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ABSTRACT

The quality of information (Qol) that sensor networks pro-
vide to the applications they support is an important de-
sign objective for their deployment and use. In this paper,
we introduce a layered framework for Qol-centered evalu-
ation of sensor network deployment. Considering the de-
tection of transient events class of applications, the layered
framework allows separation of the deployment evaluation
in three steps: input pre-processing, core analysis, and re-
sult post-processing. The layering allows the creation of a
rich, modular toolkit system for Qol-centered analysis that
can accommodate both existing and new system modeling
and analysis techniques. We demonstrate the utility of the
framework by comparing the Qol performance of finite-sized
sensor networks with general deployment topology, while, at
the same time, deriving some new analysis results for the
class of applications considered herein.

1. INTRODUCTION

With advances in computing and communication technolo-
gies, low(er) cost, intelligent networked sensor systems find
their way in a multitude of application environments in ar-
eas as diverse as the military intelligence gathering, habitant
monitoring, forest monitoring, utility grid monitoring, envi-
ronmental control, machinery control, and so on.
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For the past several years, considerable amount of research
work has been contacted regarding the internal operation
of a sensor network including ad hoc deployment and op-
eration of sensor networks, energy-aware architectures and
protocols, coverage and localization, efficient query dissem-
ination, etc. Given the fact that sensor networks are de-
ployed to serve a purpose (an application), while the value
and necessity of the study of the internal operation of these
networks is unquestionable, we find it appropriate that ad-
ditional studies are also needed that bridge the behavior of
the sensor networks with the application(s) they support.

We have elected to use the concept of quality of (sensor)
information (Qol) as a means to capture an application’s
information needs from the sensors. Traditional research on
Qol, also referred to as 1Q (for information quality) as well,
has its roots in the study of structured information residing
in database systems with respect to data consistency, com-
pleteness, currency, etc. [5]. Within the context of sensor
networks, a comprehensive definition of Qol is still an incon-
clusive endeavor, but for the purpose of this paper, we have
adopted the following definition: *

DEFINITION 1. Qol is the collective effect of the (acces-
sible) knowledge that is available regarding the information
derived from the sensors that determine the degree of accu-
racy and confidence by which the aspects of the real world
that are of interest to the user of the information can be
represented.

It follows from the above definition that Qol is a multi-
dimensional concept that is applicable (at least some aspects
of it) to a user, i.e., an application. The multi-dimensionality
of Qol pertains to attributes that “codify” and possibly quan-
tify the knowledge about the information.For example, knowl-
edge about the timeliness of the available information, its
reliability, its (arithmetic) precision, and so on, may be used
to describe how accurately we can represent the real world
using the sensor-derived information [1, 2, 3, 5].

Which information attributes are more important and/or
what is the range of acceptable values for them, will de-
pend on application(s) and their needs as specified by an
application planner. Given the broad application space for
sensor networks, we have elected to use for our research work
a general class of applications that are part of many deci-

"We have actually based our wording of the definition on
a paraphrase of ITU’s Rec. E.800 definition of quality of
service provided by a telecommunications services provider.



sion making operations. This class of applications relates
to event detection that find applications in surveillance and
intelligence gathering operations like detecting presence of
enemy weaponry, hostile activities (e.g., gunfire, explosions),
monitoring remote territories, and so on.

Upon detection of an event of interest, an operative can take
an action to mitigate the effects of the event. The effective-
ness and the severity of the action, (or the inaction, if the
event is not detected) will depend on the Qol that is pro-
vided to the operative. Thus, for the class of event detection
applications, we elect as Qol attributes of importance the de-
tection probability P, of correctly detecting the occurrence
of the event and the false alarm rate Py, i.e., the probability
of declaring the occurrence when it did not occur.

With the above as the motivating background, in this paper,
we introduce a Qol analysis framework instantiated through
a toolkit system. The toolkit (and the analysis framework
it represents) serves as a computational aid for a sensor sys-
tems designer to evaluate the performance of his/her de-
sign based on deployment and Qol constraints provided by
the application planner. Considerable amount of work has
been done for modeling and analyzing the detection and false
alarm performance of detection systems considering various
system parameters as signal-to-noise ratio (SNR), channel
fading, spatial correlations, and so on. [13, 4, 11, 6, 7]. Niu
and Varshney in [11] consider a homogenous system that re-
sults to identical SNR at the sensors of the network, while
Jayaweera in [6] has considers non-similar SNRs as a result
of the spatial spatial distribution of the nodes and channel
fading. Katenka et al. in [7] have also studied the decision
fusion algorithm, they have derived an approximation for
system’s decision threshold that provides performance guar-
antees for the system. These research considers fixed and
even persistent events. Detection systems have also studied
with relation to energy requirements as well. For example,
the work in [10] and [9] proposes a hybrid (neither central-
ized, nor distributed) energy-driven detection scheme, based
on the binary observations of the sensors, which provides de-
signers the flexibility to balance the detection accuracy and
energy consumption. In this paper we have not considered
energy efficiency as a metric of design or comparison.

We have recognized that past research in the area comprises
of point approaches to the detection evaluation. Thus, in
this paper, building upon our previous work [1, 2], we take
a system-level approach to detection evaluation considering
Qol analysis techniques for a class of centralized, distributed
(as well as hybrid) detection architectures for events whose
signatures have finite support, i.e., transient events. Study-
ing the transient event, brings a new dimension to the work
due to the time delays between the samples of the spatially
distributed sensors. Furthermore, considering the transient
events, different sampling policies will result in different er-
rors in performance of detection architectures.

The organization of the paper is as follows: In section 2, we
introduce the reference model for the system under consid-
eration and the general toolkit framework. In section 3, we
present the core analysis approach based on hypothesis test-
ing. In section 4, we include example uses of the framework
while, at the same time, deriving some new results for the
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Figure 1: Functional architecture of the reference detection
system.

analysis of networks with finite number of sensor and tran-
sient events. We conclude in section 5 with some concluding
remarks.

2. THE REFERENCE DETECTION MODEL
AND QOI ANALYSIS FRAMEWORK

We start this section introducing a reference architecture of
our sensor-enabled, detection system and then we introduce
the Qol analysis toolkit that is built around the reference
model.

2.1 The reference detection system

Figure 1 shows the reference architecture of our sensing sys-
tem. It comprises three functional subsystems: (a) the sen-
sor subsystem or sampler; (b) the fusion subsystem; and (c)
the detection subsystem. The sensor subsystem comprises M
sensors that sample the physical world; they provide these
samples to the fusion subsystem. The fusion subsystem,
comprising a collection of L fusion centers, operates on the
samples it receives (which could be corrupted by noise) to
produce a “summary” description of the samples. The sum-
mary, in turn, is used by the detection subsystem to decide
whether an event of interest has occurred or not. These
three subsystems may be collocated or separated as could
be the case of a networked sensing system.

According to the reference model, the sensor subsystem takes
samples {s1, $2,...} (if the event occurred) of the event sig-
nature as it is experienced locally by the sensors (the index
k in the figure identifies “things” related to the k-th sen-
sor). The sampled signature is distorted by noise and the
combination of the two (or just the noise component, when
the event did not occurred) produce recordable observations
{r1,72,...}. These observations are then processed by the
fusion subsystem to generate the sample summaries.

In case the event occurred, the sequence {si,s2,...} can
be thought as samples of “projections” of the original event
signature s*(t) at the locations of the sensors. These pro-
jections accommodate the impact of the signal propagation,
or, in other words, they are reflective of the physical ge-
ography of the system and the medium properties. Since,
decision making is really made based on the recorded obser-
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Figure 2: The Qol analysis framework and toolkit usage
architecture

vations, if the above projections were known, one could have
proceeded with the detection analysis unbeknownst to the
physical geometry of the system. In other words, a core fu-
sion and detection analysis engine can be developed that is
independent of “external factors” by assuming knowledge of
the signal projections at the sensor locations. Anchored on
this core analysis engine, a system-level analysis framework
can be developed that accommodates the remaining system
parameters, like the deployment and observation topology,
the application domain (and hence the collection of event
signatures s*(t) to be encountered), the signal propagation
models, the noise models, and so on.

Based on the above observation and the reference system
model in figure 1, next we propose a toolkit architecture
and a framework for a Qol analysis system.

2.2 The Qol analysis toolkit architecture

Figure 2 shows the component and “usage” architecture of
the proposed toolkit system. It comprises three major func-
tional blocks for: (a) input pre-processing; (b) detection
(Qol) analysis (the core analysis engine); and (c) output
post-processing. The input pre-processing deals with all
those aspects of the toolkit that generally relate to the con-
straints imposed on the signal(s) to be detected. These con-
straints include the deployment and observation topologies
(which determine where the sensors are located and where
the events occur), the signal propagation and attenuation
models (which determine how the original signal projects
itself at the sensor locations), the sampling policies (which
determine which sensors contribute which samples to the
detection process), the noise models (which determine the
distortion process of the signal), and so on. All of the
above contribute to the creation of the observation sequence
{r1,72,...} that feeds into the core analysis engine which
then calculates the Qol attributes for a very specific (well
defined) set of system parameters. The figure also shows the
special case of additive noise, where typically, noise sam-
ples {ni,n2,...} are simply added to the signal samples
{s1, $2,...}; this case will be studied further in the next sec-
tion. Given the application requirements, post-processing

of the Qol analysis results may be necessary, for example,
to calculate averages over an observation region, or calcu-
late optimal position of sensors, and so on. During post-
processing, the services of the core analysis engine may be
requested again for the Qol analysis of the system for a dif-
ferent set of system parameters.

In addition to the toolkit itself, the figure shows the rela-
tion of the application planner and the system designer to
the toolkit. The planner provides the problem definition and
constraints, e.g., in the form of the observation region, possi-
ble cost constraints, the application domain, and so on. The
designer provides system level model libraries, e.g., propaga-
tion models, noise models, communication and interference
models, and so on. When a deployment plan with associated
Qol attributes has been produced, the planner may take a
decision as to whether the expected performance of the sys-
tem will be satisfactory enough, or may request additional
analysis and trade-off studies for “what if” situations.

The layered analysis framework suggested by the toolkit al-
lows us to place (research) emphasis on different aspects of
the system, while still be able to relate these aspects back
to the overall system design objectives. For example, in the
next section, we focus on the core analysis engine indepen-
dently of the specifics of the sensor deployment. Special
cases of the latter then are considered during the derivation
of numerical results in section 4.

We close this section by providing an example of input pre-
processing; this prep-processing case will use in the presen-
tation of numerical results later in the paper as well. The
example relates to the physical topology (geometry) of the
sensor network.

Let the physical topology of the system be represented by
the distance vector® d = [di,..., dM]T, where dj, is the dis-
tance of the path k that a signal takes from the event lo-
cation to sensor k. Over path k, let ax(t) be the attenu-
ation the signal experiences, and let v be the propagation
speed for the signal. Assuming that an event occurs at time
t = 0 and possesses the (transient) event signature s*(t),
the signal signature seen by sensor k (the k-th event signa-
ture projection), 1 < k < M, would be (excluding any noise
components):

sk(t) = ar(t)s™ (t — m)u(t — 11), (1)

where u(t) is the unit step function. The time shift 7, is due
to the propagation delay to sensor k and equals 7, = di/v.
As discussed earlier, if si(t) were known, a Qol analysis
methodology can be employed independently of the original
signal s (¢).

3. THE CORE QOI ANALYSIS ENGINE:
HYPOTHESIS TESTING

Hypothesis testing is one of the primary tools used for the
performance analysis of detection systems [12, 8]. We will
base our core analysis engine on hypothesis testing as well.
In this section, we will quickly review the key results from

2Bold letters represent the (column) vector version of a
corresponding collection of parameters. Unless otherwise
stated, T' represents the matrix transposition operation.



hypothesis testing and we will (re)interpret them within the
context of our toolkit for sensor networks. In the course of
doing so, since our focus is on transient (or, in general, non-
constant) signals, some new results for detection in sensor
networks will also be derived.

In hypothesis testing a number of hypothesis are made, e.g.,
no event occurred (the null event), an event occurred, an
event of type I occurred, and so on. Then, based on obser-
vations made, sampled data in the context of sensors, one of
these hypotheses is declared to hold true. The selection of a
hypothesis is done to satisfy certain performance objectives.
In Bayesian hypothesis testing, which we will also adopt in
this paper, the objective is to minimize the average cost of
making a decision.

For our toolkit, we start considering binary hypotheses, i.e.,
event occurrence, (hypothesis Hp) vs. the null event (hy-
pothesis Hp). The general Qol influenced hypothesis testing
formulation for a single sensor where presented in [1, 2], and
were based on the following traditional formulation [12, 8]:

hypothesis Hy : 7 =  s; + n;, i=1,...,N,

hypothesis Ho : r; = i, i=1,...,N. (2)

where, under hypothesis Hi, s; represents the value of the
signal at the i-th sampling instance, while, under both hy-
potheses, n; represents an additive noise component to the
i-th sample, and r; represents the i-th measurement that the
fusion subsystem sees. Hypotheses testing is based using a
likelihood ratio test (LRT):?

Sryim (en) %

2, (3)

A(rN) N fRN\Ho(rN) Ho

where fr,m, (-) represents the probability density function
for the IV observations conditioned on hypothesis H;, i €
{0,1}; for notational brevity, in the sequel, we will skip the
size index N unless necessary. The threshold 7, is calcu-
lated from the a priori probabilities for the two hypotheses,
Py and Pi1, and the cost (of one unit) is incurred only when
a wrong decision is made, n = Py/P1, and the Bayesian test
minimizes the risk of making a wrong decision. When the
noise is described by a zero mean additive stationary Gaus-
sian process with covariance matrix C = E{n”n}, where

n = [ni,...,ny|, then the test in (3) reduces to the follow-
ing:
H
12:7C's 21 n* 2 In(n) + %STC_IS. 4)
Ho

The parameter [ is referred to as the sufficient statistic and
represents the summary operation performed by the fusion
subsystem on the measurements R;. Note that the execution
of the comparison between [ and n*, for deciding in favor of
the one or the other hypothesis, is the responsibility of the
detection subsystem in figure 1. Finally, in (4)

1/)2 2 TC 1, (5)

is reflective of the signal-to-noise ratio (SNR) for this setup.

3Reversing the notation in [12], the R;’s in (2) are random
variables, while the r;’s in (3) are value instances of the cor-
responding random variables. For a particular observation
instance, the r;’s are what is provided to the fusion subsys-
tem and not the R;’s.

For the special case of a single sensor system and additive,
white Gaussian (AWG) noise process with zero mean and
variance o2 (a N(0,0) random variable), the Qol perfor-
mance metrics, i.e., the probability of detection P4 and false
alarm rate Py can be derived from (4), and it is given by [2,
8:

Pd:Pr(l2n*|H1):1—(I)(M—y) , and  (6a)

P 2
Pf:Pr(ZZn*|H0):1—¢'(#+%), (6b)

respectively, where ®(-) is the cumulative distribution func-
tion for a A(0,1) random variable. The square of the pa-
rameter v is reflective of the signal-to-noise ratio (SNR) and
in particular:

=Y (7)

Within the context of sensor network, the covariance matrix
C of the noise process in (4) may capture correlations across
both the spatial (i.e., across the sensors) and temporal di-
mensions. We are currently investigating the implications
of this fact. Here, we will consider a special case where the
covariance matrix is diagonal with variance o7 for the mea-
surements related to sensor k, 1 < k < M.

It should be apparent that, due to the additive nature of
terms in (4), the “contributions” from the various sensors to
(4) may be (under certain conditions) separable and, hence,
possibly easier to describe the system-wide Qol performance
using simpler formulations as the ones in in (6) and (7). We
will study the implications of this possibility in the next two
subsections where we instantiate the above discussion for
two different fusion architectures.

In a sensor network, a fusion architecture captures how sen-
sors, and their samples, relate to the fusion and ultimately
detection subsystems, see figure 1. In one case, we may
have all sensors feeding their samples to a single fusion sub-
system; the M — 1 or centralized case. In another, more
general case, we may have multiple fusion and detection sub-
systems in the system, with each sensor associated with only
one of them; the M — L case, where 1 < L < M. Just as we
consider one or more fusion centers, we can also consider the
case of having multiple decision subsystems, tied to a sin-
gle system-level decision subsystem. Each fusion subsystem
will be associated with only one of the decision subsystems.
The possibilities for these architectures are numerous and
choosing the right one will depend on some form of cost vs.
performance trade-off analysis as well; the cost in this case
could include the cost of deployment, cost of nodes of var-
ious types, cost of energy paid, communication cost and so
on. Next we consider two extreme cases: (a) L = 1 and (b)
L=M.

Before proceeding, we first introduce some notations. Let
SM represent the set of all sensors. Let also R™ and Sév rep-
resent the set of all the sensor observations and the set of all
the corresponding signal projections, respectively, involved
in a single instance of the detection process; in a sense, the
sets RN and S;V collect all the 7;’s and s;’s in (2). The



cardinality of the sets is |S}M| = M and |[RY| = S| = N.
Let also 85 represent the set of signal (projection) samples
slf,...,sf\,k due to sensor k, where Ny = |S§| > 0. Hence,
Sy = u,ﬁilsg and N = szw:l Ni. Note that the Ni’s need
not be equal to accommodate, for example, cases where the
sampling rates of the various sensors are not equal. Finally,
if In represent the N X N identity matrix, then the block
diagonal covariance matrix considered hereafter will satisfy:

C = diag(o7In,, 03In,, - .., oarIn,, ). (8)

3.1 L=1: Centralized detection

When L =1, all N measurements are fed to a single fusion
and detection subsystem. Hence, in this case, we can apply
LRT to the entire set of observations RY and signal pro-
jections Sé\’ to derive the “system-wide” versions of the Qol
performance metrics. It follows from (5) and (8) that the
system-wide SNR is given by:

M Ny (S]-C)2 M
w5y8=22#=2w£7 9)
k=1 i=1 k=1

where ? is the SNR due to the signal projection at the
location of the k-th sensor. It can be easily shown now that
test in (4) results in Qol performance metrics as in (6) with
the per sensor 9 replaced by the system-wide tsys in (9).
Let us define the following;:

DEFINITION 2. The equivalent sensor of a multi-sensor
system, is a single-sensor sensing system, that achieves the
same Qol level as the multi-sensor system using the same
observation set.

It follows from (9) that the system considered here possesses
an equivalent detector.

3.2 L=M: Distributed detection

When L = M, detection occurs in two levels. Firstly, a de-
tection decision is made by each sensor (or more accurately,
by each detection subsystem that is associated with one-and-
only-one sensor) based on its own measurment. Secondly, a
detection is made at the system level based on the detection
decisions made locally.*

Clearly, the Qol performance at the sensor level is given by
(6) again, where we use ), instead for ¢». We will write P}
and PJ’f for the probability of detection and false alarm for
sensor k, respectively, in this case.

Next, to obtain the system level detection probabilities, we
need to make use of the detection policy that the system
uses. A detection policy describes how the sensor-level de-
tection decisions combine to generate the system-wide de-
cision. Such policies will typically be based on some form
of a counting strategy, e.g., decide that the event has oc-
curred if at least, say, @ out of the M sensors indicated that
it did. Note that while commonly a majority rule is used
where @Q > M/2, we do not believe that this is necessarily
the best policy for the general case and have studied it in
more detail in section 4.1. The use of a majority rule tac-
itly assumes that each sensor detects the event with equal

4A properly modified version of these statements hold can
be made for the more general case where L > 1 as well.

probability, which may not always be true for any sensor
deployment geography. In accordance to our toolkit’s us-
age architecture, see figure 2, the detection policy is passed
to the core analysis engine by the system designer. Any
fine tuning of the detection policy to increase performance
is made via output post-processing, e.g., compare different
decision thresholds.

Assuming a “counting” detection policy, let Séu represent
the collection of all subsets of sensors that contain ¢ sensors.
The the cardinality of S} is M!/(¢!/(M — ¢)!). To declare
that the event has occurred, when it has really occurred,
i.e., under hypothesis Hi, there should be at least one set of
Sensors Xq € Sé” with ¢ > @ for which, all the sensors in x4
indicate that the event has occurred.

Each sensor takes a decision locally based on its own mea-
surements. Thus, given these measurements, each sensor
makes a detection decision independently of the other sen-
sors. This conditionally independent decision making pro-
cess, should not be confused with the fact that measure-
ments made by the sensors may relate to each other. There-
fore, the system-wide probability of detection Py(Q; M) for
a given threshold @ is given by:

Pa(Q; M) = Pr(q = Q|H1)

=i{ > [<HP5>(H<1—Pf>>]}. (10)

1=Q xgesy mer g
A similar expression for Py(Q, M) can be obtain by substi-
tuting Py with Pf in (10).

While highly unlikely, when the PF’s, z € {d, f}, are equal
to PJ independent of k, e.g., when the event -if it occurs-
is equidistant from all the sensors, or the differences of the
PFs are sufficiently negligible, then the above expressions
reduce to the tail distribution of a binomially distributed
random variable with parameters M and P. and we have
the following;:

M

P.(Q; M) = Z {(Aj) (P5YI(1 — P;)(quq_ (11)

=Q

A system with the above binomial case was consider in [11].
Note that for @ —1 < M, (11) can be evaluated recursively:

P.(Q;M)=(1—-P)P.(Q;M—-1)+P/P.(Q—1; M —1).
(12)

4. NUMERICAL STUDIES

In this section, we supplement the core analysis development
of the previous section with specific deployment models to
derive performance results and the corresponding systems.
Specifically, we consider two case studies. In the first case,
we compare the Qol performance of a totally distributed
and the corresponding centralized sensor system that we
discussed in section 3. In the second case, we study the
behavior of a sensor system by deriving upper and lower
bounds for the probability of detection P;. The use of the
framework allows us a systematic step-wise development of
the performance results reusing analysis approaches as nec-
essary.



| design parameters |

M = 4 sensors
d = [di,da,ds,ds]” =11,2,4,8]"
[N1, N2, N3, N4] = [20, 20, 20, 20]
N samples in 1 time unit
ar(t) =ar =1/(1+d3)
% = di /v (v =3 x 10°m/s)

of=05=03=0;=0"

Topology

Sampling policy

Attenuation model
Propagation model
Noise variance

Table 1: design parameters of the scenario

@Q=3 - - - @Q=4 = centralized

[—@Q=1 " @Q=2
1 ’ .

Figure 3: Centralized vs. distributed architectures detection
M=4,n=1and1< Q< M)

For both cases, we use a 4-sensor system described in table
1; note that we assume an electromagnetic signal, from the
family of signals of (relatively) “slow” and “fast” decaying
s*(t) =1 —1t" and s*(t) = (1 —t)", respectively, that last
for one time unit. This family of signals, is a convenient one
that, for an appropriate selection of the decay parameter n
(n > 0), can span from a unit pulse to a linear and to a unit
delta functions. The parameters populating table 1 plus
the signal description is provided by the application planner
and/or the system designer.

4.1 Centralized vs. distributed architectures
In this section, we study the Qol merits of the centralized
(L = 1) and distributed (L = M) architectures —we ac-
knowledge that there are other comparison metrics, e.g.,
energy consumption [10] and [9], transmission delay, etc.,
but we focus on the impact of these architectures on Qol.—
We will also study their performance as our predisposition
of whether the event has occurred (i.e., a priori probability
for hypothesis Hi) changes. We consider n = Py/P; (see
discussion about n following (3)). We first consider n = 1,
i.e., Po = P; which will serve as our reference point and
then n = 2 (> 1) and n = 0.5 (< 1) as well. The signal
signature is s*(t) = 1 — ¢, and each sensor contributes 20
samples. We consider a “lucky” system that happens to start
sampling just after the signal occurred. We will study the
implications of this assumption in our case study analysis in
the next subsection.

For the first case of n = 1, figure 3.a and 3.b show the Pj; the

@Q=3 - - - @Q=4 = centralized

AL L Lt bt e bt i i ]

0 05 1 15 2 25 3

Figure 4: Centralized vs. distributed architectures detection
(M=4,n=2and1<Q < M)

Py as a function of o (the standard deviation of the noise)
for the centralized architecture and the distributed architec-
ture with different decision thresholds Q. As expected, in
the case of the distributed architecture, both probabilities
decrease with increasing ) as the detection policy decides in
favor of Hi more liberally; this trend holds true for all cases
of n studied. The corresponding Qol performance metrics
for the centralized architecture lie above the “middle point,”
between @Q = 2 and 3.

Naturally, one will expect that the higher the Py, and the
lower the Py, the better the Qol will be. To achieve a more
direct comparison of the two architectures, we have decided
to use an average of the two metrics captured by the probabil-
ity of error P. = Py Py + Py (1— Py) = Pr (n Py + (1 — Py)),
which is shown in figure 3.c. The centralized architecture
achieves the best (i.e., smallest) P.. That is not surprising
as this architectures makes best use of the information avail-
able. However, an interesting byproduct of this analysis is
that setting @ at the middle point (Q = 2) attains the least
P. for the distributed architecture; due to their poor perfor-
mance with respect to Py and Py for Q = M and Q = 1,
respectively, these two extreme cases achieve the lowest P..

The case where n = 2, is shown in figure 4. First of all, with
n > 1 (i.e., Po > P1), the condition for deciding in favor of
H, becomes harder to achieve when compared with the n =
1 case, see (4). Therefore, P; and Py decrease in magnitude
when compared with these probabilities when n = 1 (for
the same o level) for both architectures. Comparing the
two architectures, the Py and Py of the centralized one lie
below the “middle point,” between Q = 2 and 1. Comparing
the P. performance of the two architectures, we again see
the centralized one achieving the best performance. With
respect to the distributed architecture, the best distributed
detection policy is attained when @Q = 2 for smaller ¢ and
when @ = 1 for larger 0. The reduction of @ for the best
threshold in the case where 7 > 1 when compared with n = 1
follows from the fact that with decreasing Pi it becomes
harder for any sensor to declare in favor of H;. Therefore,
having even a small(er) number of sensors declaring in favor
of H; is reason enough to declare in favor of H; system-wide.
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Figure 5: Centralized vs. distributed architectures detection
(M=4,n=05and 1< Q < M)

Finally, the case where n = 0.5 is shown in figure 5. Argu-
ing as in the n > 1 case, the behavior of the Qol metrics
in this case are in reverse order relative to the n = 1 case
when compared with n > 1. With respect to P., while the
centralized architecture still performs the best, the best dis-
tributed detection policy is attained when @ = 3 for smaller
o and when @ = 4 for larger o.

Based on the behavior of the two systems when compared
on the basis of P., we conjecture that in general the best
detection policy for the distributed architectures is achieved
at a threshold @ that decreases below M/2 (and possibly
toward M) as i) increases above 1. Contrary, the threshold @
increases above M /2 (and possibly toward 1) as n decreases
below 1.

4.2 The lucky and unlucky sensor

In the previous subsection, we made reference to a lucky
sensor k, that sampled the signal just after the signal pro-
jection first arrived at the sensor location (and then took
additional N — 1 samples as well). For the decaying sig-
nal considered, this lucky sensor picks the strongest possible
signal (or better event signature projection) measurements,
and hence achieves the highest possibility of detecting the
event, hence, P;l > Pc]f;r, where the indexes [ and r stand
for lucky and real (k-th sensor), respectively. Similarly, we
may have an unlucky sensor that samples just before the
projection arrives at the sensor and hence, when the sig-
nal samples are made, they are the weakest possible, which
results in P(Zu < Pf;r.

In general, under hypothesis Hi, a sensor will take its first
signal y, time units after the signal projection arrives at
the k-sensor, see figure 1, where 0 < yr < Tk; where T}
is the sampling period of the k-th sensor. The i-th sample

contributed to the decision process by the k-th sensor is
st =ap*s (ti— e +yp) + 1, 1<i< Ny (13)

Since, yi is in general unknown (could be modeled as a
random variable), the convenience of using the lucky and

s(t)=(1-t)*n=1,N=20

44 - : :
‘{”, ~Lucky Sensor(s)(y=0)
0.9+ ““ A === Unlucky Sensor(s)(y=T) H
~ + y=T/2
0.8 avged S
D-U
0.7 |
0.6 . |
BT B
0'50 0.5 1 1.5 2 2.5 3
[e)

Figure 6: Performance region for M = 4 sensors, s*(t) =
(1—t)*andn =1

unlucky sensors instead to bound the performance for the
case of decaying signals becomes apparent. We will study
these bounds next; this analysis can be generalized for non-
decaying signals as well.

We will consider the class of slow decaying signals s*(t) =
(1—1t)", applied to a centralized system with parameters as
in table 1, we also use Py = P, i.e., n = 1. Along with the
upper and lower bounds derived from the lucky and unlucky
sensors, we also consider two additional approximations: (a)
one where we assume that yr = T%/2 (since all the sensor
contribute we may drop the index k here); and (b) an aver-
age signal approximation given by

wooak [TF
8 = —/ s (ti — T + y) dy. (14)
T J,

Figure 6 shows the P, for the four cases considered as a
function of o. As expected, the lucky system (where all the
sensors are lucky) achieves the highest probability of detec-
tion and the unlucky system the lowest for all values of o.
Interestingly, the case where y = T'/2 and the average signal
approximation in (14) result in very close results. In general,
it is expected that the higher the sampling rate, the upper
and lower bounds become tighter, and so will any approxi-
mation that restricts itself between the two bounds. We also
notice that as o increases, P; for all cases (and hence for the
real system too) decreases toward 0.5. That should be ex-
pected looking at (6a) that as o increases (or 1 decreases)
and 17 = 1, the probability of detection tends toward 0.5.
Applying this observation to the equivalent sensor of our
centralized system results in the behavior seen in figure 6.
Finally, figure 7 shows a comparison of the performance be-
havior for fast and slow decaying signals as a function of n,
for the same system as in figure 6. Specifically, we show the
integral between the upper and lower performance bounds
(noted as performance area in the figure) and the maximum
difference (MAX4ig) between the bounds for each class of
signals. It can be easily shown that for the fast decaying
signals as n increases they tend to the unit delta function
and the samples taken differ significantly from each other.
Thus, the performance differences between the lucky and un-
lucky sensors of fast decaying signals increase. The reverse
behavior is exhibited for the slow decaying signals that tend
to the unit pulse with n and hence the differences between
samples diminish. Note that for n = 0, we have the case of
a persistent signal and there are no upper and lower bound
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differences in this case.

5. CONCLUDING REMARKS

In this paper, we have used Qol as the means to capture
an application’s information needs from an underlying sen-
sor networks. We then introduce a Qol-based framework for
the evaluation of sensor network deployments. The deploy-
ment evaluation aids application planners in evaluating the
performance capabilities of the network, thus, allowing them
to possibly develop contingency plans in case the expected
performance is below desired Qol levels.

The framework is reflective of how application planners and
system designers will use it, and input parameters to it. It
considers a class of event detection applications and com-
prises of: (a) an input preprocessing step, where the physi-
cal constraints of the deployment are considered; (b) a core
analysis step, where a common performance analysis ap-
proach is used based on hypothesis testing; and (c) a re-
sult post-processing step, where “point solutions” obtained
through core analysis are combined and processed further to
derive the desired end-results. We have applied the frame-
work on analyzing a rather non-homogenous system com-

prising a finite-size sensor network with transient (non-constant)

signals, arbitrary sensor deployment, and different noise lev-
els at each sensor. Note that persistent events, typically con-
sidered in most of work on sensor networks, can be studied as
limiting cases of transient events, but this is not necessarily
true the other way around. Extensions to more general noise
models including both spatial and temporal correlations are
into considerations. We also, analyzed the performance of
“lucky” vs. “unlucky” systems with respect to sampling times
thus develop performance bounds of various sampling pos-
sibilities.

We have compared centralized vs. distributed detection ar-
chitectures with respect to Qol performance. For distributed
schemes we have also studied the selection of an optimal
threshold for counting-based system-wide detection policies.
In the latter case, we have demonstrated how a priori knowl-
edge about event occurrence influences the selection of the
best detection policy threshold. This analysis is also applica-
ble for case where local fusion is performed but the detection
is still centralized, e.g., when the sum on the right side of

(4) is calculated in a distributed fashion, but the inequality
comparison occurs at a central location.

The framework facilitates the decoupling of the three steps,
and the mix-and-match of different analysis, and model-
ing approaches (both existing and new ones), e.g., use of
a Neyman-Pearson instead of Bayesian detection testing for
the core analysis engine. The decoupling permits the focus
to be placed at separate aspects of the problem at differ-
ent times, thus simplifying the analysis, and modeling ap-
proaches engaged at each step. This various approaches can
then become components of a toolkit, that can be used for
the analysis of a broad collection of sensing systems.
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