ∈ T (f(x), A) with
0 ≤ x∗ + t .

PROOF. Note that x∗ ∈ F (A, b∗, 0,∞) is
not O-optimal for P (f(x), A, b∗, 0,∞) if and

only if it belongs to

X(f(x), A) :={
x′ ∈ Zn

+ : ∃ t ∈ Zn ∩ L(A) ∩O ,

x′ + t ≥ 0, f(x′) < f(x′ + t)
}

.

We claim that the set X(f(x), A) is closed up;
that is, x′ ∈ X(f(x), A) implies that x′ + h ∈
X(f(x), A) , for all h ∈ Zn

+ .

To see this, suppose that x′ ∈ X(f(x), A) .
Therefore, there is a t ∈ Zn ∩ L(A) ∩ O such
that x′ + t ≥ 0 and f(x′) < f(x′ + t) . We
wish to show that x′ + h ∈ X(f(x), A), for
all h ∈ Zn

+ . To do this, we just need to show
that there is a t̂ ∈ Zn ∩ L(A) ∩ O such that
(x′+h)+ t̂ ≥ 0 and f(x′+h) < f((x′+h)+ t̂) .

We simply choose t̂ := t . Then we check

f((x′+h)+t)−f(x′+h) ≥ f(x′+t)−f(x′) > 0,

using (Rn
+, Rn

+, O)-oriented superadditivity of
f .

By the Gordan Lemma, there exists a finite
set X̃(f(x), A) ⊂ X(f(x), A) such that for all
x∗ ∈ X(f(x), A) there exists x̃∗ ∈ X̃(f(x), A)
with x̃∗ ≤ x∗ . By what we have already
shown, it follows that x∗ ∈ X(f(x), A) if
and only if there is a x̃∗ ∈ X̃(f(x), A) with
x̃∗ ≤ x∗ .

Now we just take T (f(x), A) to consist of
one improving augmentation for each point
in X̃(f(x), A), and the proof is complete. 2

As a next step, we characterize the existence of
a finite set for checking local optimality with
respect to an orthant, provided that the un-
derlying function is oriented subadditive. The
proof uses the arguments from the proof of
Theorem 6 of [5].

Lemma 4.3 Let O be an orthant of Rn, let
A ∈ Zm×n , and f : Zn→R be (Rn, O, O)-
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oriented subadditive. Then there is a fi-
nite set T (f(x), A) ⊂ Zn ∩ L(A) ∩ O,
such that for every b ∈ Zm, l ∈ Zn

−∞ and
u ∈ Zn

+∞, a point x∗ ∈ F (A, b, l, u) is O-
optimal for P (f(x), A, b, l, u) if and only if
f(x∗ + t) ≤ f(x∗) for all t ∈ T (f(x), A) with
l ≤ x∗ + t ≤ u .

PROOF. Let T (f(x), A) := H(A) =
{g1, . . . , gk} be the Hilbert basis of O∩L(A) .
Certainly if x∗ is O-optimal, there can be
no such t . So we suppose that x∗ is not O-
optimal. Then there exist α1, . . . , αk ∈ Z+

such that

f(x∗ +
∑k

i=1 αigi)− f(x∗) > 0 .

Next, (Rn, O, O)-oriented subadditivity im-
plies that

f(x∗ +
∑k

i=1 αigi)− f(x∗)

≤ ∑k
i=1[f(x∗ + αigi)− f(x∗)]

≤ ∑k
i=1 αi[f(x∗ + gi)− f(x∗)]

Hence, there exists an index i such that αi > 0
and f(x∗ + gi) − f(x∗) > 0 . This proves the
claim. 2

We next characterize local optimality for a
family of optimization problems associated
with oriented superadditive functions f in the
presence of lower and upper bounds.

Lemma 4.4 Let A ∈ Zm×n , let O be an or-
thant of Rn , and let f : Zn→R be oriented
(O′, O′, O)-superadditive, for all orthants O′ .
Then there exists a finite set T (f(x), A) ⊂
Zn ∩L(A)∩O such that for every b ∈ Zm, l ∈
Zn
−∞ and u ∈ Zn

+∞, a point x∗ ∈ F (A, b, l, u)
is O-optimal for P (f(x), A, b, l, u) if and only
if f(x∗+t) ≤ f(x∗) for all t ∈ T (f(x), A) with
l ≤ x∗ + t ≤ u .

PROOF. Let H(A) = {g1, . . . , gk} be the
Hilbert basis of O ∩ L(A) . Let

A :=
{
(x, α) : x ∈ Zn, α ∈ Zk

+,

f(x) < f(x +
∑k

i=1 αigi)
}

.

Let B ⊂ A be the subset of A comprising v-
minimal elements, which is finite by the Ex-
tended Gordan Lemma 2.1. We claim that the
test set for local optimality is provided by

T := {∑k
i=1 βigi : ∃ x ∈ Zn , (x, β) ∈ B} .

First, note that T ⊂ L(A) ∩O and therefore,
for all t ∈ T , we have A(x∗ + t) = Ax∗ = b .
So if there is a t ∈ T with l ≤ x∗ + t ≤ u and
f(x∗) < f(x∗ + t) then x∗ is not optimal.

Conversely, suppose that x∗ is not O-optimal,
and let x′ be a better feasible point. Let h :=
x′ − x∗ ∈ O . Then h ∈ L(A) , and there-
fore there is an α ∈ Zk

+ providing a confor-
mal decomposition h =

∑k
i=1 αigi of h into

Hilbert basis elements. Now f(x∗) < f(x′) =
f(x∗ +

∑k
i=1 αigi) implies (x∗, α) ∈ A , and

hence there is a (y∗, β) ∈ B satisfying y∗ v x∗

and β ≤ α .

Consider the element t :=
∑k

i=1 βigi in T .
Then h =

∑k
i=1 αigi being a conformal decom-

position and β ≤ α imply t v h . So now
l ≤ x∗, x∗ + h = x′ ≤ u imply l ≤ x∗ + t ≤
u . So x∗ + t is feasible. We claim that it
is also better than x∗ . Let v := x∗ − y∗ .
Then y∗ v x∗ implies that y∗ and v lie in the
same orthant. Also, (y∗, β) ∈ B ⊂ A implies
f(y∗) < f(y∗ +

∑k
i=1 βigi) = f(y∗ + t) . Now,

using the hypothesized property of f , we find
that, as claimed,

f(x∗+t)− f(x∗)

= f(y∗ + v + t)− f(y∗ + v)

≥ f(y∗ + t)− f(y∗) > 0 . 2
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We now put together the pieces to obtain the
main result of this section.

Theorem 4.5 Let A ∈ Zm×n , and let C be an
orthant refinement of L(A) . For all C ∈ C, let
f : Zn→R be either (Rn, C, C)-oriented subad-
ditive or (O,O,C)-oriented superadditive for
all orthants O of Rn . Then there is a finite set
T (f(x), A) ⊂ Zn ∩ L(A), such that for every
b ∈ Zm, l ∈ Zn

−∞ and u ∈ Zn
+∞, a point x∗ ∈

F (A, b, l, u) is optimal for P (f(x), A, b, l, u) if
and only if f(x∗ + t) ≤ f(x∗) for all t ∈
T (f(x), A) with l ≤ x∗ + t ≤ u .

PROOF. If x∗ ∈ F (A, b, l, u) is optimal for
P (f(x), A, b, l, u), then f(x∗ + t) ≤ f(x∗) for
all t ∈ Zn ∩ L(A) with l ≤ x∗ + t ≤ u .

If x∗ ∈ F (A, b, l, u) is non-optimal for
P (f(x), A, b, l, u), then there exists C ∈ C and
an improving augmentation h ∈ Zn ∩ L(A) ∩
C, i.e., f(x∗+h) > f(x∗) and l ≤ x∗+h ≤ u .
If f is (Rn, C, C)-oriented subadditive, then
by Lemma 4.3, we obtain a vector t from a
finite set for improvement. If f is (O, O,C)-
oriented superadditive for all orthants O of
Rn, then from Lemma 4.4 we obtain a vector
t from a finite set for improvement. This gives
the result. 2

We remark that many functions f meet the
hypotheses of Theorem 4.5. In particular, the
theorem applies to the function f(x1, x2) =
x1x2 (see Section 3). In turn, for c, d ∈ Zn, the
theorem applies to the rank-1 quadratic form
f : Zn→R defined by f(x) := xT cdT x , since
we can define new variables xn+1 and xn+2 ,
and then with the further linear constraints
xn+1 − cT x = 0 and xn+2 − dT x = 0 , we now
look to maximizing xn+1xn+2 .
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